1 /* Xilinx CAN device driver 2 * 3 * Copyright (C) 2012 - 2014 Xilinx, Inc. 4 * Copyright (C) 2009 PetaLogix. All rights reserved. 5 * Copyright (C) 2017 Sandvik Mining and Construction Oy 6 * 7 * Description: 8 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller. 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/clk.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/netdevice.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 #include <linux/platform_device.h> 31 #include <linux/skbuff.h> 32 #include <linux/spinlock.h> 33 #include <linux/string.h> 34 #include <linux/types.h> 35 #include <linux/can/dev.h> 36 #include <linux/can/error.h> 37 #include <linux/can/led.h> 38 #include <linux/pm_runtime.h> 39 40 #define DRIVER_NAME "xilinx_can" 41 42 /* CAN registers set */ 43 enum xcan_reg { 44 XCAN_SRR_OFFSET = 0x00, /* Software reset */ 45 XCAN_MSR_OFFSET = 0x04, /* Mode select */ 46 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */ 47 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */ 48 XCAN_ECR_OFFSET = 0x10, /* Error counter */ 49 XCAN_ESR_OFFSET = 0x14, /* Error status */ 50 XCAN_SR_OFFSET = 0x18, /* Status */ 51 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */ 52 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */ 53 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */ 54 XCAN_TXFIFO_ID_OFFSET = 0x30,/* TX FIFO ID */ 55 XCAN_TXFIFO_DLC_OFFSET = 0x34, /* TX FIFO DLC */ 56 XCAN_TXFIFO_DW1_OFFSET = 0x38, /* TX FIFO Data Word 1 */ 57 XCAN_TXFIFO_DW2_OFFSET = 0x3C, /* TX FIFO Data Word 2 */ 58 XCAN_RXFIFO_ID_OFFSET = 0x50, /* RX FIFO ID */ 59 XCAN_RXFIFO_DLC_OFFSET = 0x54, /* RX FIFO DLC */ 60 XCAN_RXFIFO_DW1_OFFSET = 0x58, /* RX FIFO Data Word 1 */ 61 XCAN_RXFIFO_DW2_OFFSET = 0x5C, /* RX FIFO Data Word 2 */ 62 }; 63 64 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */ 65 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */ 66 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */ 67 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */ 68 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */ 69 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */ 70 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */ 71 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */ 72 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */ 73 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */ 74 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */ 75 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */ 76 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */ 77 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */ 78 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */ 79 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */ 80 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */ 81 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */ 82 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */ 83 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */ 84 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */ 85 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */ 86 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */ 87 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */ 88 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */ 89 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */ 90 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */ 91 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */ 92 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */ 93 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */ 94 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */ 95 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */ 96 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */ 97 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */ 98 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */ 99 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */ 100 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */ 101 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */ 102 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */ 103 104 #define XCAN_INTR_ALL (XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\ 105 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \ 106 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \ 107 XCAN_IXR_RXOFLW_MASK | XCAN_IXR_ARBLST_MASK) 108 109 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */ 110 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */ 111 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */ 112 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */ 113 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */ 114 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */ 115 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */ 116 117 /* CAN frame length constants */ 118 #define XCAN_FRAME_MAX_DATA_LEN 8 119 #define XCAN_TIMEOUT (1 * HZ) 120 121 /** 122 * struct xcan_priv - This definition define CAN driver instance 123 * @can: CAN private data structure. 124 * @tx_lock: Lock for synchronizing TX interrupt handling 125 * @tx_head: Tx CAN packets ready to send on the queue 126 * @tx_tail: Tx CAN packets successfully sended on the queue 127 * @tx_max: Maximum number packets the driver can send 128 * @napi: NAPI structure 129 * @read_reg: For reading data from CAN registers 130 * @write_reg: For writing data to CAN registers 131 * @dev: Network device data structure 132 * @reg_base: Ioremapped address to registers 133 * @irq_flags: For request_irq() 134 * @bus_clk: Pointer to struct clk 135 * @can_clk: Pointer to struct clk 136 */ 137 struct xcan_priv { 138 struct can_priv can; 139 spinlock_t tx_lock; 140 unsigned int tx_head; 141 unsigned int tx_tail; 142 unsigned int tx_max; 143 struct napi_struct napi; 144 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg); 145 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg, 146 u32 val); 147 struct device *dev; 148 void __iomem *reg_base; 149 unsigned long irq_flags; 150 struct clk *bus_clk; 151 struct clk *can_clk; 152 }; 153 154 /* CAN Bittiming constants as per Xilinx CAN specs */ 155 static const struct can_bittiming_const xcan_bittiming_const = { 156 .name = DRIVER_NAME, 157 .tseg1_min = 1, 158 .tseg1_max = 16, 159 .tseg2_min = 1, 160 .tseg2_max = 8, 161 .sjw_max = 4, 162 .brp_min = 1, 163 .brp_max = 256, 164 .brp_inc = 1, 165 }; 166 167 #define XCAN_CAP_WATERMARK 0x0001 168 struct xcan_devtype_data { 169 unsigned int caps; 170 }; 171 172 /** 173 * xcan_write_reg_le - Write a value to the device register little endian 174 * @priv: Driver private data structure 175 * @reg: Register offset 176 * @val: Value to write at the Register offset 177 * 178 * Write data to the paricular CAN register 179 */ 180 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg, 181 u32 val) 182 { 183 iowrite32(val, priv->reg_base + reg); 184 } 185 186 /** 187 * xcan_read_reg_le - Read a value from the device register little endian 188 * @priv: Driver private data structure 189 * @reg: Register offset 190 * 191 * Read data from the particular CAN register 192 * Return: value read from the CAN register 193 */ 194 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg) 195 { 196 return ioread32(priv->reg_base + reg); 197 } 198 199 /** 200 * xcan_write_reg_be - Write a value to the device register big endian 201 * @priv: Driver private data structure 202 * @reg: Register offset 203 * @val: Value to write at the Register offset 204 * 205 * Write data to the paricular CAN register 206 */ 207 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg, 208 u32 val) 209 { 210 iowrite32be(val, priv->reg_base + reg); 211 } 212 213 /** 214 * xcan_read_reg_be - Read a value from the device register big endian 215 * @priv: Driver private data structure 216 * @reg: Register offset 217 * 218 * Read data from the particular CAN register 219 * Return: value read from the CAN register 220 */ 221 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg) 222 { 223 return ioread32be(priv->reg_base + reg); 224 } 225 226 /** 227 * set_reset_mode - Resets the CAN device mode 228 * @ndev: Pointer to net_device structure 229 * 230 * This is the driver reset mode routine.The driver 231 * enters into configuration mode. 232 * 233 * Return: 0 on success and failure value on error 234 */ 235 static int set_reset_mode(struct net_device *ndev) 236 { 237 struct xcan_priv *priv = netdev_priv(ndev); 238 unsigned long timeout; 239 240 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); 241 242 timeout = jiffies + XCAN_TIMEOUT; 243 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) { 244 if (time_after(jiffies, timeout)) { 245 netdev_warn(ndev, "timed out for config mode\n"); 246 return -ETIMEDOUT; 247 } 248 usleep_range(500, 10000); 249 } 250 251 /* reset clears FIFOs */ 252 priv->tx_head = 0; 253 priv->tx_tail = 0; 254 255 return 0; 256 } 257 258 /** 259 * xcan_set_bittiming - CAN set bit timing routine 260 * @ndev: Pointer to net_device structure 261 * 262 * This is the driver set bittiming routine. 263 * Return: 0 on success and failure value on error 264 */ 265 static int xcan_set_bittiming(struct net_device *ndev) 266 { 267 struct xcan_priv *priv = netdev_priv(ndev); 268 struct can_bittiming *bt = &priv->can.bittiming; 269 u32 btr0, btr1; 270 u32 is_config_mode; 271 272 /* Check whether Xilinx CAN is in configuration mode. 273 * It cannot set bit timing if Xilinx CAN is not in configuration mode. 274 */ 275 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) & 276 XCAN_SR_CONFIG_MASK; 277 if (!is_config_mode) { 278 netdev_alert(ndev, 279 "BUG! Cannot set bittiming - CAN is not in config mode\n"); 280 return -EPERM; 281 } 282 283 /* Setting Baud Rate prescalar value in BRPR Register */ 284 btr0 = (bt->brp - 1); 285 286 /* Setting Time Segment 1 in BTR Register */ 287 btr1 = (bt->prop_seg + bt->phase_seg1 - 1); 288 289 /* Setting Time Segment 2 in BTR Register */ 290 btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT; 291 292 /* Setting Synchronous jump width in BTR Register */ 293 btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT; 294 295 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0); 296 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1); 297 298 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n", 299 priv->read_reg(priv, XCAN_BRPR_OFFSET), 300 priv->read_reg(priv, XCAN_BTR_OFFSET)); 301 302 return 0; 303 } 304 305 /** 306 * xcan_chip_start - This the drivers start routine 307 * @ndev: Pointer to net_device structure 308 * 309 * This is the drivers start routine. 310 * Based on the State of the CAN device it puts 311 * the CAN device into a proper mode. 312 * 313 * Return: 0 on success and failure value on error 314 */ 315 static int xcan_chip_start(struct net_device *ndev) 316 { 317 struct xcan_priv *priv = netdev_priv(ndev); 318 u32 reg_msr, reg_sr_mask; 319 int err; 320 unsigned long timeout; 321 322 /* Check if it is in reset mode */ 323 err = set_reset_mode(ndev); 324 if (err < 0) 325 return err; 326 327 err = xcan_set_bittiming(ndev); 328 if (err < 0) 329 return err; 330 331 /* Enable interrupts */ 332 priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL); 333 334 /* Check whether it is loopback mode or normal mode */ 335 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 336 reg_msr = XCAN_MSR_LBACK_MASK; 337 reg_sr_mask = XCAN_SR_LBACK_MASK; 338 } else { 339 reg_msr = 0x0; 340 reg_sr_mask = XCAN_SR_NORMAL_MASK; 341 } 342 343 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr); 344 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK); 345 346 timeout = jiffies + XCAN_TIMEOUT; 347 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) { 348 if (time_after(jiffies, timeout)) { 349 netdev_warn(ndev, 350 "timed out for correct mode\n"); 351 return -ETIMEDOUT; 352 } 353 } 354 netdev_dbg(ndev, "status:#x%08x\n", 355 priv->read_reg(priv, XCAN_SR_OFFSET)); 356 357 priv->can.state = CAN_STATE_ERROR_ACTIVE; 358 return 0; 359 } 360 361 /** 362 * xcan_do_set_mode - This sets the mode of the driver 363 * @ndev: Pointer to net_device structure 364 * @mode: Tells the mode of the driver 365 * 366 * This check the drivers state and calls the 367 * the corresponding modes to set. 368 * 369 * Return: 0 on success and failure value on error 370 */ 371 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode) 372 { 373 int ret; 374 375 switch (mode) { 376 case CAN_MODE_START: 377 ret = xcan_chip_start(ndev); 378 if (ret < 0) { 379 netdev_err(ndev, "xcan_chip_start failed!\n"); 380 return ret; 381 } 382 netif_wake_queue(ndev); 383 break; 384 default: 385 ret = -EOPNOTSUPP; 386 break; 387 } 388 389 return ret; 390 } 391 392 /** 393 * xcan_start_xmit - Starts the transmission 394 * @skb: sk_buff pointer that contains data to be Txed 395 * @ndev: Pointer to net_device structure 396 * 397 * This function is invoked from upper layers to initiate transmission. This 398 * function uses the next available free txbuff and populates their fields to 399 * start the transmission. 400 * 401 * Return: 0 on success and failure value on error 402 */ 403 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev) 404 { 405 struct xcan_priv *priv = netdev_priv(ndev); 406 struct net_device_stats *stats = &ndev->stats; 407 struct can_frame *cf = (struct can_frame *)skb->data; 408 u32 id, dlc, data[2] = {0, 0}; 409 unsigned long flags; 410 411 if (can_dropped_invalid_skb(ndev, skb)) 412 return NETDEV_TX_OK; 413 414 /* Check if the TX buffer is full */ 415 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) & 416 XCAN_SR_TXFLL_MASK)) { 417 netif_stop_queue(ndev); 418 netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n"); 419 return NETDEV_TX_BUSY; 420 } 421 422 /* Watch carefully on the bit sequence */ 423 if (cf->can_id & CAN_EFF_FLAG) { 424 /* Extended CAN ID format */ 425 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) & 426 XCAN_IDR_ID2_MASK; 427 id |= (((cf->can_id & CAN_EFF_MASK) >> 428 (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) << 429 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK; 430 431 /* The substibute remote TX request bit should be "1" 432 * for extended frames as in the Xilinx CAN datasheet 433 */ 434 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK; 435 436 if (cf->can_id & CAN_RTR_FLAG) 437 /* Extended frames remote TX request */ 438 id |= XCAN_IDR_RTR_MASK; 439 } else { 440 /* Standard CAN ID format */ 441 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) & 442 XCAN_IDR_ID1_MASK; 443 444 if (cf->can_id & CAN_RTR_FLAG) 445 /* Standard frames remote TX request */ 446 id |= XCAN_IDR_SRR_MASK; 447 } 448 449 dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT; 450 451 if (cf->can_dlc > 0) 452 data[0] = be32_to_cpup((__be32 *)(cf->data + 0)); 453 if (cf->can_dlc > 4) 454 data[1] = be32_to_cpup((__be32 *)(cf->data + 4)); 455 456 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max); 457 458 spin_lock_irqsave(&priv->tx_lock, flags); 459 460 priv->tx_head++; 461 462 /* Write the Frame to Xilinx CAN TX FIFO */ 463 priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id); 464 /* If the CAN frame is RTR frame this write triggers tranmission */ 465 priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc); 466 if (!(cf->can_id & CAN_RTR_FLAG)) { 467 priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]); 468 /* If the CAN frame is Standard/Extended frame this 469 * write triggers tranmission 470 */ 471 priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]); 472 stats->tx_bytes += cf->can_dlc; 473 } 474 475 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */ 476 if (priv->tx_max > 1) 477 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK); 478 479 /* Check if the TX buffer is full */ 480 if ((priv->tx_head - priv->tx_tail) == priv->tx_max) 481 netif_stop_queue(ndev); 482 483 spin_unlock_irqrestore(&priv->tx_lock, flags); 484 485 return NETDEV_TX_OK; 486 } 487 488 /** 489 * xcan_rx - Is called from CAN isr to complete the received 490 * frame processing 491 * @ndev: Pointer to net_device structure 492 * 493 * This function is invoked from the CAN isr(poll) to process the Rx frames. It 494 * does minimal processing and invokes "netif_receive_skb" to complete further 495 * processing. 496 * Return: 1 on success and 0 on failure. 497 */ 498 static int xcan_rx(struct net_device *ndev) 499 { 500 struct xcan_priv *priv = netdev_priv(ndev); 501 struct net_device_stats *stats = &ndev->stats; 502 struct can_frame *cf; 503 struct sk_buff *skb; 504 u32 id_xcan, dlc, data[2] = {0, 0}; 505 506 skb = alloc_can_skb(ndev, &cf); 507 if (unlikely(!skb)) { 508 stats->rx_dropped++; 509 return 0; 510 } 511 512 /* Read a frame from Xilinx zynq CANPS */ 513 id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET); 514 dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >> 515 XCAN_DLCR_DLC_SHIFT; 516 517 /* Change Xilinx CAN data length format to socketCAN data format */ 518 cf->can_dlc = get_can_dlc(dlc); 519 520 /* Change Xilinx CAN ID format to socketCAN ID format */ 521 if (id_xcan & XCAN_IDR_IDE_MASK) { 522 /* The received frame is an Extended format frame */ 523 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3; 524 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >> 525 XCAN_IDR_ID2_SHIFT; 526 cf->can_id |= CAN_EFF_FLAG; 527 if (id_xcan & XCAN_IDR_RTR_MASK) 528 cf->can_id |= CAN_RTR_FLAG; 529 } else { 530 /* The received frame is a standard format frame */ 531 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 532 XCAN_IDR_ID1_SHIFT; 533 if (id_xcan & XCAN_IDR_SRR_MASK) 534 cf->can_id |= CAN_RTR_FLAG; 535 } 536 537 /* DW1/DW2 must always be read to remove message from RXFIFO */ 538 data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET); 539 data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET); 540 541 if (!(cf->can_id & CAN_RTR_FLAG)) { 542 /* Change Xilinx CAN data format to socketCAN data format */ 543 if (cf->can_dlc > 0) 544 *(__be32 *)(cf->data) = cpu_to_be32(data[0]); 545 if (cf->can_dlc > 4) 546 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]); 547 } 548 549 stats->rx_bytes += cf->can_dlc; 550 stats->rx_packets++; 551 netif_receive_skb(skb); 552 553 return 1; 554 } 555 556 /** 557 * xcan_current_error_state - Get current error state from HW 558 * @ndev: Pointer to net_device structure 559 * 560 * Checks the current CAN error state from the HW. Note that this 561 * only checks for ERROR_PASSIVE and ERROR_WARNING. 562 * 563 * Return: 564 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE 565 * otherwise. 566 */ 567 static enum can_state xcan_current_error_state(struct net_device *ndev) 568 { 569 struct xcan_priv *priv = netdev_priv(ndev); 570 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET); 571 572 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) 573 return CAN_STATE_ERROR_PASSIVE; 574 else if (status & XCAN_SR_ERRWRN_MASK) 575 return CAN_STATE_ERROR_WARNING; 576 else 577 return CAN_STATE_ERROR_ACTIVE; 578 } 579 580 /** 581 * xcan_set_error_state - Set new CAN error state 582 * @ndev: Pointer to net_device structure 583 * @new_state: The new CAN state to be set 584 * @cf: Error frame to be populated or NULL 585 * 586 * Set new CAN error state for the device, updating statistics and 587 * populating the error frame if given. 588 */ 589 static void xcan_set_error_state(struct net_device *ndev, 590 enum can_state new_state, 591 struct can_frame *cf) 592 { 593 struct xcan_priv *priv = netdev_priv(ndev); 594 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET); 595 u32 txerr = ecr & XCAN_ECR_TEC_MASK; 596 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT; 597 598 priv->can.state = new_state; 599 600 if (cf) { 601 cf->can_id |= CAN_ERR_CRTL; 602 cf->data[6] = txerr; 603 cf->data[7] = rxerr; 604 } 605 606 switch (new_state) { 607 case CAN_STATE_ERROR_PASSIVE: 608 priv->can.can_stats.error_passive++; 609 if (cf) 610 cf->data[1] = (rxerr > 127) ? 611 CAN_ERR_CRTL_RX_PASSIVE : 612 CAN_ERR_CRTL_TX_PASSIVE; 613 break; 614 case CAN_STATE_ERROR_WARNING: 615 priv->can.can_stats.error_warning++; 616 if (cf) 617 cf->data[1] |= (txerr > rxerr) ? 618 CAN_ERR_CRTL_TX_WARNING : 619 CAN_ERR_CRTL_RX_WARNING; 620 break; 621 case CAN_STATE_ERROR_ACTIVE: 622 if (cf) 623 cf->data[1] |= CAN_ERR_CRTL_ACTIVE; 624 break; 625 default: 626 /* non-ERROR states are handled elsewhere */ 627 WARN_ON(1); 628 break; 629 } 630 } 631 632 /** 633 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX 634 * @ndev: Pointer to net_device structure 635 * 636 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if 637 * the performed RX/TX has caused it to drop to a lesser state and set 638 * the interface state accordingly. 639 */ 640 static void xcan_update_error_state_after_rxtx(struct net_device *ndev) 641 { 642 struct xcan_priv *priv = netdev_priv(ndev); 643 enum can_state old_state = priv->can.state; 644 enum can_state new_state; 645 646 /* changing error state due to successful frame RX/TX can only 647 * occur from these states 648 */ 649 if (old_state != CAN_STATE_ERROR_WARNING && 650 old_state != CAN_STATE_ERROR_PASSIVE) 651 return; 652 653 new_state = xcan_current_error_state(ndev); 654 655 if (new_state != old_state) { 656 struct sk_buff *skb; 657 struct can_frame *cf; 658 659 skb = alloc_can_err_skb(ndev, &cf); 660 661 xcan_set_error_state(ndev, new_state, skb ? cf : NULL); 662 663 if (skb) { 664 struct net_device_stats *stats = &ndev->stats; 665 666 stats->rx_packets++; 667 stats->rx_bytes += cf->can_dlc; 668 netif_rx(skb); 669 } 670 } 671 } 672 673 /** 674 * xcan_err_interrupt - error frame Isr 675 * @ndev: net_device pointer 676 * @isr: interrupt status register value 677 * 678 * This is the CAN error interrupt and it will 679 * check the the type of error and forward the error 680 * frame to upper layers. 681 */ 682 static void xcan_err_interrupt(struct net_device *ndev, u32 isr) 683 { 684 struct xcan_priv *priv = netdev_priv(ndev); 685 struct net_device_stats *stats = &ndev->stats; 686 struct can_frame *cf; 687 struct sk_buff *skb; 688 u32 err_status; 689 690 skb = alloc_can_err_skb(ndev, &cf); 691 692 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET); 693 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status); 694 695 if (isr & XCAN_IXR_BSOFF_MASK) { 696 priv->can.state = CAN_STATE_BUS_OFF; 697 priv->can.can_stats.bus_off++; 698 /* Leave device in Config Mode in bus-off state */ 699 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); 700 can_bus_off(ndev); 701 if (skb) 702 cf->can_id |= CAN_ERR_BUSOFF; 703 } else { 704 enum can_state new_state = xcan_current_error_state(ndev); 705 706 xcan_set_error_state(ndev, new_state, skb ? cf : NULL); 707 } 708 709 /* Check for Arbitration lost interrupt */ 710 if (isr & XCAN_IXR_ARBLST_MASK) { 711 priv->can.can_stats.arbitration_lost++; 712 if (skb) { 713 cf->can_id |= CAN_ERR_LOSTARB; 714 cf->data[0] = CAN_ERR_LOSTARB_UNSPEC; 715 } 716 } 717 718 /* Check for RX FIFO Overflow interrupt */ 719 if (isr & XCAN_IXR_RXOFLW_MASK) { 720 stats->rx_over_errors++; 721 stats->rx_errors++; 722 if (skb) { 723 cf->can_id |= CAN_ERR_CRTL; 724 cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; 725 } 726 } 727 728 /* Check for error interrupt */ 729 if (isr & XCAN_IXR_ERROR_MASK) { 730 if (skb) 731 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 732 733 /* Check for Ack error interrupt */ 734 if (err_status & XCAN_ESR_ACKER_MASK) { 735 stats->tx_errors++; 736 if (skb) { 737 cf->can_id |= CAN_ERR_ACK; 738 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 739 } 740 } 741 742 /* Check for Bit error interrupt */ 743 if (err_status & XCAN_ESR_BERR_MASK) { 744 stats->tx_errors++; 745 if (skb) { 746 cf->can_id |= CAN_ERR_PROT; 747 cf->data[2] = CAN_ERR_PROT_BIT; 748 } 749 } 750 751 /* Check for Stuff error interrupt */ 752 if (err_status & XCAN_ESR_STER_MASK) { 753 stats->rx_errors++; 754 if (skb) { 755 cf->can_id |= CAN_ERR_PROT; 756 cf->data[2] = CAN_ERR_PROT_STUFF; 757 } 758 } 759 760 /* Check for Form error interrupt */ 761 if (err_status & XCAN_ESR_FMER_MASK) { 762 stats->rx_errors++; 763 if (skb) { 764 cf->can_id |= CAN_ERR_PROT; 765 cf->data[2] = CAN_ERR_PROT_FORM; 766 } 767 } 768 769 /* Check for CRC error interrupt */ 770 if (err_status & XCAN_ESR_CRCER_MASK) { 771 stats->rx_errors++; 772 if (skb) { 773 cf->can_id |= CAN_ERR_PROT; 774 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 775 } 776 } 777 priv->can.can_stats.bus_error++; 778 } 779 780 if (skb) { 781 stats->rx_packets++; 782 stats->rx_bytes += cf->can_dlc; 783 netif_rx(skb); 784 } 785 786 netdev_dbg(ndev, "%s: error status register:0x%x\n", 787 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET)); 788 } 789 790 /** 791 * xcan_state_interrupt - It will check the state of the CAN device 792 * @ndev: net_device pointer 793 * @isr: interrupt status register value 794 * 795 * This will checks the state of the CAN device 796 * and puts the device into appropriate state. 797 */ 798 static void xcan_state_interrupt(struct net_device *ndev, u32 isr) 799 { 800 struct xcan_priv *priv = netdev_priv(ndev); 801 802 /* Check for Sleep interrupt if set put CAN device in sleep state */ 803 if (isr & XCAN_IXR_SLP_MASK) 804 priv->can.state = CAN_STATE_SLEEPING; 805 806 /* Check for Wake up interrupt if set put CAN device in Active state */ 807 if (isr & XCAN_IXR_WKUP_MASK) 808 priv->can.state = CAN_STATE_ERROR_ACTIVE; 809 } 810 811 /** 812 * xcan_rx_poll - Poll routine for rx packets (NAPI) 813 * @napi: napi structure pointer 814 * @quota: Max number of rx packets to be processed. 815 * 816 * This is the poll routine for rx part. 817 * It will process the packets maximux quota value. 818 * 819 * Return: number of packets received 820 */ 821 static int xcan_rx_poll(struct napi_struct *napi, int quota) 822 { 823 struct net_device *ndev = napi->dev; 824 struct xcan_priv *priv = netdev_priv(ndev); 825 u32 isr, ier; 826 int work_done = 0; 827 828 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 829 while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) { 830 work_done += xcan_rx(ndev); 831 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK); 832 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 833 } 834 835 if (work_done) { 836 can_led_event(ndev, CAN_LED_EVENT_RX); 837 xcan_update_error_state_after_rxtx(ndev); 838 } 839 840 if (work_done < quota) { 841 napi_complete_done(napi, work_done); 842 ier = priv->read_reg(priv, XCAN_IER_OFFSET); 843 ier |= XCAN_IXR_RXNEMP_MASK; 844 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 845 } 846 return work_done; 847 } 848 849 /** 850 * xcan_tx_interrupt - Tx Done Isr 851 * @ndev: net_device pointer 852 * @isr: Interrupt status register value 853 */ 854 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr) 855 { 856 struct xcan_priv *priv = netdev_priv(ndev); 857 struct net_device_stats *stats = &ndev->stats; 858 unsigned int frames_in_fifo; 859 int frames_sent = 1; /* TXOK => at least 1 frame was sent */ 860 unsigned long flags; 861 int retries = 0; 862 863 /* Synchronize with xmit as we need to know the exact number 864 * of frames in the FIFO to stay in sync due to the TXFEMP 865 * handling. 866 * This also prevents a race between netif_wake_queue() and 867 * netif_stop_queue(). 868 */ 869 spin_lock_irqsave(&priv->tx_lock, flags); 870 871 frames_in_fifo = priv->tx_head - priv->tx_tail; 872 873 if (WARN_ON_ONCE(frames_in_fifo == 0)) { 874 /* clear TXOK anyway to avoid getting back here */ 875 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 876 spin_unlock_irqrestore(&priv->tx_lock, flags); 877 return; 878 } 879 880 /* Check if 2 frames were sent (TXOK only means that at least 1 881 * frame was sent). 882 */ 883 if (frames_in_fifo > 1) { 884 WARN_ON(frames_in_fifo > priv->tx_max); 885 886 /* Synchronize TXOK and isr so that after the loop: 887 * (1) isr variable is up-to-date at least up to TXOK clear 888 * time. This avoids us clearing a TXOK of a second frame 889 * but not noticing that the FIFO is now empty and thus 890 * marking only a single frame as sent. 891 * (2) No TXOK is left. Having one could mean leaving a 892 * stray TXOK as we might process the associated frame 893 * via TXFEMP handling as we read TXFEMP *after* TXOK 894 * clear to satisfy (1). 895 */ 896 while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) { 897 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 898 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 899 } 900 901 if (isr & XCAN_IXR_TXFEMP_MASK) { 902 /* nothing in FIFO anymore */ 903 frames_sent = frames_in_fifo; 904 } 905 } else { 906 /* single frame in fifo, just clear TXOK */ 907 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 908 } 909 910 while (frames_sent--) { 911 can_get_echo_skb(ndev, priv->tx_tail % 912 priv->tx_max); 913 priv->tx_tail++; 914 stats->tx_packets++; 915 } 916 917 netif_wake_queue(ndev); 918 919 spin_unlock_irqrestore(&priv->tx_lock, flags); 920 921 can_led_event(ndev, CAN_LED_EVENT_TX); 922 xcan_update_error_state_after_rxtx(ndev); 923 } 924 925 /** 926 * xcan_interrupt - CAN Isr 927 * @irq: irq number 928 * @dev_id: device id poniter 929 * 930 * This is the xilinx CAN Isr. It checks for the type of interrupt 931 * and invokes the corresponding ISR. 932 * 933 * Return: 934 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise 935 */ 936 static irqreturn_t xcan_interrupt(int irq, void *dev_id) 937 { 938 struct net_device *ndev = (struct net_device *)dev_id; 939 struct xcan_priv *priv = netdev_priv(ndev); 940 u32 isr, ier; 941 u32 isr_errors; 942 943 /* Get the interrupt status from Xilinx CAN */ 944 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 945 if (!isr) 946 return IRQ_NONE; 947 948 /* Check for the type of interrupt and Processing it */ 949 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) { 950 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK | 951 XCAN_IXR_WKUP_MASK)); 952 xcan_state_interrupt(ndev, isr); 953 } 954 955 /* Check for Tx interrupt and Processing it */ 956 if (isr & XCAN_IXR_TXOK_MASK) 957 xcan_tx_interrupt(ndev, isr); 958 959 /* Check for the type of error interrupt and Processing it */ 960 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK | 961 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK); 962 if (isr_errors) { 963 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors); 964 xcan_err_interrupt(ndev, isr); 965 } 966 967 /* Check for the type of receive interrupt and Processing it */ 968 if (isr & XCAN_IXR_RXNEMP_MASK) { 969 ier = priv->read_reg(priv, XCAN_IER_OFFSET); 970 ier &= ~XCAN_IXR_RXNEMP_MASK; 971 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 972 napi_schedule(&priv->napi); 973 } 974 return IRQ_HANDLED; 975 } 976 977 /** 978 * xcan_chip_stop - Driver stop routine 979 * @ndev: Pointer to net_device structure 980 * 981 * This is the drivers stop routine. It will disable the 982 * interrupts and put the device into configuration mode. 983 */ 984 static void xcan_chip_stop(struct net_device *ndev) 985 { 986 struct xcan_priv *priv = netdev_priv(ndev); 987 988 /* Disable interrupts and leave the can in configuration mode */ 989 set_reset_mode(ndev); 990 priv->can.state = CAN_STATE_STOPPED; 991 } 992 993 /** 994 * xcan_open - Driver open routine 995 * @ndev: Pointer to net_device structure 996 * 997 * This is the driver open routine. 998 * Return: 0 on success and failure value on error 999 */ 1000 static int xcan_open(struct net_device *ndev) 1001 { 1002 struct xcan_priv *priv = netdev_priv(ndev); 1003 int ret; 1004 1005 ret = pm_runtime_get_sync(priv->dev); 1006 if (ret < 0) { 1007 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1008 __func__, ret); 1009 return ret; 1010 } 1011 1012 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags, 1013 ndev->name, ndev); 1014 if (ret < 0) { 1015 netdev_err(ndev, "irq allocation for CAN failed\n"); 1016 goto err; 1017 } 1018 1019 /* Set chip into reset mode */ 1020 ret = set_reset_mode(ndev); 1021 if (ret < 0) { 1022 netdev_err(ndev, "mode resetting failed!\n"); 1023 goto err_irq; 1024 } 1025 1026 /* Common open */ 1027 ret = open_candev(ndev); 1028 if (ret) 1029 goto err_irq; 1030 1031 ret = xcan_chip_start(ndev); 1032 if (ret < 0) { 1033 netdev_err(ndev, "xcan_chip_start failed!\n"); 1034 goto err_candev; 1035 } 1036 1037 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1038 napi_enable(&priv->napi); 1039 netif_start_queue(ndev); 1040 1041 return 0; 1042 1043 err_candev: 1044 close_candev(ndev); 1045 err_irq: 1046 free_irq(ndev->irq, ndev); 1047 err: 1048 pm_runtime_put(priv->dev); 1049 1050 return ret; 1051 } 1052 1053 /** 1054 * xcan_close - Driver close routine 1055 * @ndev: Pointer to net_device structure 1056 * 1057 * Return: 0 always 1058 */ 1059 static int xcan_close(struct net_device *ndev) 1060 { 1061 struct xcan_priv *priv = netdev_priv(ndev); 1062 1063 netif_stop_queue(ndev); 1064 napi_disable(&priv->napi); 1065 xcan_chip_stop(ndev); 1066 free_irq(ndev->irq, ndev); 1067 close_candev(ndev); 1068 1069 can_led_event(ndev, CAN_LED_EVENT_STOP); 1070 pm_runtime_put(priv->dev); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * xcan_get_berr_counter - error counter routine 1077 * @ndev: Pointer to net_device structure 1078 * @bec: Pointer to can_berr_counter structure 1079 * 1080 * This is the driver error counter routine. 1081 * Return: 0 on success and failure value on error 1082 */ 1083 static int xcan_get_berr_counter(const struct net_device *ndev, 1084 struct can_berr_counter *bec) 1085 { 1086 struct xcan_priv *priv = netdev_priv(ndev); 1087 int ret; 1088 1089 ret = pm_runtime_get_sync(priv->dev); 1090 if (ret < 0) { 1091 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1092 __func__, ret); 1093 return ret; 1094 } 1095 1096 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK; 1097 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) & 1098 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT); 1099 1100 pm_runtime_put(priv->dev); 1101 1102 return 0; 1103 } 1104 1105 1106 static const struct net_device_ops xcan_netdev_ops = { 1107 .ndo_open = xcan_open, 1108 .ndo_stop = xcan_close, 1109 .ndo_start_xmit = xcan_start_xmit, 1110 .ndo_change_mtu = can_change_mtu, 1111 }; 1112 1113 /** 1114 * xcan_suspend - Suspend method for the driver 1115 * @dev: Address of the device structure 1116 * 1117 * Put the driver into low power mode. 1118 * Return: 0 on success and failure value on error 1119 */ 1120 static int __maybe_unused xcan_suspend(struct device *dev) 1121 { 1122 struct net_device *ndev = dev_get_drvdata(dev); 1123 1124 if (netif_running(ndev)) { 1125 netif_stop_queue(ndev); 1126 netif_device_detach(ndev); 1127 xcan_chip_stop(ndev); 1128 } 1129 1130 return pm_runtime_force_suspend(dev); 1131 } 1132 1133 /** 1134 * xcan_resume - Resume from suspend 1135 * @dev: Address of the device structure 1136 * 1137 * Resume operation after suspend. 1138 * Return: 0 on success and failure value on error 1139 */ 1140 static int __maybe_unused xcan_resume(struct device *dev) 1141 { 1142 struct net_device *ndev = dev_get_drvdata(dev); 1143 int ret; 1144 1145 ret = pm_runtime_force_resume(dev); 1146 if (ret) { 1147 dev_err(dev, "pm_runtime_force_resume failed on resume\n"); 1148 return ret; 1149 } 1150 1151 if (netif_running(ndev)) { 1152 ret = xcan_chip_start(ndev); 1153 if (ret) { 1154 dev_err(dev, "xcan_chip_start failed on resume\n"); 1155 return ret; 1156 } 1157 1158 netif_device_attach(ndev); 1159 netif_start_queue(ndev); 1160 } 1161 1162 return 0; 1163 } 1164 1165 /** 1166 * xcan_runtime_suspend - Runtime suspend method for the driver 1167 * @dev: Address of the device structure 1168 * 1169 * Put the driver into low power mode. 1170 * Return: 0 always 1171 */ 1172 static int __maybe_unused xcan_runtime_suspend(struct device *dev) 1173 { 1174 struct net_device *ndev = dev_get_drvdata(dev); 1175 struct xcan_priv *priv = netdev_priv(ndev); 1176 1177 clk_disable_unprepare(priv->bus_clk); 1178 clk_disable_unprepare(priv->can_clk); 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * xcan_runtime_resume - Runtime resume from suspend 1185 * @dev: Address of the device structure 1186 * 1187 * Resume operation after suspend. 1188 * Return: 0 on success and failure value on error 1189 */ 1190 static int __maybe_unused xcan_runtime_resume(struct device *dev) 1191 { 1192 struct net_device *ndev = dev_get_drvdata(dev); 1193 struct xcan_priv *priv = netdev_priv(ndev); 1194 int ret; 1195 1196 ret = clk_prepare_enable(priv->bus_clk); 1197 if (ret) { 1198 dev_err(dev, "Cannot enable clock.\n"); 1199 return ret; 1200 } 1201 ret = clk_prepare_enable(priv->can_clk); 1202 if (ret) { 1203 dev_err(dev, "Cannot enable clock.\n"); 1204 clk_disable_unprepare(priv->bus_clk); 1205 return ret; 1206 } 1207 1208 return 0; 1209 } 1210 1211 static const struct dev_pm_ops xcan_dev_pm_ops = { 1212 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume) 1213 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL) 1214 }; 1215 1216 static const struct xcan_devtype_data xcan_zynq_data = { 1217 .caps = XCAN_CAP_WATERMARK, 1218 }; 1219 1220 /* Match table for OF platform binding */ 1221 static const struct of_device_id xcan_of_match[] = { 1222 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data }, 1223 { .compatible = "xlnx,axi-can-1.00.a", }, 1224 { /* end of list */ }, 1225 }; 1226 MODULE_DEVICE_TABLE(of, xcan_of_match); 1227 1228 /** 1229 * xcan_probe - Platform registration call 1230 * @pdev: Handle to the platform device structure 1231 * 1232 * This function does all the memory allocation and registration for the CAN 1233 * device. 1234 * 1235 * Return: 0 on success and failure value on error 1236 */ 1237 static int xcan_probe(struct platform_device *pdev) 1238 { 1239 struct resource *res; /* IO mem resources */ 1240 struct net_device *ndev; 1241 struct xcan_priv *priv; 1242 const struct of_device_id *of_id; 1243 int caps = 0; 1244 void __iomem *addr; 1245 int ret, rx_max, tx_max, tx_fifo_depth; 1246 1247 /* Get the virtual base address for the device */ 1248 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1249 addr = devm_ioremap_resource(&pdev->dev, res); 1250 if (IS_ERR(addr)) { 1251 ret = PTR_ERR(addr); 1252 goto err; 1253 } 1254 1255 ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", 1256 &tx_fifo_depth); 1257 if (ret < 0) 1258 goto err; 1259 1260 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max); 1261 if (ret < 0) 1262 goto err; 1263 1264 of_id = of_match_device(xcan_of_match, &pdev->dev); 1265 if (of_id) { 1266 const struct xcan_devtype_data *devtype_data = of_id->data; 1267 1268 if (devtype_data) 1269 caps = devtype_data->caps; 1270 } 1271 1272 /* There is no way to directly figure out how many frames have been 1273 * sent when the TXOK interrupt is processed. If watermark programming 1274 * is supported, we can have 2 frames in the FIFO and use TXFEMP 1275 * to determine if 1 or 2 frames have been sent. 1276 * Theoretically we should be able to use TXFWMEMP to determine up 1277 * to 3 frames, but it seems that after putting a second frame in the 1278 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less 1279 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was 1280 * sent), which is not a sensible state - possibly TXFWMEMP is not 1281 * completely synchronized with the rest of the bits? 1282 */ 1283 if (caps & XCAN_CAP_WATERMARK) 1284 tx_max = min(tx_fifo_depth, 2); 1285 else 1286 tx_max = 1; 1287 1288 /* Create a CAN device instance */ 1289 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max); 1290 if (!ndev) 1291 return -ENOMEM; 1292 1293 priv = netdev_priv(ndev); 1294 priv->dev = &pdev->dev; 1295 priv->can.bittiming_const = &xcan_bittiming_const; 1296 priv->can.do_set_mode = xcan_do_set_mode; 1297 priv->can.do_get_berr_counter = xcan_get_berr_counter; 1298 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1299 CAN_CTRLMODE_BERR_REPORTING; 1300 priv->reg_base = addr; 1301 priv->tx_max = tx_max; 1302 spin_lock_init(&priv->tx_lock); 1303 1304 /* Get IRQ for the device */ 1305 ndev->irq = platform_get_irq(pdev, 0); 1306 ndev->flags |= IFF_ECHO; /* We support local echo */ 1307 1308 platform_set_drvdata(pdev, ndev); 1309 SET_NETDEV_DEV(ndev, &pdev->dev); 1310 ndev->netdev_ops = &xcan_netdev_ops; 1311 1312 /* Getting the CAN can_clk info */ 1313 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1314 if (IS_ERR(priv->can_clk)) { 1315 dev_err(&pdev->dev, "Device clock not found.\n"); 1316 ret = PTR_ERR(priv->can_clk); 1317 goto err_free; 1318 } 1319 /* Check for type of CAN device */ 1320 if (of_device_is_compatible(pdev->dev.of_node, 1321 "xlnx,zynq-can-1.0")) { 1322 priv->bus_clk = devm_clk_get(&pdev->dev, "pclk"); 1323 if (IS_ERR(priv->bus_clk)) { 1324 dev_err(&pdev->dev, "bus clock not found\n"); 1325 ret = PTR_ERR(priv->bus_clk); 1326 goto err_free; 1327 } 1328 } else { 1329 priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); 1330 if (IS_ERR(priv->bus_clk)) { 1331 dev_err(&pdev->dev, "bus clock not found\n"); 1332 ret = PTR_ERR(priv->bus_clk); 1333 goto err_free; 1334 } 1335 } 1336 1337 priv->write_reg = xcan_write_reg_le; 1338 priv->read_reg = xcan_read_reg_le; 1339 1340 pm_runtime_enable(&pdev->dev); 1341 ret = pm_runtime_get_sync(&pdev->dev); 1342 if (ret < 0) { 1343 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1344 __func__, ret); 1345 goto err_pmdisable; 1346 } 1347 1348 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) { 1349 priv->write_reg = xcan_write_reg_be; 1350 priv->read_reg = xcan_read_reg_be; 1351 } 1352 1353 priv->can.clock.freq = clk_get_rate(priv->can_clk); 1354 1355 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max); 1356 1357 ret = register_candev(ndev); 1358 if (ret) { 1359 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret); 1360 goto err_disableclks; 1361 } 1362 1363 devm_can_led_init(ndev); 1364 1365 pm_runtime_put(&pdev->dev); 1366 1367 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth: actual %d, using %d\n", 1368 priv->reg_base, ndev->irq, priv->can.clock.freq, 1369 tx_fifo_depth, priv->tx_max); 1370 1371 return 0; 1372 1373 err_disableclks: 1374 pm_runtime_put(priv->dev); 1375 err_pmdisable: 1376 pm_runtime_disable(&pdev->dev); 1377 err_free: 1378 free_candev(ndev); 1379 err: 1380 return ret; 1381 } 1382 1383 /** 1384 * xcan_remove - Unregister the device after releasing the resources 1385 * @pdev: Handle to the platform device structure 1386 * 1387 * This function frees all the resources allocated to the device. 1388 * Return: 0 always 1389 */ 1390 static int xcan_remove(struct platform_device *pdev) 1391 { 1392 struct net_device *ndev = platform_get_drvdata(pdev); 1393 struct xcan_priv *priv = netdev_priv(ndev); 1394 1395 unregister_candev(ndev); 1396 pm_runtime_disable(&pdev->dev); 1397 netif_napi_del(&priv->napi); 1398 free_candev(ndev); 1399 1400 return 0; 1401 } 1402 1403 static struct platform_driver xcan_driver = { 1404 .probe = xcan_probe, 1405 .remove = xcan_remove, 1406 .driver = { 1407 .name = DRIVER_NAME, 1408 .pm = &xcan_dev_pm_ops, 1409 .of_match_table = xcan_of_match, 1410 }, 1411 }; 1412 1413 module_platform_driver(xcan_driver); 1414 1415 MODULE_LICENSE("GPL"); 1416 MODULE_AUTHOR("Xilinx Inc"); 1417 MODULE_DESCRIPTION("Xilinx CAN interface"); 1418