xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision b9b77222)
1 /* Xilinx CAN device driver
2  *
3  * Copyright (C) 2012 - 2014 Xilinx, Inc.
4  * Copyright (C) 2009 PetaLogix. All rights reserved.
5  * Copyright (C) 2017 Sandvik Mining and Construction Oy
6  *
7  * Description:
8  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/netdevice.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/platform_device.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/can/dev.h>
36 #include <linux/can/error.h>
37 #include <linux/can/led.h>
38 #include <linux/pm_runtime.h>
39 
40 #define DRIVER_NAME	"xilinx_can"
41 
42 /* CAN registers set */
43 enum xcan_reg {
44 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
45 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
46 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
47 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
48 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
49 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
50 	XCAN_SR_OFFSET		= 0x18, /* Status */
51 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
52 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
53 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
54 	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
55 	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
56 	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
57 	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
58 	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
59 	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
60 	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
61 	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
62 };
63 
64 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
65 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
66 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
67 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
68 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
69 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
70 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
71 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
72 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
73 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
74 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
75 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
76 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
77 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
78 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
79 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
80 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
81 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
82 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
83 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
84 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
85 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
86 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
87 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
88 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
89 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
90 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
91 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
92 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
93 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
94 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
95 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
96 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
97 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
98 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
99 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
100 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
101 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
102 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
103 
104 #define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
105 				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
106 				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
107 				 XCAN_IXR_RXOFLW_MASK | XCAN_IXR_ARBLST_MASK)
108 
109 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
110 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
111 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
112 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
113 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
114 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
115 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
116 
117 /* CAN frame length constants */
118 #define XCAN_FRAME_MAX_DATA_LEN		8
119 #define XCAN_TIMEOUT			(1 * HZ)
120 
121 /**
122  * struct xcan_priv - This definition define CAN driver instance
123  * @can:			CAN private data structure.
124  * @tx_lock:			Lock for synchronizing TX interrupt handling
125  * @tx_head:			Tx CAN packets ready to send on the queue
126  * @tx_tail:			Tx CAN packets successfully sended on the queue
127  * @tx_max:			Maximum number packets the driver can send
128  * @napi:			NAPI structure
129  * @read_reg:			For reading data from CAN registers
130  * @write_reg:			For writing data to CAN registers
131  * @dev:			Network device data structure
132  * @reg_base:			Ioremapped address to registers
133  * @irq_flags:			For request_irq()
134  * @bus_clk:			Pointer to struct clk
135  * @can_clk:			Pointer to struct clk
136  */
137 struct xcan_priv {
138 	struct can_priv can;
139 	spinlock_t tx_lock;
140 	unsigned int tx_head;
141 	unsigned int tx_tail;
142 	unsigned int tx_max;
143 	struct napi_struct napi;
144 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
145 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
146 			u32 val);
147 	struct device *dev;
148 	void __iomem *reg_base;
149 	unsigned long irq_flags;
150 	struct clk *bus_clk;
151 	struct clk *can_clk;
152 };
153 
154 /* CAN Bittiming constants as per Xilinx CAN specs */
155 static const struct can_bittiming_const xcan_bittiming_const = {
156 	.name = DRIVER_NAME,
157 	.tseg1_min = 1,
158 	.tseg1_max = 16,
159 	.tseg2_min = 1,
160 	.tseg2_max = 8,
161 	.sjw_max = 4,
162 	.brp_min = 1,
163 	.brp_max = 256,
164 	.brp_inc = 1,
165 };
166 
167 #define XCAN_CAP_WATERMARK	0x0001
168 struct xcan_devtype_data {
169 	unsigned int caps;
170 };
171 
172 /**
173  * xcan_write_reg_le - Write a value to the device register little endian
174  * @priv:	Driver private data structure
175  * @reg:	Register offset
176  * @val:	Value to write at the Register offset
177  *
178  * Write data to the paricular CAN register
179  */
180 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
181 			u32 val)
182 {
183 	iowrite32(val, priv->reg_base + reg);
184 }
185 
186 /**
187  * xcan_read_reg_le - Read a value from the device register little endian
188  * @priv:	Driver private data structure
189  * @reg:	Register offset
190  *
191  * Read data from the particular CAN register
192  * Return: value read from the CAN register
193  */
194 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
195 {
196 	return ioread32(priv->reg_base + reg);
197 }
198 
199 /**
200  * xcan_write_reg_be - Write a value to the device register big endian
201  * @priv:	Driver private data structure
202  * @reg:	Register offset
203  * @val:	Value to write at the Register offset
204  *
205  * Write data to the paricular CAN register
206  */
207 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
208 			u32 val)
209 {
210 	iowrite32be(val, priv->reg_base + reg);
211 }
212 
213 /**
214  * xcan_read_reg_be - Read a value from the device register big endian
215  * @priv:	Driver private data structure
216  * @reg:	Register offset
217  *
218  * Read data from the particular CAN register
219  * Return: value read from the CAN register
220  */
221 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
222 {
223 	return ioread32be(priv->reg_base + reg);
224 }
225 
226 /**
227  * set_reset_mode - Resets the CAN device mode
228  * @ndev:	Pointer to net_device structure
229  *
230  * This is the driver reset mode routine.The driver
231  * enters into configuration mode.
232  *
233  * Return: 0 on success and failure value on error
234  */
235 static int set_reset_mode(struct net_device *ndev)
236 {
237 	struct xcan_priv *priv = netdev_priv(ndev);
238 	unsigned long timeout;
239 
240 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
241 
242 	timeout = jiffies + XCAN_TIMEOUT;
243 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
244 		if (time_after(jiffies, timeout)) {
245 			netdev_warn(ndev, "timed out for config mode\n");
246 			return -ETIMEDOUT;
247 		}
248 		usleep_range(500, 10000);
249 	}
250 
251 	/* reset clears FIFOs */
252 	priv->tx_head = 0;
253 	priv->tx_tail = 0;
254 
255 	return 0;
256 }
257 
258 /**
259  * xcan_set_bittiming - CAN set bit timing routine
260  * @ndev:	Pointer to net_device structure
261  *
262  * This is the driver set bittiming  routine.
263  * Return: 0 on success and failure value on error
264  */
265 static int xcan_set_bittiming(struct net_device *ndev)
266 {
267 	struct xcan_priv *priv = netdev_priv(ndev);
268 	struct can_bittiming *bt = &priv->can.bittiming;
269 	u32 btr0, btr1;
270 	u32 is_config_mode;
271 
272 	/* Check whether Xilinx CAN is in configuration mode.
273 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
274 	 */
275 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
276 				XCAN_SR_CONFIG_MASK;
277 	if (!is_config_mode) {
278 		netdev_alert(ndev,
279 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
280 		return -EPERM;
281 	}
282 
283 	/* Setting Baud Rate prescalar value in BRPR Register */
284 	btr0 = (bt->brp - 1);
285 
286 	/* Setting Time Segment 1 in BTR Register */
287 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
288 
289 	/* Setting Time Segment 2 in BTR Register */
290 	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
291 
292 	/* Setting Synchronous jump width in BTR Register */
293 	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
294 
295 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
296 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
297 
298 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
299 			priv->read_reg(priv, XCAN_BRPR_OFFSET),
300 			priv->read_reg(priv, XCAN_BTR_OFFSET));
301 
302 	return 0;
303 }
304 
305 /**
306  * xcan_chip_start - This the drivers start routine
307  * @ndev:	Pointer to net_device structure
308  *
309  * This is the drivers start routine.
310  * Based on the State of the CAN device it puts
311  * the CAN device into a proper mode.
312  *
313  * Return: 0 on success and failure value on error
314  */
315 static int xcan_chip_start(struct net_device *ndev)
316 {
317 	struct xcan_priv *priv = netdev_priv(ndev);
318 	u32 reg_msr, reg_sr_mask;
319 	int err;
320 	unsigned long timeout;
321 
322 	/* Check if it is in reset mode */
323 	err = set_reset_mode(ndev);
324 	if (err < 0)
325 		return err;
326 
327 	err = xcan_set_bittiming(ndev);
328 	if (err < 0)
329 		return err;
330 
331 	/* Enable interrupts */
332 	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
333 
334 	/* Check whether it is loopback mode or normal mode  */
335 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
336 		reg_msr = XCAN_MSR_LBACK_MASK;
337 		reg_sr_mask = XCAN_SR_LBACK_MASK;
338 	} else {
339 		reg_msr = 0x0;
340 		reg_sr_mask = XCAN_SR_NORMAL_MASK;
341 	}
342 
343 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
344 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
345 
346 	timeout = jiffies + XCAN_TIMEOUT;
347 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
348 		if (time_after(jiffies, timeout)) {
349 			netdev_warn(ndev,
350 				"timed out for correct mode\n");
351 			return -ETIMEDOUT;
352 		}
353 	}
354 	netdev_dbg(ndev, "status:#x%08x\n",
355 			priv->read_reg(priv, XCAN_SR_OFFSET));
356 
357 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
358 	return 0;
359 }
360 
361 /**
362  * xcan_do_set_mode - This sets the mode of the driver
363  * @ndev:	Pointer to net_device structure
364  * @mode:	Tells the mode of the driver
365  *
366  * This check the drivers state and calls the
367  * the corresponding modes to set.
368  *
369  * Return: 0 on success and failure value on error
370  */
371 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
372 {
373 	int ret;
374 
375 	switch (mode) {
376 	case CAN_MODE_START:
377 		ret = xcan_chip_start(ndev);
378 		if (ret < 0) {
379 			netdev_err(ndev, "xcan_chip_start failed!\n");
380 			return ret;
381 		}
382 		netif_wake_queue(ndev);
383 		break;
384 	default:
385 		ret = -EOPNOTSUPP;
386 		break;
387 	}
388 
389 	return ret;
390 }
391 
392 /**
393  * xcan_start_xmit - Starts the transmission
394  * @skb:	sk_buff pointer that contains data to be Txed
395  * @ndev:	Pointer to net_device structure
396  *
397  * This function is invoked from upper layers to initiate transmission. This
398  * function uses the next available free txbuff and populates their fields to
399  * start the transmission.
400  *
401  * Return: 0 on success and failure value on error
402  */
403 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
404 {
405 	struct xcan_priv *priv = netdev_priv(ndev);
406 	struct net_device_stats *stats = &ndev->stats;
407 	struct can_frame *cf = (struct can_frame *)skb->data;
408 	u32 id, dlc, data[2] = {0, 0};
409 	unsigned long flags;
410 
411 	if (can_dropped_invalid_skb(ndev, skb))
412 		return NETDEV_TX_OK;
413 
414 	/* Check if the TX buffer is full */
415 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
416 			XCAN_SR_TXFLL_MASK)) {
417 		netif_stop_queue(ndev);
418 		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
419 		return NETDEV_TX_BUSY;
420 	}
421 
422 	/* Watch carefully on the bit sequence */
423 	if (cf->can_id & CAN_EFF_FLAG) {
424 		/* Extended CAN ID format */
425 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
426 			XCAN_IDR_ID2_MASK;
427 		id |= (((cf->can_id & CAN_EFF_MASK) >>
428 			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
429 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
430 
431 		/* The substibute remote TX request bit should be "1"
432 		 * for extended frames as in the Xilinx CAN datasheet
433 		 */
434 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
435 
436 		if (cf->can_id & CAN_RTR_FLAG)
437 			/* Extended frames remote TX request */
438 			id |= XCAN_IDR_RTR_MASK;
439 	} else {
440 		/* Standard CAN ID format */
441 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
442 			XCAN_IDR_ID1_MASK;
443 
444 		if (cf->can_id & CAN_RTR_FLAG)
445 			/* Standard frames remote TX request */
446 			id |= XCAN_IDR_SRR_MASK;
447 	}
448 
449 	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
450 
451 	if (cf->can_dlc > 0)
452 		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
453 	if (cf->can_dlc > 4)
454 		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
455 
456 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
457 
458 	spin_lock_irqsave(&priv->tx_lock, flags);
459 
460 	priv->tx_head++;
461 
462 	/* Write the Frame to Xilinx CAN TX FIFO */
463 	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
464 	/* If the CAN frame is RTR frame this write triggers tranmission */
465 	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
466 	if (!(cf->can_id & CAN_RTR_FLAG)) {
467 		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
468 		/* If the CAN frame is Standard/Extended frame this
469 		 * write triggers tranmission
470 		 */
471 		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
472 		stats->tx_bytes += cf->can_dlc;
473 	}
474 
475 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
476 	if (priv->tx_max > 1)
477 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
478 
479 	/* Check if the TX buffer is full */
480 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
481 		netif_stop_queue(ndev);
482 
483 	spin_unlock_irqrestore(&priv->tx_lock, flags);
484 
485 	return NETDEV_TX_OK;
486 }
487 
488 /**
489  * xcan_rx -  Is called from CAN isr to complete the received
490  *		frame  processing
491  * @ndev:	Pointer to net_device structure
492  *
493  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
494  * does minimal processing and invokes "netif_receive_skb" to complete further
495  * processing.
496  * Return: 1 on success and 0 on failure.
497  */
498 static int xcan_rx(struct net_device *ndev)
499 {
500 	struct xcan_priv *priv = netdev_priv(ndev);
501 	struct net_device_stats *stats = &ndev->stats;
502 	struct can_frame *cf;
503 	struct sk_buff *skb;
504 	u32 id_xcan, dlc, data[2] = {0, 0};
505 
506 	skb = alloc_can_skb(ndev, &cf);
507 	if (unlikely(!skb)) {
508 		stats->rx_dropped++;
509 		return 0;
510 	}
511 
512 	/* Read a frame from Xilinx zynq CANPS */
513 	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
514 	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
515 				XCAN_DLCR_DLC_SHIFT;
516 
517 	/* Change Xilinx CAN data length format to socketCAN data format */
518 	cf->can_dlc = get_can_dlc(dlc);
519 
520 	/* Change Xilinx CAN ID format to socketCAN ID format */
521 	if (id_xcan & XCAN_IDR_IDE_MASK) {
522 		/* The received frame is an Extended format frame */
523 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
524 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
525 				XCAN_IDR_ID2_SHIFT;
526 		cf->can_id |= CAN_EFF_FLAG;
527 		if (id_xcan & XCAN_IDR_RTR_MASK)
528 			cf->can_id |= CAN_RTR_FLAG;
529 	} else {
530 		/* The received frame is a standard format frame */
531 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
532 				XCAN_IDR_ID1_SHIFT;
533 		if (id_xcan & XCAN_IDR_SRR_MASK)
534 			cf->can_id |= CAN_RTR_FLAG;
535 	}
536 
537 	/* DW1/DW2 must always be read to remove message from RXFIFO */
538 	data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
539 	data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
540 
541 	if (!(cf->can_id & CAN_RTR_FLAG)) {
542 		/* Change Xilinx CAN data format to socketCAN data format */
543 		if (cf->can_dlc > 0)
544 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
545 		if (cf->can_dlc > 4)
546 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
547 	}
548 
549 	stats->rx_bytes += cf->can_dlc;
550 	stats->rx_packets++;
551 	netif_receive_skb(skb);
552 
553 	return 1;
554 }
555 
556 /**
557  * xcan_current_error_state - Get current error state from HW
558  * @ndev:	Pointer to net_device structure
559  *
560  * Checks the current CAN error state from the HW. Note that this
561  * only checks for ERROR_PASSIVE and ERROR_WARNING.
562  *
563  * Return:
564  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
565  * otherwise.
566  */
567 static enum can_state xcan_current_error_state(struct net_device *ndev)
568 {
569 	struct xcan_priv *priv = netdev_priv(ndev);
570 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
571 
572 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
573 		return CAN_STATE_ERROR_PASSIVE;
574 	else if (status & XCAN_SR_ERRWRN_MASK)
575 		return CAN_STATE_ERROR_WARNING;
576 	else
577 		return CAN_STATE_ERROR_ACTIVE;
578 }
579 
580 /**
581  * xcan_set_error_state - Set new CAN error state
582  * @ndev:	Pointer to net_device structure
583  * @new_state:	The new CAN state to be set
584  * @cf:		Error frame to be populated or NULL
585  *
586  * Set new CAN error state for the device, updating statistics and
587  * populating the error frame if given.
588  */
589 static void xcan_set_error_state(struct net_device *ndev,
590 				 enum can_state new_state,
591 				 struct can_frame *cf)
592 {
593 	struct xcan_priv *priv = netdev_priv(ndev);
594 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
595 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
596 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
597 
598 	priv->can.state = new_state;
599 
600 	if (cf) {
601 		cf->can_id |= CAN_ERR_CRTL;
602 		cf->data[6] = txerr;
603 		cf->data[7] = rxerr;
604 	}
605 
606 	switch (new_state) {
607 	case CAN_STATE_ERROR_PASSIVE:
608 		priv->can.can_stats.error_passive++;
609 		if (cf)
610 			cf->data[1] = (rxerr > 127) ?
611 					CAN_ERR_CRTL_RX_PASSIVE :
612 					CAN_ERR_CRTL_TX_PASSIVE;
613 		break;
614 	case CAN_STATE_ERROR_WARNING:
615 		priv->can.can_stats.error_warning++;
616 		if (cf)
617 			cf->data[1] |= (txerr > rxerr) ?
618 					CAN_ERR_CRTL_TX_WARNING :
619 					CAN_ERR_CRTL_RX_WARNING;
620 		break;
621 	case CAN_STATE_ERROR_ACTIVE:
622 		if (cf)
623 			cf->data[1] |= CAN_ERR_CRTL_ACTIVE;
624 		break;
625 	default:
626 		/* non-ERROR states are handled elsewhere */
627 		WARN_ON(1);
628 		break;
629 	}
630 }
631 
632 /**
633  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
634  * @ndev:	Pointer to net_device structure
635  *
636  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
637  * the performed RX/TX has caused it to drop to a lesser state and set
638  * the interface state accordingly.
639  */
640 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
641 {
642 	struct xcan_priv *priv = netdev_priv(ndev);
643 	enum can_state old_state = priv->can.state;
644 	enum can_state new_state;
645 
646 	/* changing error state due to successful frame RX/TX can only
647 	 * occur from these states
648 	 */
649 	if (old_state != CAN_STATE_ERROR_WARNING &&
650 	    old_state != CAN_STATE_ERROR_PASSIVE)
651 		return;
652 
653 	new_state = xcan_current_error_state(ndev);
654 
655 	if (new_state != old_state) {
656 		struct sk_buff *skb;
657 		struct can_frame *cf;
658 
659 		skb = alloc_can_err_skb(ndev, &cf);
660 
661 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
662 
663 		if (skb) {
664 			struct net_device_stats *stats = &ndev->stats;
665 
666 			stats->rx_packets++;
667 			stats->rx_bytes += cf->can_dlc;
668 			netif_rx(skb);
669 		}
670 	}
671 }
672 
673 /**
674  * xcan_err_interrupt - error frame Isr
675  * @ndev:	net_device pointer
676  * @isr:	interrupt status register value
677  *
678  * This is the CAN error interrupt and it will
679  * check the the type of error and forward the error
680  * frame to upper layers.
681  */
682 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
683 {
684 	struct xcan_priv *priv = netdev_priv(ndev);
685 	struct net_device_stats *stats = &ndev->stats;
686 	struct can_frame *cf;
687 	struct sk_buff *skb;
688 	u32 err_status;
689 
690 	skb = alloc_can_err_skb(ndev, &cf);
691 
692 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
693 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
694 
695 	if (isr & XCAN_IXR_BSOFF_MASK) {
696 		priv->can.state = CAN_STATE_BUS_OFF;
697 		priv->can.can_stats.bus_off++;
698 		/* Leave device in Config Mode in bus-off state */
699 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
700 		can_bus_off(ndev);
701 		if (skb)
702 			cf->can_id |= CAN_ERR_BUSOFF;
703 	} else {
704 		enum can_state new_state = xcan_current_error_state(ndev);
705 
706 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
707 	}
708 
709 	/* Check for Arbitration lost interrupt */
710 	if (isr & XCAN_IXR_ARBLST_MASK) {
711 		priv->can.can_stats.arbitration_lost++;
712 		if (skb) {
713 			cf->can_id |= CAN_ERR_LOSTARB;
714 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
715 		}
716 	}
717 
718 	/* Check for RX FIFO Overflow interrupt */
719 	if (isr & XCAN_IXR_RXOFLW_MASK) {
720 		stats->rx_over_errors++;
721 		stats->rx_errors++;
722 		if (skb) {
723 			cf->can_id |= CAN_ERR_CRTL;
724 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
725 		}
726 	}
727 
728 	/* Check for error interrupt */
729 	if (isr & XCAN_IXR_ERROR_MASK) {
730 		if (skb)
731 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
732 
733 		/* Check for Ack error interrupt */
734 		if (err_status & XCAN_ESR_ACKER_MASK) {
735 			stats->tx_errors++;
736 			if (skb) {
737 				cf->can_id |= CAN_ERR_ACK;
738 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
739 			}
740 		}
741 
742 		/* Check for Bit error interrupt */
743 		if (err_status & XCAN_ESR_BERR_MASK) {
744 			stats->tx_errors++;
745 			if (skb) {
746 				cf->can_id |= CAN_ERR_PROT;
747 				cf->data[2] = CAN_ERR_PROT_BIT;
748 			}
749 		}
750 
751 		/* Check for Stuff error interrupt */
752 		if (err_status & XCAN_ESR_STER_MASK) {
753 			stats->rx_errors++;
754 			if (skb) {
755 				cf->can_id |= CAN_ERR_PROT;
756 				cf->data[2] = CAN_ERR_PROT_STUFF;
757 			}
758 		}
759 
760 		/* Check for Form error interrupt */
761 		if (err_status & XCAN_ESR_FMER_MASK) {
762 			stats->rx_errors++;
763 			if (skb) {
764 				cf->can_id |= CAN_ERR_PROT;
765 				cf->data[2] = CAN_ERR_PROT_FORM;
766 			}
767 		}
768 
769 		/* Check for CRC error interrupt */
770 		if (err_status & XCAN_ESR_CRCER_MASK) {
771 			stats->rx_errors++;
772 			if (skb) {
773 				cf->can_id |= CAN_ERR_PROT;
774 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
775 			}
776 		}
777 			priv->can.can_stats.bus_error++;
778 	}
779 
780 	if (skb) {
781 		stats->rx_packets++;
782 		stats->rx_bytes += cf->can_dlc;
783 		netif_rx(skb);
784 	}
785 
786 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
787 			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
788 }
789 
790 /**
791  * xcan_state_interrupt - It will check the state of the CAN device
792  * @ndev:	net_device pointer
793  * @isr:	interrupt status register value
794  *
795  * This will checks the state of the CAN device
796  * and puts the device into appropriate state.
797  */
798 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
799 {
800 	struct xcan_priv *priv = netdev_priv(ndev);
801 
802 	/* Check for Sleep interrupt if set put CAN device in sleep state */
803 	if (isr & XCAN_IXR_SLP_MASK)
804 		priv->can.state = CAN_STATE_SLEEPING;
805 
806 	/* Check for Wake up interrupt if set put CAN device in Active state */
807 	if (isr & XCAN_IXR_WKUP_MASK)
808 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
809 }
810 
811 /**
812  * xcan_rx_poll - Poll routine for rx packets (NAPI)
813  * @napi:	napi structure pointer
814  * @quota:	Max number of rx packets to be processed.
815  *
816  * This is the poll routine for rx part.
817  * It will process the packets maximux quota value.
818  *
819  * Return: number of packets received
820  */
821 static int xcan_rx_poll(struct napi_struct *napi, int quota)
822 {
823 	struct net_device *ndev = napi->dev;
824 	struct xcan_priv *priv = netdev_priv(ndev);
825 	u32 isr, ier;
826 	int work_done = 0;
827 
828 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
829 	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
830 		work_done += xcan_rx(ndev);
831 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
832 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
833 	}
834 
835 	if (work_done) {
836 		can_led_event(ndev, CAN_LED_EVENT_RX);
837 		xcan_update_error_state_after_rxtx(ndev);
838 	}
839 
840 	if (work_done < quota) {
841 		napi_complete_done(napi, work_done);
842 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
843 		ier |= XCAN_IXR_RXNEMP_MASK;
844 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
845 	}
846 	return work_done;
847 }
848 
849 /**
850  * xcan_tx_interrupt - Tx Done Isr
851  * @ndev:	net_device pointer
852  * @isr:	Interrupt status register value
853  */
854 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
855 {
856 	struct xcan_priv *priv = netdev_priv(ndev);
857 	struct net_device_stats *stats = &ndev->stats;
858 	unsigned int frames_in_fifo;
859 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
860 	unsigned long flags;
861 	int retries = 0;
862 
863 	/* Synchronize with xmit as we need to know the exact number
864 	 * of frames in the FIFO to stay in sync due to the TXFEMP
865 	 * handling.
866 	 * This also prevents a race between netif_wake_queue() and
867 	 * netif_stop_queue().
868 	 */
869 	spin_lock_irqsave(&priv->tx_lock, flags);
870 
871 	frames_in_fifo = priv->tx_head - priv->tx_tail;
872 
873 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
874 		/* clear TXOK anyway to avoid getting back here */
875 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
876 		spin_unlock_irqrestore(&priv->tx_lock, flags);
877 		return;
878 	}
879 
880 	/* Check if 2 frames were sent (TXOK only means that at least 1
881 	 * frame was sent).
882 	 */
883 	if (frames_in_fifo > 1) {
884 		WARN_ON(frames_in_fifo > priv->tx_max);
885 
886 		/* Synchronize TXOK and isr so that after the loop:
887 		 * (1) isr variable is up-to-date at least up to TXOK clear
888 		 *     time. This avoids us clearing a TXOK of a second frame
889 		 *     but not noticing that the FIFO is now empty and thus
890 		 *     marking only a single frame as sent.
891 		 * (2) No TXOK is left. Having one could mean leaving a
892 		 *     stray TXOK as we might process the associated frame
893 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
894 		 *     clear to satisfy (1).
895 		 */
896 		while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) {
897 			priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
898 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
899 		}
900 
901 		if (isr & XCAN_IXR_TXFEMP_MASK) {
902 			/* nothing in FIFO anymore */
903 			frames_sent = frames_in_fifo;
904 		}
905 	} else {
906 		/* single frame in fifo, just clear TXOK */
907 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
908 	}
909 
910 	while (frames_sent--) {
911 		can_get_echo_skb(ndev, priv->tx_tail %
912 					priv->tx_max);
913 		priv->tx_tail++;
914 		stats->tx_packets++;
915 	}
916 
917 	netif_wake_queue(ndev);
918 
919 	spin_unlock_irqrestore(&priv->tx_lock, flags);
920 
921 	can_led_event(ndev, CAN_LED_EVENT_TX);
922 	xcan_update_error_state_after_rxtx(ndev);
923 }
924 
925 /**
926  * xcan_interrupt - CAN Isr
927  * @irq:	irq number
928  * @dev_id:	device id poniter
929  *
930  * This is the xilinx CAN Isr. It checks for the type of interrupt
931  * and invokes the corresponding ISR.
932  *
933  * Return:
934  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
935  */
936 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
937 {
938 	struct net_device *ndev = (struct net_device *)dev_id;
939 	struct xcan_priv *priv = netdev_priv(ndev);
940 	u32 isr, ier;
941 	u32 isr_errors;
942 
943 	/* Get the interrupt status from Xilinx CAN */
944 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
945 	if (!isr)
946 		return IRQ_NONE;
947 
948 	/* Check for the type of interrupt and Processing it */
949 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
950 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
951 				XCAN_IXR_WKUP_MASK));
952 		xcan_state_interrupt(ndev, isr);
953 	}
954 
955 	/* Check for Tx interrupt and Processing it */
956 	if (isr & XCAN_IXR_TXOK_MASK)
957 		xcan_tx_interrupt(ndev, isr);
958 
959 	/* Check for the type of error interrupt and Processing it */
960 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
961 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK);
962 	if (isr_errors) {
963 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
964 		xcan_err_interrupt(ndev, isr);
965 	}
966 
967 	/* Check for the type of receive interrupt and Processing it */
968 	if (isr & XCAN_IXR_RXNEMP_MASK) {
969 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
970 		ier &= ~XCAN_IXR_RXNEMP_MASK;
971 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
972 		napi_schedule(&priv->napi);
973 	}
974 	return IRQ_HANDLED;
975 }
976 
977 /**
978  * xcan_chip_stop - Driver stop routine
979  * @ndev:	Pointer to net_device structure
980  *
981  * This is the drivers stop routine. It will disable the
982  * interrupts and put the device into configuration mode.
983  */
984 static void xcan_chip_stop(struct net_device *ndev)
985 {
986 	struct xcan_priv *priv = netdev_priv(ndev);
987 
988 	/* Disable interrupts and leave the can in configuration mode */
989 	set_reset_mode(ndev);
990 	priv->can.state = CAN_STATE_STOPPED;
991 }
992 
993 /**
994  * xcan_open - Driver open routine
995  * @ndev:	Pointer to net_device structure
996  *
997  * This is the driver open routine.
998  * Return: 0 on success and failure value on error
999  */
1000 static int xcan_open(struct net_device *ndev)
1001 {
1002 	struct xcan_priv *priv = netdev_priv(ndev);
1003 	int ret;
1004 
1005 	ret = pm_runtime_get_sync(priv->dev);
1006 	if (ret < 0) {
1007 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1008 				__func__, ret);
1009 		return ret;
1010 	}
1011 
1012 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1013 			ndev->name, ndev);
1014 	if (ret < 0) {
1015 		netdev_err(ndev, "irq allocation for CAN failed\n");
1016 		goto err;
1017 	}
1018 
1019 	/* Set chip into reset mode */
1020 	ret = set_reset_mode(ndev);
1021 	if (ret < 0) {
1022 		netdev_err(ndev, "mode resetting failed!\n");
1023 		goto err_irq;
1024 	}
1025 
1026 	/* Common open */
1027 	ret = open_candev(ndev);
1028 	if (ret)
1029 		goto err_irq;
1030 
1031 	ret = xcan_chip_start(ndev);
1032 	if (ret < 0) {
1033 		netdev_err(ndev, "xcan_chip_start failed!\n");
1034 		goto err_candev;
1035 	}
1036 
1037 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1038 	napi_enable(&priv->napi);
1039 	netif_start_queue(ndev);
1040 
1041 	return 0;
1042 
1043 err_candev:
1044 	close_candev(ndev);
1045 err_irq:
1046 	free_irq(ndev->irq, ndev);
1047 err:
1048 	pm_runtime_put(priv->dev);
1049 
1050 	return ret;
1051 }
1052 
1053 /**
1054  * xcan_close - Driver close routine
1055  * @ndev:	Pointer to net_device structure
1056  *
1057  * Return: 0 always
1058  */
1059 static int xcan_close(struct net_device *ndev)
1060 {
1061 	struct xcan_priv *priv = netdev_priv(ndev);
1062 
1063 	netif_stop_queue(ndev);
1064 	napi_disable(&priv->napi);
1065 	xcan_chip_stop(ndev);
1066 	free_irq(ndev->irq, ndev);
1067 	close_candev(ndev);
1068 
1069 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1070 	pm_runtime_put(priv->dev);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * xcan_get_berr_counter - error counter routine
1077  * @ndev:	Pointer to net_device structure
1078  * @bec:	Pointer to can_berr_counter structure
1079  *
1080  * This is the driver error counter routine.
1081  * Return: 0 on success and failure value on error
1082  */
1083 static int xcan_get_berr_counter(const struct net_device *ndev,
1084 					struct can_berr_counter *bec)
1085 {
1086 	struct xcan_priv *priv = netdev_priv(ndev);
1087 	int ret;
1088 
1089 	ret = pm_runtime_get_sync(priv->dev);
1090 	if (ret < 0) {
1091 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1092 				__func__, ret);
1093 		return ret;
1094 	}
1095 
1096 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1097 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1098 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1099 
1100 	pm_runtime_put(priv->dev);
1101 
1102 	return 0;
1103 }
1104 
1105 
1106 static const struct net_device_ops xcan_netdev_ops = {
1107 	.ndo_open	= xcan_open,
1108 	.ndo_stop	= xcan_close,
1109 	.ndo_start_xmit	= xcan_start_xmit,
1110 	.ndo_change_mtu	= can_change_mtu,
1111 };
1112 
1113 /**
1114  * xcan_suspend - Suspend method for the driver
1115  * @dev:	Address of the device structure
1116  *
1117  * Put the driver into low power mode.
1118  * Return: 0 on success and failure value on error
1119  */
1120 static int __maybe_unused xcan_suspend(struct device *dev)
1121 {
1122 	struct net_device *ndev = dev_get_drvdata(dev);
1123 
1124 	if (netif_running(ndev)) {
1125 		netif_stop_queue(ndev);
1126 		netif_device_detach(ndev);
1127 		xcan_chip_stop(ndev);
1128 	}
1129 
1130 	return pm_runtime_force_suspend(dev);
1131 }
1132 
1133 /**
1134  * xcan_resume - Resume from suspend
1135  * @dev:	Address of the device structure
1136  *
1137  * Resume operation after suspend.
1138  * Return: 0 on success and failure value on error
1139  */
1140 static int __maybe_unused xcan_resume(struct device *dev)
1141 {
1142 	struct net_device *ndev = dev_get_drvdata(dev);
1143 	int ret;
1144 
1145 	ret = pm_runtime_force_resume(dev);
1146 	if (ret) {
1147 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1148 		return ret;
1149 	}
1150 
1151 	if (netif_running(ndev)) {
1152 		ret = xcan_chip_start(ndev);
1153 		if (ret) {
1154 			dev_err(dev, "xcan_chip_start failed on resume\n");
1155 			return ret;
1156 		}
1157 
1158 		netif_device_attach(ndev);
1159 		netif_start_queue(ndev);
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 /**
1166  * xcan_runtime_suspend - Runtime suspend method for the driver
1167  * @dev:	Address of the device structure
1168  *
1169  * Put the driver into low power mode.
1170  * Return: 0 always
1171  */
1172 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1173 {
1174 	struct net_device *ndev = dev_get_drvdata(dev);
1175 	struct xcan_priv *priv = netdev_priv(ndev);
1176 
1177 	clk_disable_unprepare(priv->bus_clk);
1178 	clk_disable_unprepare(priv->can_clk);
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * xcan_runtime_resume - Runtime resume from suspend
1185  * @dev:	Address of the device structure
1186  *
1187  * Resume operation after suspend.
1188  * Return: 0 on success and failure value on error
1189  */
1190 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1191 {
1192 	struct net_device *ndev = dev_get_drvdata(dev);
1193 	struct xcan_priv *priv = netdev_priv(ndev);
1194 	int ret;
1195 
1196 	ret = clk_prepare_enable(priv->bus_clk);
1197 	if (ret) {
1198 		dev_err(dev, "Cannot enable clock.\n");
1199 		return ret;
1200 	}
1201 	ret = clk_prepare_enable(priv->can_clk);
1202 	if (ret) {
1203 		dev_err(dev, "Cannot enable clock.\n");
1204 		clk_disable_unprepare(priv->bus_clk);
1205 		return ret;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 static const struct dev_pm_ops xcan_dev_pm_ops = {
1212 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1213 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1214 };
1215 
1216 static const struct xcan_devtype_data xcan_zynq_data = {
1217 	.caps = XCAN_CAP_WATERMARK,
1218 };
1219 
1220 /* Match table for OF platform binding */
1221 static const struct of_device_id xcan_of_match[] = {
1222 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1223 	{ .compatible = "xlnx,axi-can-1.00.a", },
1224 	{ /* end of list */ },
1225 };
1226 MODULE_DEVICE_TABLE(of, xcan_of_match);
1227 
1228 /**
1229  * xcan_probe - Platform registration call
1230  * @pdev:	Handle to the platform device structure
1231  *
1232  * This function does all the memory allocation and registration for the CAN
1233  * device.
1234  *
1235  * Return: 0 on success and failure value on error
1236  */
1237 static int xcan_probe(struct platform_device *pdev)
1238 {
1239 	struct resource *res; /* IO mem resources */
1240 	struct net_device *ndev;
1241 	struct xcan_priv *priv;
1242 	const struct of_device_id *of_id;
1243 	int caps = 0;
1244 	void __iomem *addr;
1245 	int ret, rx_max, tx_max, tx_fifo_depth;
1246 
1247 	/* Get the virtual base address for the device */
1248 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1249 	addr = devm_ioremap_resource(&pdev->dev, res);
1250 	if (IS_ERR(addr)) {
1251 		ret = PTR_ERR(addr);
1252 		goto err;
1253 	}
1254 
1255 	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1256 				   &tx_fifo_depth);
1257 	if (ret < 0)
1258 		goto err;
1259 
1260 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1261 	if (ret < 0)
1262 		goto err;
1263 
1264 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1265 	if (of_id) {
1266 		const struct xcan_devtype_data *devtype_data = of_id->data;
1267 
1268 		if (devtype_data)
1269 			caps = devtype_data->caps;
1270 	}
1271 
1272 	/* There is no way to directly figure out how many frames have been
1273 	 * sent when the TXOK interrupt is processed. If watermark programming
1274 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1275 	 * to determine if 1 or 2 frames have been sent.
1276 	 * Theoretically we should be able to use TXFWMEMP to determine up
1277 	 * to 3 frames, but it seems that after putting a second frame in the
1278 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1279 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1280 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1281 	 * completely synchronized with the rest of the bits?
1282 	 */
1283 	if (caps & XCAN_CAP_WATERMARK)
1284 		tx_max = min(tx_fifo_depth, 2);
1285 	else
1286 		tx_max = 1;
1287 
1288 	/* Create a CAN device instance */
1289 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1290 	if (!ndev)
1291 		return -ENOMEM;
1292 
1293 	priv = netdev_priv(ndev);
1294 	priv->dev = &pdev->dev;
1295 	priv->can.bittiming_const = &xcan_bittiming_const;
1296 	priv->can.do_set_mode = xcan_do_set_mode;
1297 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1298 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1299 					CAN_CTRLMODE_BERR_REPORTING;
1300 	priv->reg_base = addr;
1301 	priv->tx_max = tx_max;
1302 	spin_lock_init(&priv->tx_lock);
1303 
1304 	/* Get IRQ for the device */
1305 	ndev->irq = platform_get_irq(pdev, 0);
1306 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1307 
1308 	platform_set_drvdata(pdev, ndev);
1309 	SET_NETDEV_DEV(ndev, &pdev->dev);
1310 	ndev->netdev_ops = &xcan_netdev_ops;
1311 
1312 	/* Getting the CAN can_clk info */
1313 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1314 	if (IS_ERR(priv->can_clk)) {
1315 		dev_err(&pdev->dev, "Device clock not found.\n");
1316 		ret = PTR_ERR(priv->can_clk);
1317 		goto err_free;
1318 	}
1319 	/* Check for type of CAN device */
1320 	if (of_device_is_compatible(pdev->dev.of_node,
1321 				    "xlnx,zynq-can-1.0")) {
1322 		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1323 		if (IS_ERR(priv->bus_clk)) {
1324 			dev_err(&pdev->dev, "bus clock not found\n");
1325 			ret = PTR_ERR(priv->bus_clk);
1326 			goto err_free;
1327 		}
1328 	} else {
1329 		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1330 		if (IS_ERR(priv->bus_clk)) {
1331 			dev_err(&pdev->dev, "bus clock not found\n");
1332 			ret = PTR_ERR(priv->bus_clk);
1333 			goto err_free;
1334 		}
1335 	}
1336 
1337 	priv->write_reg = xcan_write_reg_le;
1338 	priv->read_reg = xcan_read_reg_le;
1339 
1340 	pm_runtime_enable(&pdev->dev);
1341 	ret = pm_runtime_get_sync(&pdev->dev);
1342 	if (ret < 0) {
1343 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1344 			__func__, ret);
1345 		goto err_pmdisable;
1346 	}
1347 
1348 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1349 		priv->write_reg = xcan_write_reg_be;
1350 		priv->read_reg = xcan_read_reg_be;
1351 	}
1352 
1353 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1354 
1355 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1356 
1357 	ret = register_candev(ndev);
1358 	if (ret) {
1359 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1360 		goto err_disableclks;
1361 	}
1362 
1363 	devm_can_led_init(ndev);
1364 
1365 	pm_runtime_put(&pdev->dev);
1366 
1367 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth: actual %d, using %d\n",
1368 			priv->reg_base, ndev->irq, priv->can.clock.freq,
1369 			tx_fifo_depth, priv->tx_max);
1370 
1371 	return 0;
1372 
1373 err_disableclks:
1374 	pm_runtime_put(priv->dev);
1375 err_pmdisable:
1376 	pm_runtime_disable(&pdev->dev);
1377 err_free:
1378 	free_candev(ndev);
1379 err:
1380 	return ret;
1381 }
1382 
1383 /**
1384  * xcan_remove - Unregister the device after releasing the resources
1385  * @pdev:	Handle to the platform device structure
1386  *
1387  * This function frees all the resources allocated to the device.
1388  * Return: 0 always
1389  */
1390 static int xcan_remove(struct platform_device *pdev)
1391 {
1392 	struct net_device *ndev = platform_get_drvdata(pdev);
1393 	struct xcan_priv *priv = netdev_priv(ndev);
1394 
1395 	unregister_candev(ndev);
1396 	pm_runtime_disable(&pdev->dev);
1397 	netif_napi_del(&priv->napi);
1398 	free_candev(ndev);
1399 
1400 	return 0;
1401 }
1402 
1403 static struct platform_driver xcan_driver = {
1404 	.probe = xcan_probe,
1405 	.remove	= xcan_remove,
1406 	.driver	= {
1407 		.name = DRIVER_NAME,
1408 		.pm = &xcan_dev_pm_ops,
1409 		.of_match_table	= xcan_of_match,
1410 	},
1411 };
1412 
1413 module_platform_driver(xcan_driver);
1414 
1415 MODULE_LICENSE("GPL");
1416 MODULE_AUTHOR("Xilinx Inc");
1417 MODULE_DESCRIPTION("Xilinx CAN interface");
1418