1 /* Xilinx CAN device driver 2 * 3 * Copyright (C) 2012 - 2014 Xilinx, Inc. 4 * Copyright (C) 2009 PetaLogix. All rights reserved. 5 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy 6 * 7 * Description: 8 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller. 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/clk.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/netdevice.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 #include <linux/platform_device.h> 31 #include <linux/skbuff.h> 32 #include <linux/spinlock.h> 33 #include <linux/string.h> 34 #include <linux/types.h> 35 #include <linux/can/dev.h> 36 #include <linux/can/error.h> 37 #include <linux/can/led.h> 38 #include <linux/pm_runtime.h> 39 40 #define DRIVER_NAME "xilinx_can" 41 42 /* CAN registers set */ 43 enum xcan_reg { 44 XCAN_SRR_OFFSET = 0x00, /* Software reset */ 45 XCAN_MSR_OFFSET = 0x04, /* Mode select */ 46 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */ 47 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */ 48 XCAN_ECR_OFFSET = 0x10, /* Error counter */ 49 XCAN_ESR_OFFSET = 0x14, /* Error status */ 50 XCAN_SR_OFFSET = 0x18, /* Status */ 51 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */ 52 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */ 53 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */ 54 55 /* not on CAN FD cores */ 56 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */ 57 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */ 58 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */ 59 60 /* only on CAN FD cores */ 61 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */ 62 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */ 63 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */ 64 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */ 65 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */ 66 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */ 67 }; 68 69 #define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00) 70 #define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04) 71 #define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08) 72 #define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C) 73 74 #define XCAN_CANFD_FRAME_SIZE 0x48 75 #define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \ 76 XCAN_CANFD_FRAME_SIZE * (n)) 77 #define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \ 78 XCAN_CANFD_FRAME_SIZE * (n)) 79 #define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \ 80 XCAN_CANFD_FRAME_SIZE * (n)) 81 82 /* the single TX mailbox used by this driver on CAN FD HW */ 83 #define XCAN_TX_MAILBOX_IDX 0 84 85 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */ 86 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */ 87 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */ 88 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */ 89 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */ 90 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */ 91 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */ 92 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */ 93 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */ 94 #define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */ 95 #define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */ 96 #define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */ 97 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */ 98 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */ 99 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */ 100 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */ 101 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */ 102 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */ 103 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */ 104 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */ 105 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */ 106 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */ 107 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */ 108 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */ 109 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */ 110 #define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */ 111 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */ 112 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */ 113 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */ 114 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */ 115 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */ 116 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */ 117 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */ 118 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */ 119 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */ 120 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */ 121 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */ 122 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */ 123 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */ 124 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */ 125 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */ 126 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */ 127 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */ 128 #define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */ 129 #define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */ 130 #define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */ 131 132 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */ 133 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */ 134 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */ 135 #define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */ 136 #define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */ 137 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */ 138 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */ 139 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */ 140 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */ 141 142 /* CAN frame length constants */ 143 #define XCAN_FRAME_MAX_DATA_LEN 8 144 #define XCAN_TIMEOUT (1 * HZ) 145 146 /* TX-FIFO-empty interrupt available */ 147 #define XCAN_FLAG_TXFEMP 0x0001 148 /* RX Match Not Finished interrupt available */ 149 #define XCAN_FLAG_RXMNF 0x0002 150 /* Extended acceptance filters with control at 0xE0 */ 151 #define XCAN_FLAG_EXT_FILTERS 0x0004 152 /* TX mailboxes instead of TX FIFO */ 153 #define XCAN_FLAG_TX_MAILBOXES 0x0008 154 /* RX FIFO with each buffer in separate registers at 0x1100 155 * instead of the regular FIFO at 0x50 156 */ 157 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010 158 #define XCAN_FLAG_CANFD_2 0x0020 159 160 struct xcan_devtype_data { 161 unsigned int flags; 162 const struct can_bittiming_const *bittiming_const; 163 const char *bus_clk_name; 164 unsigned int btr_ts2_shift; 165 unsigned int btr_sjw_shift; 166 }; 167 168 /** 169 * struct xcan_priv - This definition define CAN driver instance 170 * @can: CAN private data structure. 171 * @tx_lock: Lock for synchronizing TX interrupt handling 172 * @tx_head: Tx CAN packets ready to send on the queue 173 * @tx_tail: Tx CAN packets successfully sended on the queue 174 * @tx_max: Maximum number packets the driver can send 175 * @napi: NAPI structure 176 * @read_reg: For reading data from CAN registers 177 * @write_reg: For writing data to CAN registers 178 * @dev: Network device data structure 179 * @reg_base: Ioremapped address to registers 180 * @irq_flags: For request_irq() 181 * @bus_clk: Pointer to struct clk 182 * @can_clk: Pointer to struct clk 183 * @devtype: Device type specific constants 184 */ 185 struct xcan_priv { 186 struct can_priv can; 187 spinlock_t tx_lock; 188 unsigned int tx_head; 189 unsigned int tx_tail; 190 unsigned int tx_max; 191 struct napi_struct napi; 192 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg); 193 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg, 194 u32 val); 195 struct device *dev; 196 void __iomem *reg_base; 197 unsigned long irq_flags; 198 struct clk *bus_clk; 199 struct clk *can_clk; 200 struct xcan_devtype_data devtype; 201 }; 202 203 /* CAN Bittiming constants as per Xilinx CAN specs */ 204 static const struct can_bittiming_const xcan_bittiming_const = { 205 .name = DRIVER_NAME, 206 .tseg1_min = 1, 207 .tseg1_max = 16, 208 .tseg2_min = 1, 209 .tseg2_max = 8, 210 .sjw_max = 4, 211 .brp_min = 1, 212 .brp_max = 256, 213 .brp_inc = 1, 214 }; 215 216 static const struct can_bittiming_const xcan_bittiming_const_canfd = { 217 .name = DRIVER_NAME, 218 .tseg1_min = 1, 219 .tseg1_max = 64, 220 .tseg2_min = 1, 221 .tseg2_max = 16, 222 .sjw_max = 16, 223 .brp_min = 1, 224 .brp_max = 256, 225 .brp_inc = 1, 226 }; 227 228 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = { 229 .name = DRIVER_NAME, 230 .tseg1_min = 1, 231 .tseg1_max = 256, 232 .tseg2_min = 1, 233 .tseg2_max = 128, 234 .sjw_max = 128, 235 .brp_min = 1, 236 .brp_max = 256, 237 .brp_inc = 1, 238 }; 239 240 /** 241 * xcan_write_reg_le - Write a value to the device register little endian 242 * @priv: Driver private data structure 243 * @reg: Register offset 244 * @val: Value to write at the Register offset 245 * 246 * Write data to the paricular CAN register 247 */ 248 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg, 249 u32 val) 250 { 251 iowrite32(val, priv->reg_base + reg); 252 } 253 254 /** 255 * xcan_read_reg_le - Read a value from the device register little endian 256 * @priv: Driver private data structure 257 * @reg: Register offset 258 * 259 * Read data from the particular CAN register 260 * Return: value read from the CAN register 261 */ 262 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg) 263 { 264 return ioread32(priv->reg_base + reg); 265 } 266 267 /** 268 * xcan_write_reg_be - Write a value to the device register big endian 269 * @priv: Driver private data structure 270 * @reg: Register offset 271 * @val: Value to write at the Register offset 272 * 273 * Write data to the paricular CAN register 274 */ 275 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg, 276 u32 val) 277 { 278 iowrite32be(val, priv->reg_base + reg); 279 } 280 281 /** 282 * xcan_read_reg_be - Read a value from the device register big endian 283 * @priv: Driver private data structure 284 * @reg: Register offset 285 * 286 * Read data from the particular CAN register 287 * Return: value read from the CAN register 288 */ 289 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg) 290 { 291 return ioread32be(priv->reg_base + reg); 292 } 293 294 /** 295 * xcan_rx_int_mask - Get the mask for the receive interrupt 296 * @priv: Driver private data structure 297 * 298 * Return: The receive interrupt mask used by the driver on this HW 299 */ 300 static u32 xcan_rx_int_mask(const struct xcan_priv *priv) 301 { 302 /* RXNEMP is better suited for our use case as it cannot be cleared 303 * while the FIFO is non-empty, but CAN FD HW does not have it 304 */ 305 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) 306 return XCAN_IXR_RXOK_MASK; 307 else 308 return XCAN_IXR_RXNEMP_MASK; 309 } 310 311 /** 312 * set_reset_mode - Resets the CAN device mode 313 * @ndev: Pointer to net_device structure 314 * 315 * This is the driver reset mode routine.The driver 316 * enters into configuration mode. 317 * 318 * Return: 0 on success and failure value on error 319 */ 320 static int set_reset_mode(struct net_device *ndev) 321 { 322 struct xcan_priv *priv = netdev_priv(ndev); 323 unsigned long timeout; 324 325 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); 326 327 timeout = jiffies + XCAN_TIMEOUT; 328 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) { 329 if (time_after(jiffies, timeout)) { 330 netdev_warn(ndev, "timed out for config mode\n"); 331 return -ETIMEDOUT; 332 } 333 usleep_range(500, 10000); 334 } 335 336 /* reset clears FIFOs */ 337 priv->tx_head = 0; 338 priv->tx_tail = 0; 339 340 return 0; 341 } 342 343 /** 344 * xcan_set_bittiming - CAN set bit timing routine 345 * @ndev: Pointer to net_device structure 346 * 347 * This is the driver set bittiming routine. 348 * Return: 0 on success and failure value on error 349 */ 350 static int xcan_set_bittiming(struct net_device *ndev) 351 { 352 struct xcan_priv *priv = netdev_priv(ndev); 353 struct can_bittiming *bt = &priv->can.bittiming; 354 u32 btr0, btr1; 355 u32 is_config_mode; 356 357 /* Check whether Xilinx CAN is in configuration mode. 358 * It cannot set bit timing if Xilinx CAN is not in configuration mode. 359 */ 360 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) & 361 XCAN_SR_CONFIG_MASK; 362 if (!is_config_mode) { 363 netdev_alert(ndev, 364 "BUG! Cannot set bittiming - CAN is not in config mode\n"); 365 return -EPERM; 366 } 367 368 /* Setting Baud Rate prescalar value in BRPR Register */ 369 btr0 = (bt->brp - 1); 370 371 /* Setting Time Segment 1 in BTR Register */ 372 btr1 = (bt->prop_seg + bt->phase_seg1 - 1); 373 374 /* Setting Time Segment 2 in BTR Register */ 375 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift; 376 377 /* Setting Synchronous jump width in BTR Register */ 378 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift; 379 380 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0); 381 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1); 382 383 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n", 384 priv->read_reg(priv, XCAN_BRPR_OFFSET), 385 priv->read_reg(priv, XCAN_BTR_OFFSET)); 386 387 return 0; 388 } 389 390 /** 391 * xcan_chip_start - This the drivers start routine 392 * @ndev: Pointer to net_device structure 393 * 394 * This is the drivers start routine. 395 * Based on the State of the CAN device it puts 396 * the CAN device into a proper mode. 397 * 398 * Return: 0 on success and failure value on error 399 */ 400 static int xcan_chip_start(struct net_device *ndev) 401 { 402 struct xcan_priv *priv = netdev_priv(ndev); 403 u32 reg_msr, reg_sr_mask; 404 int err; 405 unsigned long timeout; 406 u32 ier; 407 408 /* Check if it is in reset mode */ 409 err = set_reset_mode(ndev); 410 if (err < 0) 411 return err; 412 413 err = xcan_set_bittiming(ndev); 414 if (err < 0) 415 return err; 416 417 /* Enable interrupts */ 418 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK | 419 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | 420 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK | 421 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv); 422 423 if (priv->devtype.flags & XCAN_FLAG_RXMNF) 424 ier |= XCAN_IXR_RXMNF_MASK; 425 426 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 427 428 /* Check whether it is loopback mode or normal mode */ 429 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 430 reg_msr = XCAN_MSR_LBACK_MASK; 431 reg_sr_mask = XCAN_SR_LBACK_MASK; 432 } else { 433 reg_msr = 0x0; 434 reg_sr_mask = XCAN_SR_NORMAL_MASK; 435 } 436 437 /* enable the first extended filter, if any, as cores with extended 438 * filtering default to non-receipt if all filters are disabled 439 */ 440 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS) 441 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001); 442 443 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr); 444 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK); 445 446 timeout = jiffies + XCAN_TIMEOUT; 447 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) { 448 if (time_after(jiffies, timeout)) { 449 netdev_warn(ndev, 450 "timed out for correct mode\n"); 451 return -ETIMEDOUT; 452 } 453 } 454 netdev_dbg(ndev, "status:#x%08x\n", 455 priv->read_reg(priv, XCAN_SR_OFFSET)); 456 457 priv->can.state = CAN_STATE_ERROR_ACTIVE; 458 return 0; 459 } 460 461 /** 462 * xcan_do_set_mode - This sets the mode of the driver 463 * @ndev: Pointer to net_device structure 464 * @mode: Tells the mode of the driver 465 * 466 * This check the drivers state and calls the 467 * the corresponding modes to set. 468 * 469 * Return: 0 on success and failure value on error 470 */ 471 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode) 472 { 473 int ret; 474 475 switch (mode) { 476 case CAN_MODE_START: 477 ret = xcan_chip_start(ndev); 478 if (ret < 0) { 479 netdev_err(ndev, "xcan_chip_start failed!\n"); 480 return ret; 481 } 482 netif_wake_queue(ndev); 483 break; 484 default: 485 ret = -EOPNOTSUPP; 486 break; 487 } 488 489 return ret; 490 } 491 492 /** 493 * xcan_write_frame - Write a frame to HW 494 * @skb: sk_buff pointer that contains data to be Txed 495 * @frame_offset: Register offset to write the frame to 496 */ 497 static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb, 498 int frame_offset) 499 { 500 u32 id, dlc, data[2] = {0, 0}; 501 struct can_frame *cf = (struct can_frame *)skb->data; 502 503 /* Watch carefully on the bit sequence */ 504 if (cf->can_id & CAN_EFF_FLAG) { 505 /* Extended CAN ID format */ 506 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) & 507 XCAN_IDR_ID2_MASK; 508 id |= (((cf->can_id & CAN_EFF_MASK) >> 509 (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) << 510 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK; 511 512 /* The substibute remote TX request bit should be "1" 513 * for extended frames as in the Xilinx CAN datasheet 514 */ 515 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK; 516 517 if (cf->can_id & CAN_RTR_FLAG) 518 /* Extended frames remote TX request */ 519 id |= XCAN_IDR_RTR_MASK; 520 } else { 521 /* Standard CAN ID format */ 522 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) & 523 XCAN_IDR_ID1_MASK; 524 525 if (cf->can_id & CAN_RTR_FLAG) 526 /* Standard frames remote TX request */ 527 id |= XCAN_IDR_SRR_MASK; 528 } 529 530 dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT; 531 532 if (cf->can_dlc > 0) 533 data[0] = be32_to_cpup((__be32 *)(cf->data + 0)); 534 if (cf->can_dlc > 4) 535 data[1] = be32_to_cpup((__be32 *)(cf->data + 4)); 536 537 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id); 538 /* If the CAN frame is RTR frame this write triggers transmission 539 * (not on CAN FD) 540 */ 541 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc); 542 if (!(cf->can_id & CAN_RTR_FLAG)) { 543 priv->write_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_offset), 544 data[0]); 545 /* If the CAN frame is Standard/Extended frame this 546 * write triggers transmission (not on CAN FD) 547 */ 548 priv->write_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_offset), 549 data[1]); 550 } 551 } 552 553 /** 554 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode) 555 * 556 * Return: 0 on success, -ENOSPC if FIFO is full. 557 */ 558 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev) 559 { 560 struct xcan_priv *priv = netdev_priv(ndev); 561 unsigned long flags; 562 563 /* Check if the TX buffer is full */ 564 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) & 565 XCAN_SR_TXFLL_MASK)) 566 return -ENOSPC; 567 568 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max); 569 570 spin_lock_irqsave(&priv->tx_lock, flags); 571 572 priv->tx_head++; 573 574 xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET); 575 576 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */ 577 if (priv->tx_max > 1) 578 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK); 579 580 /* Check if the TX buffer is full */ 581 if ((priv->tx_head - priv->tx_tail) == priv->tx_max) 582 netif_stop_queue(ndev); 583 584 spin_unlock_irqrestore(&priv->tx_lock, flags); 585 586 return 0; 587 } 588 589 /** 590 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode) 591 * 592 * Return: 0 on success, -ENOSPC if there is no space 593 */ 594 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev) 595 { 596 struct xcan_priv *priv = netdev_priv(ndev); 597 unsigned long flags; 598 599 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) & 600 BIT(XCAN_TX_MAILBOX_IDX))) 601 return -ENOSPC; 602 603 can_put_echo_skb(skb, ndev, 0); 604 605 spin_lock_irqsave(&priv->tx_lock, flags); 606 607 priv->tx_head++; 608 609 xcan_write_frame(priv, skb, 610 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX)); 611 612 /* Mark buffer as ready for transmit */ 613 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX)); 614 615 netif_stop_queue(ndev); 616 617 spin_unlock_irqrestore(&priv->tx_lock, flags); 618 619 return 0; 620 } 621 622 /** 623 * xcan_start_xmit - Starts the transmission 624 * @skb: sk_buff pointer that contains data to be Txed 625 * @ndev: Pointer to net_device structure 626 * 627 * This function is invoked from upper layers to initiate transmission. 628 * 629 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full 630 */ 631 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev) 632 { 633 struct xcan_priv *priv = netdev_priv(ndev); 634 int ret; 635 636 if (can_dropped_invalid_skb(ndev, skb)) 637 return NETDEV_TX_OK; 638 639 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) 640 ret = xcan_start_xmit_mailbox(skb, ndev); 641 else 642 ret = xcan_start_xmit_fifo(skb, ndev); 643 644 if (ret < 0) { 645 netdev_err(ndev, "BUG!, TX full when queue awake!\n"); 646 netif_stop_queue(ndev); 647 return NETDEV_TX_BUSY; 648 } 649 650 return NETDEV_TX_OK; 651 } 652 653 /** 654 * xcan_rx - Is called from CAN isr to complete the received 655 * frame processing 656 * @ndev: Pointer to net_device structure 657 * @frame_base: Register offset to the frame to be read 658 * 659 * This function is invoked from the CAN isr(poll) to process the Rx frames. It 660 * does minimal processing and invokes "netif_receive_skb" to complete further 661 * processing. 662 * Return: 1 on success and 0 on failure. 663 */ 664 static int xcan_rx(struct net_device *ndev, int frame_base) 665 { 666 struct xcan_priv *priv = netdev_priv(ndev); 667 struct net_device_stats *stats = &ndev->stats; 668 struct can_frame *cf; 669 struct sk_buff *skb; 670 u32 id_xcan, dlc, data[2] = {0, 0}; 671 672 skb = alloc_can_skb(ndev, &cf); 673 if (unlikely(!skb)) { 674 stats->rx_dropped++; 675 return 0; 676 } 677 678 /* Read a frame from Xilinx zynq CANPS */ 679 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base)); 680 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >> 681 XCAN_DLCR_DLC_SHIFT; 682 683 /* Change Xilinx CAN data length format to socketCAN data format */ 684 cf->can_dlc = get_can_dlc(dlc); 685 686 /* Change Xilinx CAN ID format to socketCAN ID format */ 687 if (id_xcan & XCAN_IDR_IDE_MASK) { 688 /* The received frame is an Extended format frame */ 689 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3; 690 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >> 691 XCAN_IDR_ID2_SHIFT; 692 cf->can_id |= CAN_EFF_FLAG; 693 if (id_xcan & XCAN_IDR_RTR_MASK) 694 cf->can_id |= CAN_RTR_FLAG; 695 } else { 696 /* The received frame is a standard format frame */ 697 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 698 XCAN_IDR_ID1_SHIFT; 699 if (id_xcan & XCAN_IDR_SRR_MASK) 700 cf->can_id |= CAN_RTR_FLAG; 701 } 702 703 /* DW1/DW2 must always be read to remove message from RXFIFO */ 704 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base)); 705 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base)); 706 707 if (!(cf->can_id & CAN_RTR_FLAG)) { 708 /* Change Xilinx CAN data format to socketCAN data format */ 709 if (cf->can_dlc > 0) 710 *(__be32 *)(cf->data) = cpu_to_be32(data[0]); 711 if (cf->can_dlc > 4) 712 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]); 713 } 714 715 stats->rx_bytes += cf->can_dlc; 716 stats->rx_packets++; 717 netif_receive_skb(skb); 718 719 return 1; 720 } 721 722 /** 723 * xcan_current_error_state - Get current error state from HW 724 * @ndev: Pointer to net_device structure 725 * 726 * Checks the current CAN error state from the HW. Note that this 727 * only checks for ERROR_PASSIVE and ERROR_WARNING. 728 * 729 * Return: 730 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE 731 * otherwise. 732 */ 733 static enum can_state xcan_current_error_state(struct net_device *ndev) 734 { 735 struct xcan_priv *priv = netdev_priv(ndev); 736 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET); 737 738 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) 739 return CAN_STATE_ERROR_PASSIVE; 740 else if (status & XCAN_SR_ERRWRN_MASK) 741 return CAN_STATE_ERROR_WARNING; 742 else 743 return CAN_STATE_ERROR_ACTIVE; 744 } 745 746 /** 747 * xcan_set_error_state - Set new CAN error state 748 * @ndev: Pointer to net_device structure 749 * @new_state: The new CAN state to be set 750 * @cf: Error frame to be populated or NULL 751 * 752 * Set new CAN error state for the device, updating statistics and 753 * populating the error frame if given. 754 */ 755 static void xcan_set_error_state(struct net_device *ndev, 756 enum can_state new_state, 757 struct can_frame *cf) 758 { 759 struct xcan_priv *priv = netdev_priv(ndev); 760 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET); 761 u32 txerr = ecr & XCAN_ECR_TEC_MASK; 762 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT; 763 enum can_state tx_state = txerr >= rxerr ? new_state : 0; 764 enum can_state rx_state = txerr <= rxerr ? new_state : 0; 765 766 /* non-ERROR states are handled elsewhere */ 767 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE)) 768 return; 769 770 can_change_state(ndev, cf, tx_state, rx_state); 771 772 if (cf) { 773 cf->data[6] = txerr; 774 cf->data[7] = rxerr; 775 } 776 } 777 778 /** 779 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX 780 * @ndev: Pointer to net_device structure 781 * 782 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if 783 * the performed RX/TX has caused it to drop to a lesser state and set 784 * the interface state accordingly. 785 */ 786 static void xcan_update_error_state_after_rxtx(struct net_device *ndev) 787 { 788 struct xcan_priv *priv = netdev_priv(ndev); 789 enum can_state old_state = priv->can.state; 790 enum can_state new_state; 791 792 /* changing error state due to successful frame RX/TX can only 793 * occur from these states 794 */ 795 if (old_state != CAN_STATE_ERROR_WARNING && 796 old_state != CAN_STATE_ERROR_PASSIVE) 797 return; 798 799 new_state = xcan_current_error_state(ndev); 800 801 if (new_state != old_state) { 802 struct sk_buff *skb; 803 struct can_frame *cf; 804 805 skb = alloc_can_err_skb(ndev, &cf); 806 807 xcan_set_error_state(ndev, new_state, skb ? cf : NULL); 808 809 if (skb) { 810 struct net_device_stats *stats = &ndev->stats; 811 812 stats->rx_packets++; 813 stats->rx_bytes += cf->can_dlc; 814 netif_rx(skb); 815 } 816 } 817 } 818 819 /** 820 * xcan_err_interrupt - error frame Isr 821 * @ndev: net_device pointer 822 * @isr: interrupt status register value 823 * 824 * This is the CAN error interrupt and it will 825 * check the the type of error and forward the error 826 * frame to upper layers. 827 */ 828 static void xcan_err_interrupt(struct net_device *ndev, u32 isr) 829 { 830 struct xcan_priv *priv = netdev_priv(ndev); 831 struct net_device_stats *stats = &ndev->stats; 832 struct can_frame *cf; 833 struct sk_buff *skb; 834 u32 err_status; 835 836 skb = alloc_can_err_skb(ndev, &cf); 837 838 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET); 839 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status); 840 841 if (isr & XCAN_IXR_BSOFF_MASK) { 842 priv->can.state = CAN_STATE_BUS_OFF; 843 priv->can.can_stats.bus_off++; 844 /* Leave device in Config Mode in bus-off state */ 845 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); 846 can_bus_off(ndev); 847 if (skb) 848 cf->can_id |= CAN_ERR_BUSOFF; 849 } else { 850 enum can_state new_state = xcan_current_error_state(ndev); 851 852 if (new_state != priv->can.state) 853 xcan_set_error_state(ndev, new_state, skb ? cf : NULL); 854 } 855 856 /* Check for Arbitration lost interrupt */ 857 if (isr & XCAN_IXR_ARBLST_MASK) { 858 priv->can.can_stats.arbitration_lost++; 859 if (skb) { 860 cf->can_id |= CAN_ERR_LOSTARB; 861 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC; 862 } 863 } 864 865 /* Check for RX FIFO Overflow interrupt */ 866 if (isr & XCAN_IXR_RXOFLW_MASK) { 867 stats->rx_over_errors++; 868 stats->rx_errors++; 869 if (skb) { 870 cf->can_id |= CAN_ERR_CRTL; 871 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; 872 } 873 } 874 875 /* Check for RX Match Not Finished interrupt */ 876 if (isr & XCAN_IXR_RXMNF_MASK) { 877 stats->rx_dropped++; 878 stats->rx_errors++; 879 netdev_err(ndev, "RX match not finished, frame discarded\n"); 880 if (skb) { 881 cf->can_id |= CAN_ERR_CRTL; 882 cf->data[1] |= CAN_ERR_CRTL_UNSPEC; 883 } 884 } 885 886 /* Check for error interrupt */ 887 if (isr & XCAN_IXR_ERROR_MASK) { 888 if (skb) 889 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 890 891 /* Check for Ack error interrupt */ 892 if (err_status & XCAN_ESR_ACKER_MASK) { 893 stats->tx_errors++; 894 if (skb) { 895 cf->can_id |= CAN_ERR_ACK; 896 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 897 } 898 } 899 900 /* Check for Bit error interrupt */ 901 if (err_status & XCAN_ESR_BERR_MASK) { 902 stats->tx_errors++; 903 if (skb) { 904 cf->can_id |= CAN_ERR_PROT; 905 cf->data[2] = CAN_ERR_PROT_BIT; 906 } 907 } 908 909 /* Check for Stuff error interrupt */ 910 if (err_status & XCAN_ESR_STER_MASK) { 911 stats->rx_errors++; 912 if (skb) { 913 cf->can_id |= CAN_ERR_PROT; 914 cf->data[2] = CAN_ERR_PROT_STUFF; 915 } 916 } 917 918 /* Check for Form error interrupt */ 919 if (err_status & XCAN_ESR_FMER_MASK) { 920 stats->rx_errors++; 921 if (skb) { 922 cf->can_id |= CAN_ERR_PROT; 923 cf->data[2] = CAN_ERR_PROT_FORM; 924 } 925 } 926 927 /* Check for CRC error interrupt */ 928 if (err_status & XCAN_ESR_CRCER_MASK) { 929 stats->rx_errors++; 930 if (skb) { 931 cf->can_id |= CAN_ERR_PROT; 932 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 933 } 934 } 935 priv->can.can_stats.bus_error++; 936 } 937 938 if (skb) { 939 stats->rx_packets++; 940 stats->rx_bytes += cf->can_dlc; 941 netif_rx(skb); 942 } 943 944 netdev_dbg(ndev, "%s: error status register:0x%x\n", 945 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET)); 946 } 947 948 /** 949 * xcan_state_interrupt - It will check the state of the CAN device 950 * @ndev: net_device pointer 951 * @isr: interrupt status register value 952 * 953 * This will checks the state of the CAN device 954 * and puts the device into appropriate state. 955 */ 956 static void xcan_state_interrupt(struct net_device *ndev, u32 isr) 957 { 958 struct xcan_priv *priv = netdev_priv(ndev); 959 960 /* Check for Sleep interrupt if set put CAN device in sleep state */ 961 if (isr & XCAN_IXR_SLP_MASK) 962 priv->can.state = CAN_STATE_SLEEPING; 963 964 /* Check for Wake up interrupt if set put CAN device in Active state */ 965 if (isr & XCAN_IXR_WKUP_MASK) 966 priv->can.state = CAN_STATE_ERROR_ACTIVE; 967 } 968 969 /** 970 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame 971 * 972 * Return: Register offset of the next frame in RX FIFO. 973 */ 974 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv) 975 { 976 int offset; 977 978 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) { 979 u32 fsr; 980 981 /* clear RXOK before the is-empty check so that any newly 982 * received frame will reassert it without a race 983 */ 984 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK); 985 986 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET); 987 988 /* check if RX FIFO is empty */ 989 if (!(fsr & XCAN_FSR_FL_MASK)) 990 return -ENOENT; 991 992 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) 993 offset = XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK); 994 else 995 offset = XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK); 996 997 } else { 998 /* check if RX FIFO is empty */ 999 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) & 1000 XCAN_IXR_RXNEMP_MASK)) 1001 return -ENOENT; 1002 1003 /* frames are read from a static offset */ 1004 offset = XCAN_RXFIFO_OFFSET; 1005 } 1006 1007 return offset; 1008 } 1009 1010 /** 1011 * xcan_rx_poll - Poll routine for rx packets (NAPI) 1012 * @napi: napi structure pointer 1013 * @quota: Max number of rx packets to be processed. 1014 * 1015 * This is the poll routine for rx part. 1016 * It will process the packets maximux quota value. 1017 * 1018 * Return: number of packets received 1019 */ 1020 static int xcan_rx_poll(struct napi_struct *napi, int quota) 1021 { 1022 struct net_device *ndev = napi->dev; 1023 struct xcan_priv *priv = netdev_priv(ndev); 1024 u32 ier; 1025 int work_done = 0; 1026 int frame_offset; 1027 1028 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 && 1029 (work_done < quota)) { 1030 work_done += xcan_rx(ndev, frame_offset); 1031 1032 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) 1033 /* increment read index */ 1034 priv->write_reg(priv, XCAN_FSR_OFFSET, 1035 XCAN_FSR_IRI_MASK); 1036 else 1037 /* clear rx-not-empty (will actually clear only if 1038 * empty) 1039 */ 1040 priv->write_reg(priv, XCAN_ICR_OFFSET, 1041 XCAN_IXR_RXNEMP_MASK); 1042 } 1043 1044 if (work_done) { 1045 can_led_event(ndev, CAN_LED_EVENT_RX); 1046 xcan_update_error_state_after_rxtx(ndev); 1047 } 1048 1049 if (work_done < quota) { 1050 napi_complete_done(napi, work_done); 1051 ier = priv->read_reg(priv, XCAN_IER_OFFSET); 1052 ier |= xcan_rx_int_mask(priv); 1053 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 1054 } 1055 return work_done; 1056 } 1057 1058 /** 1059 * xcan_tx_interrupt - Tx Done Isr 1060 * @ndev: net_device pointer 1061 * @isr: Interrupt status register value 1062 */ 1063 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr) 1064 { 1065 struct xcan_priv *priv = netdev_priv(ndev); 1066 struct net_device_stats *stats = &ndev->stats; 1067 unsigned int frames_in_fifo; 1068 int frames_sent = 1; /* TXOK => at least 1 frame was sent */ 1069 unsigned long flags; 1070 int retries = 0; 1071 1072 /* Synchronize with xmit as we need to know the exact number 1073 * of frames in the FIFO to stay in sync due to the TXFEMP 1074 * handling. 1075 * This also prevents a race between netif_wake_queue() and 1076 * netif_stop_queue(). 1077 */ 1078 spin_lock_irqsave(&priv->tx_lock, flags); 1079 1080 frames_in_fifo = priv->tx_head - priv->tx_tail; 1081 1082 if (WARN_ON_ONCE(frames_in_fifo == 0)) { 1083 /* clear TXOK anyway to avoid getting back here */ 1084 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 1085 spin_unlock_irqrestore(&priv->tx_lock, flags); 1086 return; 1087 } 1088 1089 /* Check if 2 frames were sent (TXOK only means that at least 1 1090 * frame was sent). 1091 */ 1092 if (frames_in_fifo > 1) { 1093 WARN_ON(frames_in_fifo > priv->tx_max); 1094 1095 /* Synchronize TXOK and isr so that after the loop: 1096 * (1) isr variable is up-to-date at least up to TXOK clear 1097 * time. This avoids us clearing a TXOK of a second frame 1098 * but not noticing that the FIFO is now empty and thus 1099 * marking only a single frame as sent. 1100 * (2) No TXOK is left. Having one could mean leaving a 1101 * stray TXOK as we might process the associated frame 1102 * via TXFEMP handling as we read TXFEMP *after* TXOK 1103 * clear to satisfy (1). 1104 */ 1105 while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) { 1106 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 1107 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 1108 } 1109 1110 if (isr & XCAN_IXR_TXFEMP_MASK) { 1111 /* nothing in FIFO anymore */ 1112 frames_sent = frames_in_fifo; 1113 } 1114 } else { 1115 /* single frame in fifo, just clear TXOK */ 1116 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 1117 } 1118 1119 while (frames_sent--) { 1120 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail % 1121 priv->tx_max); 1122 priv->tx_tail++; 1123 stats->tx_packets++; 1124 } 1125 1126 netif_wake_queue(ndev); 1127 1128 spin_unlock_irqrestore(&priv->tx_lock, flags); 1129 1130 can_led_event(ndev, CAN_LED_EVENT_TX); 1131 xcan_update_error_state_after_rxtx(ndev); 1132 } 1133 1134 /** 1135 * xcan_interrupt - CAN Isr 1136 * @irq: irq number 1137 * @dev_id: device id poniter 1138 * 1139 * This is the xilinx CAN Isr. It checks for the type of interrupt 1140 * and invokes the corresponding ISR. 1141 * 1142 * Return: 1143 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise 1144 */ 1145 static irqreturn_t xcan_interrupt(int irq, void *dev_id) 1146 { 1147 struct net_device *ndev = (struct net_device *)dev_id; 1148 struct xcan_priv *priv = netdev_priv(ndev); 1149 u32 isr, ier; 1150 u32 isr_errors; 1151 u32 rx_int_mask = xcan_rx_int_mask(priv); 1152 1153 /* Get the interrupt status from Xilinx CAN */ 1154 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 1155 if (!isr) 1156 return IRQ_NONE; 1157 1158 /* Check for the type of interrupt and Processing it */ 1159 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) { 1160 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK | 1161 XCAN_IXR_WKUP_MASK)); 1162 xcan_state_interrupt(ndev, isr); 1163 } 1164 1165 /* Check for Tx interrupt and Processing it */ 1166 if (isr & XCAN_IXR_TXOK_MASK) 1167 xcan_tx_interrupt(ndev, isr); 1168 1169 /* Check for the type of error interrupt and Processing it */ 1170 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK | 1171 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK | 1172 XCAN_IXR_RXMNF_MASK); 1173 if (isr_errors) { 1174 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors); 1175 xcan_err_interrupt(ndev, isr); 1176 } 1177 1178 /* Check for the type of receive interrupt and Processing it */ 1179 if (isr & rx_int_mask) { 1180 ier = priv->read_reg(priv, XCAN_IER_OFFSET); 1181 ier &= ~rx_int_mask; 1182 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 1183 napi_schedule(&priv->napi); 1184 } 1185 return IRQ_HANDLED; 1186 } 1187 1188 /** 1189 * xcan_chip_stop - Driver stop routine 1190 * @ndev: Pointer to net_device structure 1191 * 1192 * This is the drivers stop routine. It will disable the 1193 * interrupts and put the device into configuration mode. 1194 */ 1195 static void xcan_chip_stop(struct net_device *ndev) 1196 { 1197 struct xcan_priv *priv = netdev_priv(ndev); 1198 1199 /* Disable interrupts and leave the can in configuration mode */ 1200 set_reset_mode(ndev); 1201 priv->can.state = CAN_STATE_STOPPED; 1202 } 1203 1204 /** 1205 * xcan_open - Driver open routine 1206 * @ndev: Pointer to net_device structure 1207 * 1208 * This is the driver open routine. 1209 * Return: 0 on success and failure value on error 1210 */ 1211 static int xcan_open(struct net_device *ndev) 1212 { 1213 struct xcan_priv *priv = netdev_priv(ndev); 1214 int ret; 1215 1216 ret = pm_runtime_get_sync(priv->dev); 1217 if (ret < 0) { 1218 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1219 __func__, ret); 1220 return ret; 1221 } 1222 1223 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags, 1224 ndev->name, ndev); 1225 if (ret < 0) { 1226 netdev_err(ndev, "irq allocation for CAN failed\n"); 1227 goto err; 1228 } 1229 1230 /* Set chip into reset mode */ 1231 ret = set_reset_mode(ndev); 1232 if (ret < 0) { 1233 netdev_err(ndev, "mode resetting failed!\n"); 1234 goto err_irq; 1235 } 1236 1237 /* Common open */ 1238 ret = open_candev(ndev); 1239 if (ret) 1240 goto err_irq; 1241 1242 ret = xcan_chip_start(ndev); 1243 if (ret < 0) { 1244 netdev_err(ndev, "xcan_chip_start failed!\n"); 1245 goto err_candev; 1246 } 1247 1248 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1249 napi_enable(&priv->napi); 1250 netif_start_queue(ndev); 1251 1252 return 0; 1253 1254 err_candev: 1255 close_candev(ndev); 1256 err_irq: 1257 free_irq(ndev->irq, ndev); 1258 err: 1259 pm_runtime_put(priv->dev); 1260 1261 return ret; 1262 } 1263 1264 /** 1265 * xcan_close - Driver close routine 1266 * @ndev: Pointer to net_device structure 1267 * 1268 * Return: 0 always 1269 */ 1270 static int xcan_close(struct net_device *ndev) 1271 { 1272 struct xcan_priv *priv = netdev_priv(ndev); 1273 1274 netif_stop_queue(ndev); 1275 napi_disable(&priv->napi); 1276 xcan_chip_stop(ndev); 1277 free_irq(ndev->irq, ndev); 1278 close_candev(ndev); 1279 1280 can_led_event(ndev, CAN_LED_EVENT_STOP); 1281 pm_runtime_put(priv->dev); 1282 1283 return 0; 1284 } 1285 1286 /** 1287 * xcan_get_berr_counter - error counter routine 1288 * @ndev: Pointer to net_device structure 1289 * @bec: Pointer to can_berr_counter structure 1290 * 1291 * This is the driver error counter routine. 1292 * Return: 0 on success and failure value on error 1293 */ 1294 static int xcan_get_berr_counter(const struct net_device *ndev, 1295 struct can_berr_counter *bec) 1296 { 1297 struct xcan_priv *priv = netdev_priv(ndev); 1298 int ret; 1299 1300 ret = pm_runtime_get_sync(priv->dev); 1301 if (ret < 0) { 1302 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1303 __func__, ret); 1304 return ret; 1305 } 1306 1307 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK; 1308 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) & 1309 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT); 1310 1311 pm_runtime_put(priv->dev); 1312 1313 return 0; 1314 } 1315 1316 1317 static const struct net_device_ops xcan_netdev_ops = { 1318 .ndo_open = xcan_open, 1319 .ndo_stop = xcan_close, 1320 .ndo_start_xmit = xcan_start_xmit, 1321 .ndo_change_mtu = can_change_mtu, 1322 }; 1323 1324 /** 1325 * xcan_suspend - Suspend method for the driver 1326 * @dev: Address of the device structure 1327 * 1328 * Put the driver into low power mode. 1329 * Return: 0 on success and failure value on error 1330 */ 1331 static int __maybe_unused xcan_suspend(struct device *dev) 1332 { 1333 struct net_device *ndev = dev_get_drvdata(dev); 1334 1335 if (netif_running(ndev)) { 1336 netif_stop_queue(ndev); 1337 netif_device_detach(ndev); 1338 xcan_chip_stop(ndev); 1339 } 1340 1341 return pm_runtime_force_suspend(dev); 1342 } 1343 1344 /** 1345 * xcan_resume - Resume from suspend 1346 * @dev: Address of the device structure 1347 * 1348 * Resume operation after suspend. 1349 * Return: 0 on success and failure value on error 1350 */ 1351 static int __maybe_unused xcan_resume(struct device *dev) 1352 { 1353 struct net_device *ndev = dev_get_drvdata(dev); 1354 int ret; 1355 1356 ret = pm_runtime_force_resume(dev); 1357 if (ret) { 1358 dev_err(dev, "pm_runtime_force_resume failed on resume\n"); 1359 return ret; 1360 } 1361 1362 if (netif_running(ndev)) { 1363 ret = xcan_chip_start(ndev); 1364 if (ret) { 1365 dev_err(dev, "xcan_chip_start failed on resume\n"); 1366 return ret; 1367 } 1368 1369 netif_device_attach(ndev); 1370 netif_start_queue(ndev); 1371 } 1372 1373 return 0; 1374 } 1375 1376 /** 1377 * xcan_runtime_suspend - Runtime suspend method for the driver 1378 * @dev: Address of the device structure 1379 * 1380 * Put the driver into low power mode. 1381 * Return: 0 always 1382 */ 1383 static int __maybe_unused xcan_runtime_suspend(struct device *dev) 1384 { 1385 struct net_device *ndev = dev_get_drvdata(dev); 1386 struct xcan_priv *priv = netdev_priv(ndev); 1387 1388 clk_disable_unprepare(priv->bus_clk); 1389 clk_disable_unprepare(priv->can_clk); 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * xcan_runtime_resume - Runtime resume from suspend 1396 * @dev: Address of the device structure 1397 * 1398 * Resume operation after suspend. 1399 * Return: 0 on success and failure value on error 1400 */ 1401 static int __maybe_unused xcan_runtime_resume(struct device *dev) 1402 { 1403 struct net_device *ndev = dev_get_drvdata(dev); 1404 struct xcan_priv *priv = netdev_priv(ndev); 1405 int ret; 1406 1407 ret = clk_prepare_enable(priv->bus_clk); 1408 if (ret) { 1409 dev_err(dev, "Cannot enable clock.\n"); 1410 return ret; 1411 } 1412 ret = clk_prepare_enable(priv->can_clk); 1413 if (ret) { 1414 dev_err(dev, "Cannot enable clock.\n"); 1415 clk_disable_unprepare(priv->bus_clk); 1416 return ret; 1417 } 1418 1419 return 0; 1420 } 1421 1422 static const struct dev_pm_ops xcan_dev_pm_ops = { 1423 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume) 1424 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL) 1425 }; 1426 1427 static const struct xcan_devtype_data xcan_zynq_data = { 1428 .bittiming_const = &xcan_bittiming_const, 1429 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT, 1430 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT, 1431 .bus_clk_name = "pclk", 1432 }; 1433 1434 static const struct xcan_devtype_data xcan_axi_data = { 1435 .bittiming_const = &xcan_bittiming_const, 1436 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT, 1437 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT, 1438 .bus_clk_name = "s_axi_aclk", 1439 }; 1440 1441 static const struct xcan_devtype_data xcan_canfd_data = { 1442 .flags = XCAN_FLAG_EXT_FILTERS | 1443 XCAN_FLAG_RXMNF | 1444 XCAN_FLAG_TX_MAILBOXES | 1445 XCAN_FLAG_RX_FIFO_MULTI, 1446 .bittiming_const = &xcan_bittiming_const, 1447 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD, 1448 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD, 1449 .bus_clk_name = "s_axi_aclk", 1450 }; 1451 1452 static const struct xcan_devtype_data xcan_canfd2_data = { 1453 .flags = XCAN_FLAG_EXT_FILTERS | 1454 XCAN_FLAG_RXMNF | 1455 XCAN_FLAG_TX_MAILBOXES | 1456 XCAN_FLAG_CANFD_2 | 1457 XCAN_FLAG_RX_FIFO_MULTI, 1458 .bittiming_const = &xcan_bittiming_const_canfd2, 1459 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD, 1460 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD, 1461 .bus_clk_name = "s_axi_aclk", 1462 }; 1463 1464 /* Match table for OF platform binding */ 1465 static const struct of_device_id xcan_of_match[] = { 1466 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data }, 1467 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data }, 1468 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data }, 1469 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data }, 1470 { /* end of list */ }, 1471 }; 1472 MODULE_DEVICE_TABLE(of, xcan_of_match); 1473 1474 /** 1475 * xcan_probe - Platform registration call 1476 * @pdev: Handle to the platform device structure 1477 * 1478 * This function does all the memory allocation and registration for the CAN 1479 * device. 1480 * 1481 * Return: 0 on success and failure value on error 1482 */ 1483 static int xcan_probe(struct platform_device *pdev) 1484 { 1485 struct resource *res; /* IO mem resources */ 1486 struct net_device *ndev; 1487 struct xcan_priv *priv; 1488 const struct of_device_id *of_id; 1489 const struct xcan_devtype_data *devtype = &xcan_axi_data; 1490 void __iomem *addr; 1491 int ret; 1492 int rx_max, tx_max; 1493 int hw_tx_max, hw_rx_max; 1494 const char *hw_tx_max_property; 1495 1496 /* Get the virtual base address for the device */ 1497 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1498 addr = devm_ioremap_resource(&pdev->dev, res); 1499 if (IS_ERR(addr)) { 1500 ret = PTR_ERR(addr); 1501 goto err; 1502 } 1503 1504 of_id = of_match_device(xcan_of_match, &pdev->dev); 1505 if (of_id && of_id->data) 1506 devtype = of_id->data; 1507 1508 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ? 1509 "tx-mailbox-count" : "tx-fifo-depth"; 1510 1511 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property, 1512 &hw_tx_max); 1513 if (ret < 0) { 1514 dev_err(&pdev->dev, "missing %s property\n", 1515 hw_tx_max_property); 1516 goto err; 1517 } 1518 1519 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1520 &hw_rx_max); 1521 if (ret < 0) { 1522 dev_err(&pdev->dev, 1523 "missing rx-fifo-depth property (mailbox mode is not supported)\n"); 1524 goto err; 1525 } 1526 1527 /* With TX FIFO: 1528 * 1529 * There is no way to directly figure out how many frames have been 1530 * sent when the TXOK interrupt is processed. If TXFEMP 1531 * is supported, we can have 2 frames in the FIFO and use TXFEMP 1532 * to determine if 1 or 2 frames have been sent. 1533 * Theoretically we should be able to use TXFWMEMP to determine up 1534 * to 3 frames, but it seems that after putting a second frame in the 1535 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less 1536 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was 1537 * sent), which is not a sensible state - possibly TXFWMEMP is not 1538 * completely synchronized with the rest of the bits? 1539 * 1540 * With TX mailboxes: 1541 * 1542 * HW sends frames in CAN ID priority order. To preserve FIFO ordering 1543 * we submit frames one at a time. 1544 */ 1545 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) && 1546 (devtype->flags & XCAN_FLAG_TXFEMP)) 1547 tx_max = min(hw_tx_max, 2); 1548 else 1549 tx_max = 1; 1550 1551 rx_max = hw_rx_max; 1552 1553 /* Create a CAN device instance */ 1554 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max); 1555 if (!ndev) 1556 return -ENOMEM; 1557 1558 priv = netdev_priv(ndev); 1559 priv->dev = &pdev->dev; 1560 priv->can.bittiming_const = devtype->bittiming_const; 1561 priv->can.do_set_mode = xcan_do_set_mode; 1562 priv->can.do_get_berr_counter = xcan_get_berr_counter; 1563 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1564 CAN_CTRLMODE_BERR_REPORTING; 1565 priv->reg_base = addr; 1566 priv->tx_max = tx_max; 1567 priv->devtype = *devtype; 1568 spin_lock_init(&priv->tx_lock); 1569 1570 /* Get IRQ for the device */ 1571 ndev->irq = platform_get_irq(pdev, 0); 1572 ndev->flags |= IFF_ECHO; /* We support local echo */ 1573 1574 platform_set_drvdata(pdev, ndev); 1575 SET_NETDEV_DEV(ndev, &pdev->dev); 1576 ndev->netdev_ops = &xcan_netdev_ops; 1577 1578 /* Getting the CAN can_clk info */ 1579 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1580 if (IS_ERR(priv->can_clk)) { 1581 dev_err(&pdev->dev, "Device clock not found.\n"); 1582 ret = PTR_ERR(priv->can_clk); 1583 goto err_free; 1584 } 1585 1586 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name); 1587 if (IS_ERR(priv->bus_clk)) { 1588 dev_err(&pdev->dev, "bus clock not found\n"); 1589 ret = PTR_ERR(priv->bus_clk); 1590 goto err_free; 1591 } 1592 1593 priv->write_reg = xcan_write_reg_le; 1594 priv->read_reg = xcan_read_reg_le; 1595 1596 pm_runtime_enable(&pdev->dev); 1597 ret = pm_runtime_get_sync(&pdev->dev); 1598 if (ret < 0) { 1599 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1600 __func__, ret); 1601 goto err_pmdisable; 1602 } 1603 1604 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) { 1605 priv->write_reg = xcan_write_reg_be; 1606 priv->read_reg = xcan_read_reg_be; 1607 } 1608 1609 priv->can.clock.freq = clk_get_rate(priv->can_clk); 1610 1611 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max); 1612 1613 ret = register_candev(ndev); 1614 if (ret) { 1615 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret); 1616 goto err_disableclks; 1617 } 1618 1619 devm_can_led_init(ndev); 1620 1621 pm_runtime_put(&pdev->dev); 1622 1623 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n", 1624 priv->reg_base, ndev->irq, priv->can.clock.freq, 1625 hw_tx_max, priv->tx_max); 1626 1627 return 0; 1628 1629 err_disableclks: 1630 pm_runtime_put(priv->dev); 1631 err_pmdisable: 1632 pm_runtime_disable(&pdev->dev); 1633 err_free: 1634 free_candev(ndev); 1635 err: 1636 return ret; 1637 } 1638 1639 /** 1640 * xcan_remove - Unregister the device after releasing the resources 1641 * @pdev: Handle to the platform device structure 1642 * 1643 * This function frees all the resources allocated to the device. 1644 * Return: 0 always 1645 */ 1646 static int xcan_remove(struct platform_device *pdev) 1647 { 1648 struct net_device *ndev = platform_get_drvdata(pdev); 1649 struct xcan_priv *priv = netdev_priv(ndev); 1650 1651 unregister_candev(ndev); 1652 pm_runtime_disable(&pdev->dev); 1653 netif_napi_del(&priv->napi); 1654 free_candev(ndev); 1655 1656 return 0; 1657 } 1658 1659 static struct platform_driver xcan_driver = { 1660 .probe = xcan_probe, 1661 .remove = xcan_remove, 1662 .driver = { 1663 .name = DRIVER_NAME, 1664 .pm = &xcan_dev_pm_ops, 1665 .of_match_table = xcan_of_match, 1666 }, 1667 }; 1668 1669 module_platform_driver(xcan_driver); 1670 1671 MODULE_LICENSE("GPL"); 1672 MODULE_AUTHOR("Xilinx Inc"); 1673 MODULE_DESCRIPTION("Xilinx CAN interface"); 1674