xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2014 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
31 
32 #define DRIVER_NAME	"xilinx_can"
33 
34 /* CAN registers set */
35 enum xcan_reg {
36 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
37 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
38 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
39 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
40 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
41 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
42 	XCAN_SR_OFFSET		= 0x18, /* Status */
43 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
44 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
45 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
46 
47 	/* not on CAN FD cores */
48 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
49 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
50 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
51 
52 	/* only on CAN FD cores */
53 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
54 					  * Prescalar
55 					  */
56 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
57 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
58 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
59 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
60 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
61 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
62 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
63 };
64 
65 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
66 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
67 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
68 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
69 #define XCANFD_FRAME_DW_OFFSET(frame_base, n)	(((frame_base) + 0x08) + \
70 						 ((n) * XCAN_CANFD_FRAME_SIZE))
71 
72 #define XCAN_CANFD_FRAME_SIZE		0x48
73 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
74 					 XCAN_CANFD_FRAME_SIZE * (n))
75 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
76 					 XCAN_CANFD_FRAME_SIZE * (n))
77 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
78 					 XCAN_CANFD_FRAME_SIZE * (n))
79 
80 /* the single TX mailbox used by this driver on CAN FD HW */
81 #define XCAN_TX_MAILBOX_IDX		0
82 
83 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
84 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
85 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
86 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
87 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
88 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
89 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
90 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
91 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
92 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
93 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
94 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
95 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
96 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
97 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
98 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
99 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
100 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
101 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
102 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
103 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
104 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
105 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
106 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
107 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
108 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
109 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
110 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
111 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
112 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
113 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
114 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
115 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
116 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
117 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
118 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
119 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
120 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
121 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
122 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
123 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
124 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
125 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
126 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
127 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
128 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
129 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
130 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
131 
132 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
133 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
134 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
135 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
136 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
137 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
138 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
139 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
140 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
141 
142 /* CAN frame length constants */
143 #define XCAN_FRAME_MAX_DATA_LEN		8
144 #define XCANFD_DW_BYTES			4
145 #define XCAN_TIMEOUT			(1 * HZ)
146 
147 /* TX-FIFO-empty interrupt available */
148 #define XCAN_FLAG_TXFEMP	0x0001
149 /* RX Match Not Finished interrupt available */
150 #define XCAN_FLAG_RXMNF		0x0002
151 /* Extended acceptance filters with control at 0xE0 */
152 #define XCAN_FLAG_EXT_FILTERS	0x0004
153 /* TX mailboxes instead of TX FIFO */
154 #define XCAN_FLAG_TX_MAILBOXES	0x0008
155 /* RX FIFO with each buffer in separate registers at 0x1100
156  * instead of the regular FIFO at 0x50
157  */
158 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
159 #define XCAN_FLAG_CANFD_2	0x0020
160 
161 enum xcan_ip_type {
162 	XAXI_CAN = 0,
163 	XZYNQ_CANPS,
164 	XAXI_CANFD,
165 	XAXI_CANFD_2_0,
166 };
167 
168 struct xcan_devtype_data {
169 	enum xcan_ip_type cantype;
170 	unsigned int flags;
171 	const struct can_bittiming_const *bittiming_const;
172 	const char *bus_clk_name;
173 	unsigned int btr_ts2_shift;
174 	unsigned int btr_sjw_shift;
175 };
176 
177 /**
178  * struct xcan_priv - This definition define CAN driver instance
179  * @can:			CAN private data structure.
180  * @tx_lock:			Lock for synchronizing TX interrupt handling
181  * @tx_head:			Tx CAN packets ready to send on the queue
182  * @tx_tail:			Tx CAN packets successfully sended on the queue
183  * @tx_max:			Maximum number packets the driver can send
184  * @napi:			NAPI structure
185  * @read_reg:			For reading data from CAN registers
186  * @write_reg:			For writing data to CAN registers
187  * @dev:			Network device data structure
188  * @reg_base:			Ioremapped address to registers
189  * @irq_flags:			For request_irq()
190  * @bus_clk:			Pointer to struct clk
191  * @can_clk:			Pointer to struct clk
192  * @devtype:			Device type specific constants
193  */
194 struct xcan_priv {
195 	struct can_priv can;
196 	spinlock_t tx_lock;
197 	unsigned int tx_head;
198 	unsigned int tx_tail;
199 	unsigned int tx_max;
200 	struct napi_struct napi;
201 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
202 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
203 			  u32 val);
204 	struct device *dev;
205 	void __iomem *reg_base;
206 	unsigned long irq_flags;
207 	struct clk *bus_clk;
208 	struct clk *can_clk;
209 	struct xcan_devtype_data devtype;
210 };
211 
212 /* CAN Bittiming constants as per Xilinx CAN specs */
213 static const struct can_bittiming_const xcan_bittiming_const = {
214 	.name = DRIVER_NAME,
215 	.tseg1_min = 1,
216 	.tseg1_max = 16,
217 	.tseg2_min = 1,
218 	.tseg2_max = 8,
219 	.sjw_max = 4,
220 	.brp_min = 1,
221 	.brp_max = 256,
222 	.brp_inc = 1,
223 };
224 
225 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
226 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
227 	.name = DRIVER_NAME,
228 	.tseg1_min = 1,
229 	.tseg1_max = 64,
230 	.tseg2_min = 1,
231 	.tseg2_max = 16,
232 	.sjw_max = 16,
233 	.brp_min = 1,
234 	.brp_max = 256,
235 	.brp_inc = 1,
236 };
237 
238 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
239 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
240 	.name = DRIVER_NAME,
241 	.tseg1_min = 1,
242 	.tseg1_max = 16,
243 	.tseg2_min = 1,
244 	.tseg2_max = 8,
245 	.sjw_max = 8,
246 	.brp_min = 1,
247 	.brp_max = 256,
248 	.brp_inc = 1,
249 };
250 
251 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
252 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
253 	.name = DRIVER_NAME,
254 	.tseg1_min = 1,
255 	.tseg1_max = 256,
256 	.tseg2_min = 1,
257 	.tseg2_max = 128,
258 	.sjw_max = 128,
259 	.brp_min = 1,
260 	.brp_max = 256,
261 	.brp_inc = 1,
262 };
263 
264 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
265 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
266 	.name = DRIVER_NAME,
267 	.tseg1_min = 1,
268 	.tseg1_max = 32,
269 	.tseg2_min = 1,
270 	.tseg2_max = 16,
271 	.sjw_max = 16,
272 	.brp_min = 1,
273 	.brp_max = 256,
274 	.brp_inc = 1,
275 };
276 
277 /**
278  * xcan_write_reg_le - Write a value to the device register little endian
279  * @priv:	Driver private data structure
280  * @reg:	Register offset
281  * @val:	Value to write at the Register offset
282  *
283  * Write data to the paricular CAN register
284  */
285 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
286 			      u32 val)
287 {
288 	iowrite32(val, priv->reg_base + reg);
289 }
290 
291 /**
292  * xcan_read_reg_le - Read a value from the device register little endian
293  * @priv:	Driver private data structure
294  * @reg:	Register offset
295  *
296  * Read data from the particular CAN register
297  * Return: value read from the CAN register
298  */
299 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
300 {
301 	return ioread32(priv->reg_base + reg);
302 }
303 
304 /**
305  * xcan_write_reg_be - Write a value to the device register big endian
306  * @priv:	Driver private data structure
307  * @reg:	Register offset
308  * @val:	Value to write at the Register offset
309  *
310  * Write data to the paricular CAN register
311  */
312 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
313 			      u32 val)
314 {
315 	iowrite32be(val, priv->reg_base + reg);
316 }
317 
318 /**
319  * xcan_read_reg_be - Read a value from the device register big endian
320  * @priv:	Driver private data structure
321  * @reg:	Register offset
322  *
323  * Read data from the particular CAN register
324  * Return: value read from the CAN register
325  */
326 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
327 {
328 	return ioread32be(priv->reg_base + reg);
329 }
330 
331 /**
332  * xcan_rx_int_mask - Get the mask for the receive interrupt
333  * @priv:	Driver private data structure
334  *
335  * Return: The receive interrupt mask used by the driver on this HW
336  */
337 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
338 {
339 	/* RXNEMP is better suited for our use case as it cannot be cleared
340 	 * while the FIFO is non-empty, but CAN FD HW does not have it
341 	 */
342 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
343 		return XCAN_IXR_RXOK_MASK;
344 	else
345 		return XCAN_IXR_RXNEMP_MASK;
346 }
347 
348 /**
349  * set_reset_mode - Resets the CAN device mode
350  * @ndev:	Pointer to net_device structure
351  *
352  * This is the driver reset mode routine.The driver
353  * enters into configuration mode.
354  *
355  * Return: 0 on success and failure value on error
356  */
357 static int set_reset_mode(struct net_device *ndev)
358 {
359 	struct xcan_priv *priv = netdev_priv(ndev);
360 	unsigned long timeout;
361 
362 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
363 
364 	timeout = jiffies + XCAN_TIMEOUT;
365 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
366 		if (time_after(jiffies, timeout)) {
367 			netdev_warn(ndev, "timed out for config mode\n");
368 			return -ETIMEDOUT;
369 		}
370 		usleep_range(500, 10000);
371 	}
372 
373 	/* reset clears FIFOs */
374 	priv->tx_head = 0;
375 	priv->tx_tail = 0;
376 
377 	return 0;
378 }
379 
380 /**
381  * xcan_set_bittiming - CAN set bit timing routine
382  * @ndev:	Pointer to net_device structure
383  *
384  * This is the driver set bittiming  routine.
385  * Return: 0 on success and failure value on error
386  */
387 static int xcan_set_bittiming(struct net_device *ndev)
388 {
389 	struct xcan_priv *priv = netdev_priv(ndev);
390 	struct can_bittiming *bt = &priv->can.bittiming;
391 	struct can_bittiming *dbt = &priv->can.data_bittiming;
392 	u32 btr0, btr1;
393 	u32 is_config_mode;
394 
395 	/* Check whether Xilinx CAN is in configuration mode.
396 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
397 	 */
398 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
399 				XCAN_SR_CONFIG_MASK;
400 	if (!is_config_mode) {
401 		netdev_alert(ndev,
402 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
403 		return -EPERM;
404 	}
405 
406 	/* Setting Baud Rate prescalar value in BRPR Register */
407 	btr0 = (bt->brp - 1);
408 
409 	/* Setting Time Segment 1 in BTR Register */
410 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
411 
412 	/* Setting Time Segment 2 in BTR Register */
413 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
414 
415 	/* Setting Synchronous jump width in BTR Register */
416 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
417 
418 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
419 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
420 
421 	if (priv->devtype.cantype == XAXI_CANFD ||
422 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
423 		/* Setting Baud Rate prescalar value in F_BRPR Register */
424 		btr0 = dbt->brp - 1;
425 
426 		/* Setting Time Segment 1 in BTR Register */
427 		btr1 = dbt->prop_seg + bt->phase_seg1 - 1;
428 
429 		/* Setting Time Segment 2 in BTR Register */
430 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
431 
432 		/* Setting Synchronous jump width in BTR Register */
433 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
434 
435 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
436 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
437 	}
438 
439 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
440 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
441 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
442 
443 	return 0;
444 }
445 
446 /**
447  * xcan_chip_start - This the drivers start routine
448  * @ndev:	Pointer to net_device structure
449  *
450  * This is the drivers start routine.
451  * Based on the State of the CAN device it puts
452  * the CAN device into a proper mode.
453  *
454  * Return: 0 on success and failure value on error
455  */
456 static int xcan_chip_start(struct net_device *ndev)
457 {
458 	struct xcan_priv *priv = netdev_priv(ndev);
459 	u32 reg_msr, reg_sr_mask;
460 	int err;
461 	unsigned long timeout;
462 	u32 ier;
463 
464 	/* Check if it is in reset mode */
465 	err = set_reset_mode(ndev);
466 	if (err < 0)
467 		return err;
468 
469 	err = xcan_set_bittiming(ndev);
470 	if (err < 0)
471 		return err;
472 
473 	/* Enable interrupts */
474 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
475 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
476 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
477 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
478 
479 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
480 		ier |= XCAN_IXR_RXMNF_MASK;
481 
482 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
483 
484 	/* Check whether it is loopback mode or normal mode  */
485 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
486 		reg_msr = XCAN_MSR_LBACK_MASK;
487 		reg_sr_mask = XCAN_SR_LBACK_MASK;
488 	} else {
489 		reg_msr = 0x0;
490 		reg_sr_mask = XCAN_SR_NORMAL_MASK;
491 	}
492 
493 	/* enable the first extended filter, if any, as cores with extended
494 	 * filtering default to non-receipt if all filters are disabled
495 	 */
496 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
497 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
498 
499 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
500 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
501 
502 	timeout = jiffies + XCAN_TIMEOUT;
503 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
504 		if (time_after(jiffies, timeout)) {
505 			netdev_warn(ndev,
506 				    "timed out for correct mode\n");
507 			return -ETIMEDOUT;
508 		}
509 	}
510 	netdev_dbg(ndev, "status:#x%08x\n",
511 		   priv->read_reg(priv, XCAN_SR_OFFSET));
512 
513 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
514 	return 0;
515 }
516 
517 /**
518  * xcan_do_set_mode - This sets the mode of the driver
519  * @ndev:	Pointer to net_device structure
520  * @mode:	Tells the mode of the driver
521  *
522  * This check the drivers state and calls the
523  * the corresponding modes to set.
524  *
525  * Return: 0 on success and failure value on error
526  */
527 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
528 {
529 	int ret;
530 
531 	switch (mode) {
532 	case CAN_MODE_START:
533 		ret = xcan_chip_start(ndev);
534 		if (ret < 0) {
535 			netdev_err(ndev, "xcan_chip_start failed!\n");
536 			return ret;
537 		}
538 		netif_wake_queue(ndev);
539 		break;
540 	default:
541 		ret = -EOPNOTSUPP;
542 		break;
543 	}
544 
545 	return ret;
546 }
547 
548 /**
549  * xcan_write_frame - Write a frame to HW
550  * @priv:		Driver private data structure
551  * @skb:		sk_buff pointer that contains data to be Txed
552  * @frame_offset:	Register offset to write the frame to
553  */
554 static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
555 			     int frame_offset)
556 {
557 	u32 id, dlc, data[2] = {0, 0};
558 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
559 	u32 ramoff, dwindex = 0, i;
560 
561 	/* Watch carefully on the bit sequence */
562 	if (cf->can_id & CAN_EFF_FLAG) {
563 		/* Extended CAN ID format */
564 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
565 			XCAN_IDR_ID2_MASK;
566 		id |= (((cf->can_id & CAN_EFF_MASK) >>
567 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
568 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
569 
570 		/* The substibute remote TX request bit should be "1"
571 		 * for extended frames as in the Xilinx CAN datasheet
572 		 */
573 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
574 
575 		if (cf->can_id & CAN_RTR_FLAG)
576 			/* Extended frames remote TX request */
577 			id |= XCAN_IDR_RTR_MASK;
578 	} else {
579 		/* Standard CAN ID format */
580 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
581 			XCAN_IDR_ID1_MASK;
582 
583 		if (cf->can_id & CAN_RTR_FLAG)
584 			/* Standard frames remote TX request */
585 			id |= XCAN_IDR_SRR_MASK;
586 	}
587 
588 	dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
589 	if (can_is_canfd_skb(skb)) {
590 		if (cf->flags & CANFD_BRS)
591 			dlc |= XCAN_DLCR_BRS_MASK;
592 		dlc |= XCAN_DLCR_EDL_MASK;
593 	}
594 
595 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
596 	/* If the CAN frame is RTR frame this write triggers transmission
597 	 * (not on CAN FD)
598 	 */
599 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
600 	if (priv->devtype.cantype == XAXI_CANFD ||
601 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
602 		for (i = 0; i < cf->len; i += 4) {
603 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset, dwindex) +
604 					(dwindex * XCANFD_DW_BYTES);
605 			priv->write_reg(priv, ramoff,
606 					be32_to_cpup((__be32 *)(cf->data + i)));
607 			dwindex++;
608 		}
609 	} else {
610 		if (cf->len > 0)
611 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
612 		if (cf->len > 4)
613 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
614 
615 		if (!(cf->can_id & CAN_RTR_FLAG)) {
616 			priv->write_reg(priv,
617 					XCAN_FRAME_DW1_OFFSET(frame_offset),
618 					data[0]);
619 			/* If the CAN frame is Standard/Extended frame this
620 			 * write triggers transmission (not on CAN FD)
621 			 */
622 			priv->write_reg(priv,
623 					XCAN_FRAME_DW2_OFFSET(frame_offset),
624 					data[1]);
625 		}
626 	}
627 }
628 
629 /**
630  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
631  * @skb:	sk_buff pointer that contains data to be Txed
632  * @ndev:	Pointer to net_device structure
633  *
634  * Return: 0 on success, -ENOSPC if FIFO is full.
635  */
636 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
637 {
638 	struct xcan_priv *priv = netdev_priv(ndev);
639 	unsigned long flags;
640 
641 	/* Check if the TX buffer is full */
642 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
643 			XCAN_SR_TXFLL_MASK))
644 		return -ENOSPC;
645 
646 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
647 
648 	spin_lock_irqsave(&priv->tx_lock, flags);
649 
650 	priv->tx_head++;
651 
652 	xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
653 
654 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
655 	if (priv->tx_max > 1)
656 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
657 
658 	/* Check if the TX buffer is full */
659 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
660 		netif_stop_queue(ndev);
661 
662 	spin_unlock_irqrestore(&priv->tx_lock, flags);
663 
664 	return 0;
665 }
666 
667 /**
668  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
669  * @skb:	sk_buff pointer that contains data to be Txed
670  * @ndev:	Pointer to net_device structure
671  *
672  * Return: 0 on success, -ENOSPC if there is no space
673  */
674 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
675 {
676 	struct xcan_priv *priv = netdev_priv(ndev);
677 	unsigned long flags;
678 
679 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
680 		     BIT(XCAN_TX_MAILBOX_IDX)))
681 		return -ENOSPC;
682 
683 	can_put_echo_skb(skb, ndev, 0);
684 
685 	spin_lock_irqsave(&priv->tx_lock, flags);
686 
687 	priv->tx_head++;
688 
689 	xcan_write_frame(priv, skb,
690 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
691 
692 	/* Mark buffer as ready for transmit */
693 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
694 
695 	netif_stop_queue(ndev);
696 
697 	spin_unlock_irqrestore(&priv->tx_lock, flags);
698 
699 	return 0;
700 }
701 
702 /**
703  * xcan_start_xmit - Starts the transmission
704  * @skb:	sk_buff pointer that contains data to be Txed
705  * @ndev:	Pointer to net_device structure
706  *
707  * This function is invoked from upper layers to initiate transmission.
708  *
709  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
710  */
711 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
712 {
713 	struct xcan_priv *priv = netdev_priv(ndev);
714 	int ret;
715 
716 	if (can_dropped_invalid_skb(ndev, skb))
717 		return NETDEV_TX_OK;
718 
719 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
720 		ret = xcan_start_xmit_mailbox(skb, ndev);
721 	else
722 		ret = xcan_start_xmit_fifo(skb, ndev);
723 
724 	if (ret < 0) {
725 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
726 		netif_stop_queue(ndev);
727 		return NETDEV_TX_BUSY;
728 	}
729 
730 	return NETDEV_TX_OK;
731 }
732 
733 /**
734  * xcan_rx -  Is called from CAN isr to complete the received
735  *		frame  processing
736  * @ndev:	Pointer to net_device structure
737  * @frame_base:	Register offset to the frame to be read
738  *
739  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
740  * does minimal processing and invokes "netif_receive_skb" to complete further
741  * processing.
742  * Return: 1 on success and 0 on failure.
743  */
744 static int xcan_rx(struct net_device *ndev, int frame_base)
745 {
746 	struct xcan_priv *priv = netdev_priv(ndev);
747 	struct net_device_stats *stats = &ndev->stats;
748 	struct can_frame *cf;
749 	struct sk_buff *skb;
750 	u32 id_xcan, dlc, data[2] = {0, 0};
751 
752 	skb = alloc_can_skb(ndev, &cf);
753 	if (unlikely(!skb)) {
754 		stats->rx_dropped++;
755 		return 0;
756 	}
757 
758 	/* Read a frame from Xilinx zynq CANPS */
759 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
760 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
761 				   XCAN_DLCR_DLC_SHIFT;
762 
763 	/* Change Xilinx CAN data length format to socketCAN data format */
764 	cf->can_dlc = get_can_dlc(dlc);
765 
766 	/* Change Xilinx CAN ID format to socketCAN ID format */
767 	if (id_xcan & XCAN_IDR_IDE_MASK) {
768 		/* The received frame is an Extended format frame */
769 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
770 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
771 				XCAN_IDR_ID2_SHIFT;
772 		cf->can_id |= CAN_EFF_FLAG;
773 		if (id_xcan & XCAN_IDR_RTR_MASK)
774 			cf->can_id |= CAN_RTR_FLAG;
775 	} else {
776 		/* The received frame is a standard format frame */
777 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
778 				XCAN_IDR_ID1_SHIFT;
779 		if (id_xcan & XCAN_IDR_SRR_MASK)
780 			cf->can_id |= CAN_RTR_FLAG;
781 	}
782 
783 	/* DW1/DW2 must always be read to remove message from RXFIFO */
784 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
785 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
786 
787 	if (!(cf->can_id & CAN_RTR_FLAG)) {
788 		/* Change Xilinx CAN data format to socketCAN data format */
789 		if (cf->can_dlc > 0)
790 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
791 		if (cf->can_dlc > 4)
792 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
793 	}
794 
795 	stats->rx_bytes += cf->can_dlc;
796 	stats->rx_packets++;
797 	netif_receive_skb(skb);
798 
799 	return 1;
800 }
801 
802 /**
803  * xcanfd_rx -  Is called from CAN isr to complete the received
804  *		frame  processing
805  * @ndev:	Pointer to net_device structure
806  * @frame_base:	Register offset to the frame to be read
807  *
808  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
809  * does minimal processing and invokes "netif_receive_skb" to complete further
810  * processing.
811  * Return: 1 on success and 0 on failure.
812  */
813 static int xcanfd_rx(struct net_device *ndev, int frame_base)
814 {
815 	struct xcan_priv *priv = netdev_priv(ndev);
816 	struct net_device_stats *stats = &ndev->stats;
817 	struct canfd_frame *cf;
818 	struct sk_buff *skb;
819 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, fsr, readindex;
820 
821 	fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
822 	if (fsr & XCAN_FSR_FL_MASK) {
823 		readindex = fsr & XCAN_FSR_RI_MASK;
824 		id_xcan = priv->read_reg(priv,
825 					 XCAN_FRAME_ID_OFFSET(frame_base));
826 		dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
827 		if (dlc & XCAN_DLCR_EDL_MASK)
828 			skb = alloc_canfd_skb(ndev, &cf);
829 		else
830 			skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
831 
832 		if (unlikely(!skb)) {
833 			stats->rx_dropped++;
834 			return 0;
835 		}
836 
837 		/* Change Xilinx CANFD data length format to socketCAN data
838 		 * format
839 		 */
840 		if (dlc & XCAN_DLCR_EDL_MASK)
841 			cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
842 					  XCAN_DLCR_DLC_SHIFT);
843 		else
844 			cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
845 						  XCAN_DLCR_DLC_SHIFT);
846 
847 		/* Change Xilinx CAN ID format to socketCAN ID format */
848 		if (id_xcan & XCAN_IDR_IDE_MASK) {
849 			/* The received frame is an Extended format frame */
850 			cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
851 			cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
852 					XCAN_IDR_ID2_SHIFT;
853 			cf->can_id |= CAN_EFF_FLAG;
854 			if (id_xcan & XCAN_IDR_RTR_MASK)
855 				cf->can_id |= CAN_RTR_FLAG;
856 		} else {
857 			/* The received frame is a standard format frame */
858 			cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
859 					XCAN_IDR_ID1_SHIFT;
860 			if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
861 						XCAN_IDR_SRR_MASK))
862 				cf->can_id |= CAN_RTR_FLAG;
863 		}
864 
865 		/* Check the frame received is FD or not*/
866 		if (dlc & XCAN_DLCR_EDL_MASK) {
867 			for (i = 0; i < cf->len; i += 4) {
868 				if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
869 					data[0] = priv->read_reg(priv,
870 					(XCAN_RXMSG_2_FRAME_OFFSET(readindex) +
871 					(dwindex * XCANFD_DW_BYTES)));
872 				else
873 					data[0] = priv->read_reg(priv,
874 					(XCAN_RXMSG_FRAME_OFFSET(readindex) +
875 						(dwindex * XCANFD_DW_BYTES)));
876 				*(__be32 *)(cf->data + i) =
877 						cpu_to_be32(data[0]);
878 				dwindex++;
879 			}
880 		} else {
881 			for (i = 0; i < cf->len; i += 4) {
882 				if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
883 					data[0] = priv->read_reg(priv,
884 						XCAN_RXMSG_2_FRAME_OFFSET(readindex) + i);
885 				else
886 					data[0] = priv->read_reg(priv,
887 						XCAN_RXMSG_FRAME_OFFSET(readindex) + i);
888 				*(__be32 *)(cf->data + i) =
889 						cpu_to_be32(data[0]);
890 			}
891 		}
892 		/* Update FSR Register so that next packet will save to
893 		 * buffer
894 		 */
895 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
896 		fsr |= XCAN_FSR_IRI_MASK;
897 		priv->write_reg(priv, XCAN_FSR_OFFSET, fsr);
898 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
899 		stats->rx_bytes += cf->len;
900 		stats->rx_packets++;
901 		netif_receive_skb(skb);
902 
903 		return 1;
904 	}
905 	/* If FSR Register is not updated with fill level */
906 	return 0;
907 }
908 
909 /**
910  * xcan_current_error_state - Get current error state from HW
911  * @ndev:	Pointer to net_device structure
912  *
913  * Checks the current CAN error state from the HW. Note that this
914  * only checks for ERROR_PASSIVE and ERROR_WARNING.
915  *
916  * Return:
917  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
918  * otherwise.
919  */
920 static enum can_state xcan_current_error_state(struct net_device *ndev)
921 {
922 	struct xcan_priv *priv = netdev_priv(ndev);
923 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
924 
925 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
926 		return CAN_STATE_ERROR_PASSIVE;
927 	else if (status & XCAN_SR_ERRWRN_MASK)
928 		return CAN_STATE_ERROR_WARNING;
929 	else
930 		return CAN_STATE_ERROR_ACTIVE;
931 }
932 
933 /**
934  * xcan_set_error_state - Set new CAN error state
935  * @ndev:	Pointer to net_device structure
936  * @new_state:	The new CAN state to be set
937  * @cf:		Error frame to be populated or NULL
938  *
939  * Set new CAN error state for the device, updating statistics and
940  * populating the error frame if given.
941  */
942 static void xcan_set_error_state(struct net_device *ndev,
943 				 enum can_state new_state,
944 				 struct can_frame *cf)
945 {
946 	struct xcan_priv *priv = netdev_priv(ndev);
947 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
948 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
949 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
950 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
951 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
952 
953 	/* non-ERROR states are handled elsewhere */
954 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
955 		return;
956 
957 	can_change_state(ndev, cf, tx_state, rx_state);
958 
959 	if (cf) {
960 		cf->data[6] = txerr;
961 		cf->data[7] = rxerr;
962 	}
963 }
964 
965 /**
966  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
967  * @ndev:	Pointer to net_device structure
968  *
969  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
970  * the performed RX/TX has caused it to drop to a lesser state and set
971  * the interface state accordingly.
972  */
973 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
974 {
975 	struct xcan_priv *priv = netdev_priv(ndev);
976 	enum can_state old_state = priv->can.state;
977 	enum can_state new_state;
978 
979 	/* changing error state due to successful frame RX/TX can only
980 	 * occur from these states
981 	 */
982 	if (old_state != CAN_STATE_ERROR_WARNING &&
983 	    old_state != CAN_STATE_ERROR_PASSIVE)
984 		return;
985 
986 	new_state = xcan_current_error_state(ndev);
987 
988 	if (new_state != old_state) {
989 		struct sk_buff *skb;
990 		struct can_frame *cf;
991 
992 		skb = alloc_can_err_skb(ndev, &cf);
993 
994 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
995 
996 		if (skb) {
997 			struct net_device_stats *stats = &ndev->stats;
998 
999 			stats->rx_packets++;
1000 			stats->rx_bytes += cf->can_dlc;
1001 			netif_rx(skb);
1002 		}
1003 	}
1004 }
1005 
1006 /**
1007  * xcan_err_interrupt - error frame Isr
1008  * @ndev:	net_device pointer
1009  * @isr:	interrupt status register value
1010  *
1011  * This is the CAN error interrupt and it will
1012  * check the the type of error and forward the error
1013  * frame to upper layers.
1014  */
1015 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1016 {
1017 	struct xcan_priv *priv = netdev_priv(ndev);
1018 	struct net_device_stats *stats = &ndev->stats;
1019 	struct can_frame *cf;
1020 	struct sk_buff *skb;
1021 	u32 err_status;
1022 
1023 	skb = alloc_can_err_skb(ndev, &cf);
1024 
1025 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1026 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1027 
1028 	if (isr & XCAN_IXR_BSOFF_MASK) {
1029 		priv->can.state = CAN_STATE_BUS_OFF;
1030 		priv->can.can_stats.bus_off++;
1031 		/* Leave device in Config Mode in bus-off state */
1032 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1033 		can_bus_off(ndev);
1034 		if (skb)
1035 			cf->can_id |= CAN_ERR_BUSOFF;
1036 	} else {
1037 		enum can_state new_state = xcan_current_error_state(ndev);
1038 
1039 		if (new_state != priv->can.state)
1040 			xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1041 	}
1042 
1043 	/* Check for Arbitration lost interrupt */
1044 	if (isr & XCAN_IXR_ARBLST_MASK) {
1045 		priv->can.can_stats.arbitration_lost++;
1046 		if (skb) {
1047 			cf->can_id |= CAN_ERR_LOSTARB;
1048 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
1049 		}
1050 	}
1051 
1052 	/* Check for RX FIFO Overflow interrupt */
1053 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1054 		stats->rx_over_errors++;
1055 		stats->rx_errors++;
1056 		if (skb) {
1057 			cf->can_id |= CAN_ERR_CRTL;
1058 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1059 		}
1060 	}
1061 
1062 	/* Check for RX Match Not Finished interrupt */
1063 	if (isr & XCAN_IXR_RXMNF_MASK) {
1064 		stats->rx_dropped++;
1065 		stats->rx_errors++;
1066 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1067 		if (skb) {
1068 			cf->can_id |= CAN_ERR_CRTL;
1069 			cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
1070 		}
1071 	}
1072 
1073 	/* Check for error interrupt */
1074 	if (isr & XCAN_IXR_ERROR_MASK) {
1075 		if (skb)
1076 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1077 
1078 		/* Check for Ack error interrupt */
1079 		if (err_status & XCAN_ESR_ACKER_MASK) {
1080 			stats->tx_errors++;
1081 			if (skb) {
1082 				cf->can_id |= CAN_ERR_ACK;
1083 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1084 			}
1085 		}
1086 
1087 		/* Check for Bit error interrupt */
1088 		if (err_status & XCAN_ESR_BERR_MASK) {
1089 			stats->tx_errors++;
1090 			if (skb) {
1091 				cf->can_id |= CAN_ERR_PROT;
1092 				cf->data[2] = CAN_ERR_PROT_BIT;
1093 			}
1094 		}
1095 
1096 		/* Check for Stuff error interrupt */
1097 		if (err_status & XCAN_ESR_STER_MASK) {
1098 			stats->rx_errors++;
1099 			if (skb) {
1100 				cf->can_id |= CAN_ERR_PROT;
1101 				cf->data[2] = CAN_ERR_PROT_STUFF;
1102 			}
1103 		}
1104 
1105 		/* Check for Form error interrupt */
1106 		if (err_status & XCAN_ESR_FMER_MASK) {
1107 			stats->rx_errors++;
1108 			if (skb) {
1109 				cf->can_id |= CAN_ERR_PROT;
1110 				cf->data[2] = CAN_ERR_PROT_FORM;
1111 			}
1112 		}
1113 
1114 		/* Check for CRC error interrupt */
1115 		if (err_status & XCAN_ESR_CRCER_MASK) {
1116 			stats->rx_errors++;
1117 			if (skb) {
1118 				cf->can_id |= CAN_ERR_PROT;
1119 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1120 			}
1121 		}
1122 		priv->can.can_stats.bus_error++;
1123 	}
1124 
1125 	if (skb) {
1126 		stats->rx_packets++;
1127 		stats->rx_bytes += cf->can_dlc;
1128 		netif_rx(skb);
1129 	}
1130 
1131 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1132 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1133 }
1134 
1135 /**
1136  * xcan_state_interrupt - It will check the state of the CAN device
1137  * @ndev:	net_device pointer
1138  * @isr:	interrupt status register value
1139  *
1140  * This will checks the state of the CAN device
1141  * and puts the device into appropriate state.
1142  */
1143 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1144 {
1145 	struct xcan_priv *priv = netdev_priv(ndev);
1146 
1147 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1148 	if (isr & XCAN_IXR_SLP_MASK)
1149 		priv->can.state = CAN_STATE_SLEEPING;
1150 
1151 	/* Check for Wake up interrupt if set put CAN device in Active state */
1152 	if (isr & XCAN_IXR_WKUP_MASK)
1153 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1154 }
1155 
1156 /**
1157  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1158  * @priv:	Driver private data structure
1159  *
1160  * Return: Register offset of the next frame in RX FIFO.
1161  */
1162 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1163 {
1164 	int offset;
1165 
1166 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1167 		u32 fsr;
1168 
1169 		/* clear RXOK before the is-empty check so that any newly
1170 		 * received frame will reassert it without a race
1171 		 */
1172 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1173 
1174 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1175 
1176 		/* check if RX FIFO is empty */
1177 		if (!(fsr & XCAN_FSR_FL_MASK))
1178 			return -ENOENT;
1179 
1180 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1181 			offset =
1182 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1183 		else
1184 			offset =
1185 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1186 
1187 	} else {
1188 		/* check if RX FIFO is empty */
1189 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1190 		      XCAN_IXR_RXNEMP_MASK))
1191 			return -ENOENT;
1192 
1193 		/* frames are read from a static offset */
1194 		offset = XCAN_RXFIFO_OFFSET;
1195 	}
1196 
1197 	return offset;
1198 }
1199 
1200 /**
1201  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1202  * @napi:	napi structure pointer
1203  * @quota:	Max number of rx packets to be processed.
1204  *
1205  * This is the poll routine for rx part.
1206  * It will process the packets maximux quota value.
1207  *
1208  * Return: number of packets received
1209  */
1210 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1211 {
1212 	struct net_device *ndev = napi->dev;
1213 	struct xcan_priv *priv = netdev_priv(ndev);
1214 	u32 ier;
1215 	int work_done = 0;
1216 	int frame_offset;
1217 
1218 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1219 	       (work_done < quota)) {
1220 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1221 			work_done += xcanfd_rx(ndev, frame_offset);
1222 		else
1223 			work_done += xcan_rx(ndev, frame_offset);
1224 
1225 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1226 			/* increment read index */
1227 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1228 					XCAN_FSR_IRI_MASK);
1229 		else
1230 			/* clear rx-not-empty (will actually clear only if
1231 			 * empty)
1232 			 */
1233 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1234 					XCAN_IXR_RXNEMP_MASK);
1235 	}
1236 
1237 	if (work_done) {
1238 		can_led_event(ndev, CAN_LED_EVENT_RX);
1239 		xcan_update_error_state_after_rxtx(ndev);
1240 	}
1241 
1242 	if (work_done < quota) {
1243 		napi_complete_done(napi, work_done);
1244 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1245 		ier |= xcan_rx_int_mask(priv);
1246 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1247 	}
1248 	return work_done;
1249 }
1250 
1251 /**
1252  * xcan_tx_interrupt - Tx Done Isr
1253  * @ndev:	net_device pointer
1254  * @isr:	Interrupt status register value
1255  */
1256 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1257 {
1258 	struct xcan_priv *priv = netdev_priv(ndev);
1259 	struct net_device_stats *stats = &ndev->stats;
1260 	unsigned int frames_in_fifo;
1261 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1262 	unsigned long flags;
1263 	int retries = 0;
1264 
1265 	/* Synchronize with xmit as we need to know the exact number
1266 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1267 	 * handling.
1268 	 * This also prevents a race between netif_wake_queue() and
1269 	 * netif_stop_queue().
1270 	 */
1271 	spin_lock_irqsave(&priv->tx_lock, flags);
1272 
1273 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1274 
1275 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1276 		/* clear TXOK anyway to avoid getting back here */
1277 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1278 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1279 		return;
1280 	}
1281 
1282 	/* Check if 2 frames were sent (TXOK only means that at least 1
1283 	 * frame was sent).
1284 	 */
1285 	if (frames_in_fifo > 1) {
1286 		WARN_ON(frames_in_fifo > priv->tx_max);
1287 
1288 		/* Synchronize TXOK and isr so that after the loop:
1289 		 * (1) isr variable is up-to-date at least up to TXOK clear
1290 		 *     time. This avoids us clearing a TXOK of a second frame
1291 		 *     but not noticing that the FIFO is now empty and thus
1292 		 *     marking only a single frame as sent.
1293 		 * (2) No TXOK is left. Having one could mean leaving a
1294 		 *     stray TXOK as we might process the associated frame
1295 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1296 		 *     clear to satisfy (1).
1297 		 */
1298 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1299 		       !WARN_ON(++retries == 100)) {
1300 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1301 					XCAN_IXR_TXOK_MASK);
1302 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1303 		}
1304 
1305 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1306 			/* nothing in FIFO anymore */
1307 			frames_sent = frames_in_fifo;
1308 		}
1309 	} else {
1310 		/* single frame in fifo, just clear TXOK */
1311 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1312 	}
1313 
1314 	while (frames_sent--) {
1315 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1316 						    priv->tx_max);
1317 		priv->tx_tail++;
1318 		stats->tx_packets++;
1319 	}
1320 
1321 	netif_wake_queue(ndev);
1322 
1323 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1324 
1325 	can_led_event(ndev, CAN_LED_EVENT_TX);
1326 	xcan_update_error_state_after_rxtx(ndev);
1327 }
1328 
1329 /**
1330  * xcan_interrupt - CAN Isr
1331  * @irq:	irq number
1332  * @dev_id:	device id poniter
1333  *
1334  * This is the xilinx CAN Isr. It checks for the type of interrupt
1335  * and invokes the corresponding ISR.
1336  *
1337  * Return:
1338  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1339  */
1340 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1341 {
1342 	struct net_device *ndev = (struct net_device *)dev_id;
1343 	struct xcan_priv *priv = netdev_priv(ndev);
1344 	u32 isr, ier;
1345 	u32 isr_errors;
1346 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1347 
1348 	/* Get the interrupt status from Xilinx CAN */
1349 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1350 	if (!isr)
1351 		return IRQ_NONE;
1352 
1353 	/* Check for the type of interrupt and Processing it */
1354 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1355 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1356 				XCAN_IXR_WKUP_MASK));
1357 		xcan_state_interrupt(ndev, isr);
1358 	}
1359 
1360 	/* Check for Tx interrupt and Processing it */
1361 	if (isr & XCAN_IXR_TXOK_MASK)
1362 		xcan_tx_interrupt(ndev, isr);
1363 
1364 	/* Check for the type of error interrupt and Processing it */
1365 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1366 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1367 			    XCAN_IXR_RXMNF_MASK);
1368 	if (isr_errors) {
1369 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1370 		xcan_err_interrupt(ndev, isr);
1371 	}
1372 
1373 	/* Check for the type of receive interrupt and Processing it */
1374 	if (isr & rx_int_mask) {
1375 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1376 		ier &= ~rx_int_mask;
1377 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1378 		napi_schedule(&priv->napi);
1379 	}
1380 	return IRQ_HANDLED;
1381 }
1382 
1383 /**
1384  * xcan_chip_stop - Driver stop routine
1385  * @ndev:	Pointer to net_device structure
1386  *
1387  * This is the drivers stop routine. It will disable the
1388  * interrupts and put the device into configuration mode.
1389  */
1390 static void xcan_chip_stop(struct net_device *ndev)
1391 {
1392 	struct xcan_priv *priv = netdev_priv(ndev);
1393 
1394 	/* Disable interrupts and leave the can in configuration mode */
1395 	set_reset_mode(ndev);
1396 	priv->can.state = CAN_STATE_STOPPED;
1397 }
1398 
1399 /**
1400  * xcan_open - Driver open routine
1401  * @ndev:	Pointer to net_device structure
1402  *
1403  * This is the driver open routine.
1404  * Return: 0 on success and failure value on error
1405  */
1406 static int xcan_open(struct net_device *ndev)
1407 {
1408 	struct xcan_priv *priv = netdev_priv(ndev);
1409 	int ret;
1410 
1411 	ret = pm_runtime_get_sync(priv->dev);
1412 	if (ret < 0) {
1413 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1414 			   __func__, ret);
1415 		return ret;
1416 	}
1417 
1418 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1419 			  ndev->name, ndev);
1420 	if (ret < 0) {
1421 		netdev_err(ndev, "irq allocation for CAN failed\n");
1422 		goto err;
1423 	}
1424 
1425 	/* Set chip into reset mode */
1426 	ret = set_reset_mode(ndev);
1427 	if (ret < 0) {
1428 		netdev_err(ndev, "mode resetting failed!\n");
1429 		goto err_irq;
1430 	}
1431 
1432 	/* Common open */
1433 	ret = open_candev(ndev);
1434 	if (ret)
1435 		goto err_irq;
1436 
1437 	ret = xcan_chip_start(ndev);
1438 	if (ret < 0) {
1439 		netdev_err(ndev, "xcan_chip_start failed!\n");
1440 		goto err_candev;
1441 	}
1442 
1443 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1444 	napi_enable(&priv->napi);
1445 	netif_start_queue(ndev);
1446 
1447 	return 0;
1448 
1449 err_candev:
1450 	close_candev(ndev);
1451 err_irq:
1452 	free_irq(ndev->irq, ndev);
1453 err:
1454 	pm_runtime_put(priv->dev);
1455 
1456 	return ret;
1457 }
1458 
1459 /**
1460  * xcan_close - Driver close routine
1461  * @ndev:	Pointer to net_device structure
1462  *
1463  * Return: 0 always
1464  */
1465 static int xcan_close(struct net_device *ndev)
1466 {
1467 	struct xcan_priv *priv = netdev_priv(ndev);
1468 
1469 	netif_stop_queue(ndev);
1470 	napi_disable(&priv->napi);
1471 	xcan_chip_stop(ndev);
1472 	free_irq(ndev->irq, ndev);
1473 	close_candev(ndev);
1474 
1475 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1476 	pm_runtime_put(priv->dev);
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  * xcan_get_berr_counter - error counter routine
1483  * @ndev:	Pointer to net_device structure
1484  * @bec:	Pointer to can_berr_counter structure
1485  *
1486  * This is the driver error counter routine.
1487  * Return: 0 on success and failure value on error
1488  */
1489 static int xcan_get_berr_counter(const struct net_device *ndev,
1490 				 struct can_berr_counter *bec)
1491 {
1492 	struct xcan_priv *priv = netdev_priv(ndev);
1493 	int ret;
1494 
1495 	ret = pm_runtime_get_sync(priv->dev);
1496 	if (ret < 0) {
1497 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1498 			   __func__, ret);
1499 		return ret;
1500 	}
1501 
1502 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1503 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1504 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1505 
1506 	pm_runtime_put(priv->dev);
1507 
1508 	return 0;
1509 }
1510 
1511 static const struct net_device_ops xcan_netdev_ops = {
1512 	.ndo_open	= xcan_open,
1513 	.ndo_stop	= xcan_close,
1514 	.ndo_start_xmit	= xcan_start_xmit,
1515 	.ndo_change_mtu	= can_change_mtu,
1516 };
1517 
1518 /**
1519  * xcan_suspend - Suspend method for the driver
1520  * @dev:	Address of the device structure
1521  *
1522  * Put the driver into low power mode.
1523  * Return: 0 on success and failure value on error
1524  */
1525 static int __maybe_unused xcan_suspend(struct device *dev)
1526 {
1527 	struct net_device *ndev = dev_get_drvdata(dev);
1528 
1529 	if (netif_running(ndev)) {
1530 		netif_stop_queue(ndev);
1531 		netif_device_detach(ndev);
1532 		xcan_chip_stop(ndev);
1533 	}
1534 
1535 	return pm_runtime_force_suspend(dev);
1536 }
1537 
1538 /**
1539  * xcan_resume - Resume from suspend
1540  * @dev:	Address of the device structure
1541  *
1542  * Resume operation after suspend.
1543  * Return: 0 on success and failure value on error
1544  */
1545 static int __maybe_unused xcan_resume(struct device *dev)
1546 {
1547 	struct net_device *ndev = dev_get_drvdata(dev);
1548 	int ret;
1549 
1550 	ret = pm_runtime_force_resume(dev);
1551 	if (ret) {
1552 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1553 		return ret;
1554 	}
1555 
1556 	if (netif_running(ndev)) {
1557 		ret = xcan_chip_start(ndev);
1558 		if (ret) {
1559 			dev_err(dev, "xcan_chip_start failed on resume\n");
1560 			return ret;
1561 		}
1562 
1563 		netif_device_attach(ndev);
1564 		netif_start_queue(ndev);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 /**
1571  * xcan_runtime_suspend - Runtime suspend method for the driver
1572  * @dev:	Address of the device structure
1573  *
1574  * Put the driver into low power mode.
1575  * Return: 0 always
1576  */
1577 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1578 {
1579 	struct net_device *ndev = dev_get_drvdata(dev);
1580 	struct xcan_priv *priv = netdev_priv(ndev);
1581 
1582 	clk_disable_unprepare(priv->bus_clk);
1583 	clk_disable_unprepare(priv->can_clk);
1584 
1585 	return 0;
1586 }
1587 
1588 /**
1589  * xcan_runtime_resume - Runtime resume from suspend
1590  * @dev:	Address of the device structure
1591  *
1592  * Resume operation after suspend.
1593  * Return: 0 on success and failure value on error
1594  */
1595 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1596 {
1597 	struct net_device *ndev = dev_get_drvdata(dev);
1598 	struct xcan_priv *priv = netdev_priv(ndev);
1599 	int ret;
1600 
1601 	ret = clk_prepare_enable(priv->bus_clk);
1602 	if (ret) {
1603 		dev_err(dev, "Cannot enable clock.\n");
1604 		return ret;
1605 	}
1606 	ret = clk_prepare_enable(priv->can_clk);
1607 	if (ret) {
1608 		dev_err(dev, "Cannot enable clock.\n");
1609 		clk_disable_unprepare(priv->bus_clk);
1610 		return ret;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static const struct dev_pm_ops xcan_dev_pm_ops = {
1617 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1618 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1619 };
1620 
1621 static const struct xcan_devtype_data xcan_zynq_data = {
1622 	.cantype = XZYNQ_CANPS,
1623 	.flags = XCAN_FLAG_TXFEMP,
1624 	.bittiming_const = &xcan_bittiming_const,
1625 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1626 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1627 	.bus_clk_name = "pclk",
1628 };
1629 
1630 static const struct xcan_devtype_data xcan_axi_data = {
1631 	.cantype = XAXI_CAN,
1632 	.flags = XCAN_FLAG_TXFEMP,
1633 	.bittiming_const = &xcan_bittiming_const,
1634 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1635 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1636 	.bus_clk_name = "s_axi_aclk",
1637 };
1638 
1639 static const struct xcan_devtype_data xcan_canfd_data = {
1640 	.cantype = XAXI_CANFD,
1641 	.flags = XCAN_FLAG_EXT_FILTERS |
1642 		 XCAN_FLAG_RXMNF |
1643 		 XCAN_FLAG_TX_MAILBOXES |
1644 		 XCAN_FLAG_RX_FIFO_MULTI,
1645 	.bittiming_const = &xcan_bittiming_const_canfd,
1646 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1647 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1648 	.bus_clk_name = "s_axi_aclk",
1649 };
1650 
1651 static const struct xcan_devtype_data xcan_canfd2_data = {
1652 	.cantype = XAXI_CANFD_2_0,
1653 	.flags = XCAN_FLAG_EXT_FILTERS |
1654 		 XCAN_FLAG_RXMNF |
1655 		 XCAN_FLAG_TX_MAILBOXES |
1656 		 XCAN_FLAG_CANFD_2 |
1657 		 XCAN_FLAG_RX_FIFO_MULTI,
1658 	.bittiming_const = &xcan_bittiming_const_canfd2,
1659 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1660 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1661 	.bus_clk_name = "s_axi_aclk",
1662 };
1663 
1664 /* Match table for OF platform binding */
1665 static const struct of_device_id xcan_of_match[] = {
1666 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1667 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1668 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1669 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1670 	{ /* end of list */ },
1671 };
1672 MODULE_DEVICE_TABLE(of, xcan_of_match);
1673 
1674 /**
1675  * xcan_probe - Platform registration call
1676  * @pdev:	Handle to the platform device structure
1677  *
1678  * This function does all the memory allocation and registration for the CAN
1679  * device.
1680  *
1681  * Return: 0 on success and failure value on error
1682  */
1683 static int xcan_probe(struct platform_device *pdev)
1684 {
1685 	struct resource *res; /* IO mem resources */
1686 	struct net_device *ndev;
1687 	struct xcan_priv *priv;
1688 	const struct of_device_id *of_id;
1689 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1690 	void __iomem *addr;
1691 	int ret;
1692 	int rx_max, tx_max;
1693 	int hw_tx_max, hw_rx_max;
1694 	const char *hw_tx_max_property;
1695 
1696 	/* Get the virtual base address for the device */
1697 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1698 	addr = devm_ioremap_resource(&pdev->dev, res);
1699 	if (IS_ERR(addr)) {
1700 		ret = PTR_ERR(addr);
1701 		goto err;
1702 	}
1703 
1704 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1705 	if (of_id && of_id->data)
1706 		devtype = of_id->data;
1707 
1708 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1709 			     "tx-mailbox-count" : "tx-fifo-depth";
1710 
1711 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1712 				   &hw_tx_max);
1713 	if (ret < 0) {
1714 		dev_err(&pdev->dev, "missing %s property\n",
1715 			hw_tx_max_property);
1716 		goto err;
1717 	}
1718 
1719 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1720 				   &hw_rx_max);
1721 	if (ret < 0) {
1722 		dev_err(&pdev->dev,
1723 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1724 		goto err;
1725 	}
1726 
1727 	/* With TX FIFO:
1728 	 *
1729 	 * There is no way to directly figure out how many frames have been
1730 	 * sent when the TXOK interrupt is processed. If TXFEMP
1731 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1732 	 * to determine if 1 or 2 frames have been sent.
1733 	 * Theoretically we should be able to use TXFWMEMP to determine up
1734 	 * to 3 frames, but it seems that after putting a second frame in the
1735 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1736 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1737 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1738 	 * completely synchronized with the rest of the bits?
1739 	 *
1740 	 * With TX mailboxes:
1741 	 *
1742 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1743 	 * we submit frames one at a time.
1744 	 */
1745 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1746 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1747 		tx_max = min(hw_tx_max, 2);
1748 	else
1749 		tx_max = 1;
1750 
1751 	rx_max = hw_rx_max;
1752 
1753 	/* Create a CAN device instance */
1754 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1755 	if (!ndev)
1756 		return -ENOMEM;
1757 
1758 	priv = netdev_priv(ndev);
1759 	priv->dev = &pdev->dev;
1760 	priv->can.bittiming_const = devtype->bittiming_const;
1761 	priv->can.do_set_mode = xcan_do_set_mode;
1762 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1763 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1764 					CAN_CTRLMODE_BERR_REPORTING;
1765 
1766 	if (devtype->cantype == XAXI_CANFD)
1767 		priv->can.data_bittiming_const =
1768 			&xcan_data_bittiming_const_canfd;
1769 
1770 	if (devtype->cantype == XAXI_CANFD_2_0)
1771 		priv->can.data_bittiming_const =
1772 			&xcan_data_bittiming_const_canfd2;
1773 
1774 	if (devtype->cantype == XAXI_CANFD ||
1775 	    devtype->cantype == XAXI_CANFD_2_0)
1776 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1777 
1778 	priv->reg_base = addr;
1779 	priv->tx_max = tx_max;
1780 	priv->devtype = *devtype;
1781 	spin_lock_init(&priv->tx_lock);
1782 
1783 	/* Get IRQ for the device */
1784 	ndev->irq = platform_get_irq(pdev, 0);
1785 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1786 
1787 	platform_set_drvdata(pdev, ndev);
1788 	SET_NETDEV_DEV(ndev, &pdev->dev);
1789 	ndev->netdev_ops = &xcan_netdev_ops;
1790 
1791 	/* Getting the CAN can_clk info */
1792 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1793 	if (IS_ERR(priv->can_clk)) {
1794 		dev_err(&pdev->dev, "Device clock not found.\n");
1795 		ret = PTR_ERR(priv->can_clk);
1796 		goto err_free;
1797 	}
1798 
1799 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1800 	if (IS_ERR(priv->bus_clk)) {
1801 		dev_err(&pdev->dev, "bus clock not found\n");
1802 		ret = PTR_ERR(priv->bus_clk);
1803 		goto err_free;
1804 	}
1805 
1806 	priv->write_reg = xcan_write_reg_le;
1807 	priv->read_reg = xcan_read_reg_le;
1808 
1809 	pm_runtime_enable(&pdev->dev);
1810 	ret = pm_runtime_get_sync(&pdev->dev);
1811 	if (ret < 0) {
1812 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1813 			   __func__, ret);
1814 		goto err_pmdisable;
1815 	}
1816 
1817 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1818 		priv->write_reg = xcan_write_reg_be;
1819 		priv->read_reg = xcan_read_reg_be;
1820 	}
1821 
1822 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1823 
1824 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1825 
1826 	ret = register_candev(ndev);
1827 	if (ret) {
1828 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1829 		goto err_disableclks;
1830 	}
1831 
1832 	devm_can_led_init(ndev);
1833 
1834 	pm_runtime_put(&pdev->dev);
1835 
1836 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1837 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1838 		   hw_tx_max, priv->tx_max);
1839 
1840 	return 0;
1841 
1842 err_disableclks:
1843 	pm_runtime_put(priv->dev);
1844 err_pmdisable:
1845 	pm_runtime_disable(&pdev->dev);
1846 err_free:
1847 	free_candev(ndev);
1848 err:
1849 	return ret;
1850 }
1851 
1852 /**
1853  * xcan_remove - Unregister the device after releasing the resources
1854  * @pdev:	Handle to the platform device structure
1855  *
1856  * This function frees all the resources allocated to the device.
1857  * Return: 0 always
1858  */
1859 static int xcan_remove(struct platform_device *pdev)
1860 {
1861 	struct net_device *ndev = platform_get_drvdata(pdev);
1862 	struct xcan_priv *priv = netdev_priv(ndev);
1863 
1864 	unregister_candev(ndev);
1865 	pm_runtime_disable(&pdev->dev);
1866 	netif_napi_del(&priv->napi);
1867 	free_candev(ndev);
1868 
1869 	return 0;
1870 }
1871 
1872 static struct platform_driver xcan_driver = {
1873 	.probe = xcan_probe,
1874 	.remove	= xcan_remove,
1875 	.driver	= {
1876 		.name = DRIVER_NAME,
1877 		.pm = &xcan_dev_pm_ops,
1878 		.of_match_table	= xcan_of_match,
1879 	},
1880 };
1881 
1882 module_platform_driver(xcan_driver);
1883 
1884 MODULE_LICENSE("GPL");
1885 MODULE_AUTHOR("Xilinx Inc");
1886 MODULE_DESCRIPTION("Xilinx CAN interface");
1887