xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision 9e255e2b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2014 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
31 
32 #define DRIVER_NAME	"xilinx_can"
33 
34 /* CAN registers set */
35 enum xcan_reg {
36 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
37 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
38 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
39 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
40 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
41 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
42 	XCAN_SR_OFFSET		= 0x18, /* Status */
43 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
44 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
45 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
46 
47 	/* not on CAN FD cores */
48 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
49 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
50 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
51 
52 	/* only on CAN FD cores */
53 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
54 					  * Prescalar
55 					  */
56 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
57 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
58 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
59 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
60 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
61 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
62 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
63 	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
64 	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
65 };
66 
67 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
68 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
69 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
70 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
71 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
72 
73 #define XCAN_CANFD_FRAME_SIZE		0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
75 					 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
77 					 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
79 					 XCAN_CANFD_FRAME_SIZE * (n))
80 
81 /* the single TX mailbox used by this driver on CAN FD HW */
82 #define XCAN_TX_MAILBOX_IDX		0
83 
84 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
86 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
87 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
88 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
89 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
90 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
91 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
92 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
93 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
94 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
95 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
96 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
97 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
98 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
99 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
100 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
101 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
102 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
103 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
104 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
105 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
106 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
107 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
108 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
109 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
110 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
111 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
112 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
113 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
114 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
115 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
116 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
117 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
118 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
119 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
120 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
121 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
122 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
123 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
124 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
125 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
126 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
127 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
128 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
129 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
130 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
131 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
132 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
133 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
134 
135 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
136 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
137 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
138 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
139 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
140 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
141 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
142 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
143 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
144 
145 /* CAN frame length constants */
146 #define XCAN_FRAME_MAX_DATA_LEN		8
147 #define XCANFD_DW_BYTES			4
148 #define XCAN_TIMEOUT			(1 * HZ)
149 
150 /* TX-FIFO-empty interrupt available */
151 #define XCAN_FLAG_TXFEMP	0x0001
152 /* RX Match Not Finished interrupt available */
153 #define XCAN_FLAG_RXMNF		0x0002
154 /* Extended acceptance filters with control at 0xE0 */
155 #define XCAN_FLAG_EXT_FILTERS	0x0004
156 /* TX mailboxes instead of TX FIFO */
157 #define XCAN_FLAG_TX_MAILBOXES	0x0008
158 /* RX FIFO with each buffer in separate registers at 0x1100
159  * instead of the regular FIFO at 0x50
160  */
161 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
162 #define XCAN_FLAG_CANFD_2	0x0020
163 
164 enum xcan_ip_type {
165 	XAXI_CAN = 0,
166 	XZYNQ_CANPS,
167 	XAXI_CANFD,
168 	XAXI_CANFD_2_0,
169 };
170 
171 struct xcan_devtype_data {
172 	enum xcan_ip_type cantype;
173 	unsigned int flags;
174 	const struct can_bittiming_const *bittiming_const;
175 	const char *bus_clk_name;
176 	unsigned int btr_ts2_shift;
177 	unsigned int btr_sjw_shift;
178 };
179 
180 /**
181  * struct xcan_priv - This definition define CAN driver instance
182  * @can:			CAN private data structure.
183  * @tx_lock:			Lock for synchronizing TX interrupt handling
184  * @tx_head:			Tx CAN packets ready to send on the queue
185  * @tx_tail:			Tx CAN packets successfully sended on the queue
186  * @tx_max:			Maximum number packets the driver can send
187  * @napi:			NAPI structure
188  * @read_reg:			For reading data from CAN registers
189  * @write_reg:			For writing data to CAN registers
190  * @dev:			Network device data structure
191  * @reg_base:			Ioremapped address to registers
192  * @irq_flags:			For request_irq()
193  * @bus_clk:			Pointer to struct clk
194  * @can_clk:			Pointer to struct clk
195  * @devtype:			Device type specific constants
196  */
197 struct xcan_priv {
198 	struct can_priv can;
199 	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
200 	unsigned int tx_head;
201 	unsigned int tx_tail;
202 	unsigned int tx_max;
203 	struct napi_struct napi;
204 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
205 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
206 			  u32 val);
207 	struct device *dev;
208 	void __iomem *reg_base;
209 	unsigned long irq_flags;
210 	struct clk *bus_clk;
211 	struct clk *can_clk;
212 	struct xcan_devtype_data devtype;
213 };
214 
215 /* CAN Bittiming constants as per Xilinx CAN specs */
216 static const struct can_bittiming_const xcan_bittiming_const = {
217 	.name = DRIVER_NAME,
218 	.tseg1_min = 1,
219 	.tseg1_max = 16,
220 	.tseg2_min = 1,
221 	.tseg2_max = 8,
222 	.sjw_max = 4,
223 	.brp_min = 1,
224 	.brp_max = 256,
225 	.brp_inc = 1,
226 };
227 
228 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
229 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
230 	.name = DRIVER_NAME,
231 	.tseg1_min = 1,
232 	.tseg1_max = 64,
233 	.tseg2_min = 1,
234 	.tseg2_max = 16,
235 	.sjw_max = 16,
236 	.brp_min = 1,
237 	.brp_max = 256,
238 	.brp_inc = 1,
239 };
240 
241 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
242 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
243 	.name = DRIVER_NAME,
244 	.tseg1_min = 1,
245 	.tseg1_max = 16,
246 	.tseg2_min = 1,
247 	.tseg2_max = 8,
248 	.sjw_max = 8,
249 	.brp_min = 1,
250 	.brp_max = 256,
251 	.brp_inc = 1,
252 };
253 
254 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
255 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
256 	.name = DRIVER_NAME,
257 	.tseg1_min = 1,
258 	.tseg1_max = 256,
259 	.tseg2_min = 1,
260 	.tseg2_max = 128,
261 	.sjw_max = 128,
262 	.brp_min = 2,
263 	.brp_max = 256,
264 	.brp_inc = 1,
265 };
266 
267 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
268 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
269 	.name = DRIVER_NAME,
270 	.tseg1_min = 1,
271 	.tseg1_max = 32,
272 	.tseg2_min = 1,
273 	.tseg2_max = 16,
274 	.sjw_max = 16,
275 	.brp_min = 2,
276 	.brp_max = 256,
277 	.brp_inc = 1,
278 };
279 
280 /**
281  * xcan_write_reg_le - Write a value to the device register little endian
282  * @priv:	Driver private data structure
283  * @reg:	Register offset
284  * @val:	Value to write at the Register offset
285  *
286  * Write data to the paricular CAN register
287  */
288 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
289 			      u32 val)
290 {
291 	iowrite32(val, priv->reg_base + reg);
292 }
293 
294 /**
295  * xcan_read_reg_le - Read a value from the device register little endian
296  * @priv:	Driver private data structure
297  * @reg:	Register offset
298  *
299  * Read data from the particular CAN register
300  * Return: value read from the CAN register
301  */
302 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
303 {
304 	return ioread32(priv->reg_base + reg);
305 }
306 
307 /**
308  * xcan_write_reg_be - Write a value to the device register big endian
309  * @priv:	Driver private data structure
310  * @reg:	Register offset
311  * @val:	Value to write at the Register offset
312  *
313  * Write data to the paricular CAN register
314  */
315 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
316 			      u32 val)
317 {
318 	iowrite32be(val, priv->reg_base + reg);
319 }
320 
321 /**
322  * xcan_read_reg_be - Read a value from the device register big endian
323  * @priv:	Driver private data structure
324  * @reg:	Register offset
325  *
326  * Read data from the particular CAN register
327  * Return: value read from the CAN register
328  */
329 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
330 {
331 	return ioread32be(priv->reg_base + reg);
332 }
333 
334 /**
335  * xcan_rx_int_mask - Get the mask for the receive interrupt
336  * @priv:	Driver private data structure
337  *
338  * Return: The receive interrupt mask used by the driver on this HW
339  */
340 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
341 {
342 	/* RXNEMP is better suited for our use case as it cannot be cleared
343 	 * while the FIFO is non-empty, but CAN FD HW does not have it
344 	 */
345 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
346 		return XCAN_IXR_RXOK_MASK;
347 	else
348 		return XCAN_IXR_RXNEMP_MASK;
349 }
350 
351 /**
352  * set_reset_mode - Resets the CAN device mode
353  * @ndev:	Pointer to net_device structure
354  *
355  * This is the driver reset mode routine.The driver
356  * enters into configuration mode.
357  *
358  * Return: 0 on success and failure value on error
359  */
360 static int set_reset_mode(struct net_device *ndev)
361 {
362 	struct xcan_priv *priv = netdev_priv(ndev);
363 	unsigned long timeout;
364 
365 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
366 
367 	timeout = jiffies + XCAN_TIMEOUT;
368 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
369 		if (time_after(jiffies, timeout)) {
370 			netdev_warn(ndev, "timed out for config mode\n");
371 			return -ETIMEDOUT;
372 		}
373 		usleep_range(500, 10000);
374 	}
375 
376 	/* reset clears FIFOs */
377 	priv->tx_head = 0;
378 	priv->tx_tail = 0;
379 
380 	return 0;
381 }
382 
383 /**
384  * xcan_set_bittiming - CAN set bit timing routine
385  * @ndev:	Pointer to net_device structure
386  *
387  * This is the driver set bittiming  routine.
388  * Return: 0 on success and failure value on error
389  */
390 static int xcan_set_bittiming(struct net_device *ndev)
391 {
392 	struct xcan_priv *priv = netdev_priv(ndev);
393 	struct can_bittiming *bt = &priv->can.bittiming;
394 	struct can_bittiming *dbt = &priv->can.data_bittiming;
395 	u32 btr0, btr1;
396 	u32 is_config_mode;
397 
398 	/* Check whether Xilinx CAN is in configuration mode.
399 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
400 	 */
401 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
402 				XCAN_SR_CONFIG_MASK;
403 	if (!is_config_mode) {
404 		netdev_alert(ndev,
405 			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
406 		return -EPERM;
407 	}
408 
409 	/* Setting Baud Rate prescalar value in BRPR Register */
410 	btr0 = (bt->brp - 1);
411 
412 	/* Setting Time Segment 1 in BTR Register */
413 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
414 
415 	/* Setting Time Segment 2 in BTR Register */
416 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
417 
418 	/* Setting Synchronous jump width in BTR Register */
419 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
420 
421 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
422 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
423 
424 	if (priv->devtype.cantype == XAXI_CANFD ||
425 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
426 		/* Setting Baud Rate prescalar value in F_BRPR Register */
427 		btr0 = dbt->brp - 1;
428 
429 		/* Setting Time Segment 1 in BTR Register */
430 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
431 
432 		/* Setting Time Segment 2 in BTR Register */
433 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
434 
435 		/* Setting Synchronous jump width in BTR Register */
436 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
437 
438 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
439 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
440 	}
441 
442 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
443 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
444 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
445 
446 	return 0;
447 }
448 
449 /**
450  * xcan_chip_start - This the drivers start routine
451  * @ndev:	Pointer to net_device structure
452  *
453  * This is the drivers start routine.
454  * Based on the State of the CAN device it puts
455  * the CAN device into a proper mode.
456  *
457  * Return: 0 on success and failure value on error
458  */
459 static int xcan_chip_start(struct net_device *ndev)
460 {
461 	struct xcan_priv *priv = netdev_priv(ndev);
462 	u32 reg_msr;
463 	int err;
464 	u32 ier;
465 
466 	/* Check if it is in reset mode */
467 	err = set_reset_mode(ndev);
468 	if (err < 0)
469 		return err;
470 
471 	err = xcan_set_bittiming(ndev);
472 	if (err < 0)
473 		return err;
474 
475 	/* Enable interrupts
476 	 *
477 	 * We enable the ERROR interrupt even with
478 	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
479 	 * dedicated interrupt for a state change to
480 	 * ERROR_WARNING/ERROR_PASSIVE.
481 	 */
482 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
483 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
484 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
485 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
486 
487 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
488 		ier |= XCAN_IXR_RXMNF_MASK;
489 
490 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
491 
492 	/* Check whether it is loopback mode or normal mode  */
493 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
494 		reg_msr = XCAN_MSR_LBACK_MASK;
495 	else
496 		reg_msr = 0x0;
497 
498 	/* enable the first extended filter, if any, as cores with extended
499 	 * filtering default to non-receipt if all filters are disabled
500 	 */
501 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
502 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
503 
504 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
505 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
506 
507 	netdev_dbg(ndev, "status:#x%08x\n",
508 		   priv->read_reg(priv, XCAN_SR_OFFSET));
509 
510 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
511 	return 0;
512 }
513 
514 /**
515  * xcan_do_set_mode - This sets the mode of the driver
516  * @ndev:	Pointer to net_device structure
517  * @mode:	Tells the mode of the driver
518  *
519  * This check the drivers state and calls the
520  * the corresponding modes to set.
521  *
522  * Return: 0 on success and failure value on error
523  */
524 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
525 {
526 	int ret;
527 
528 	switch (mode) {
529 	case CAN_MODE_START:
530 		ret = xcan_chip_start(ndev);
531 		if (ret < 0) {
532 			netdev_err(ndev, "xcan_chip_start failed!\n");
533 			return ret;
534 		}
535 		netif_wake_queue(ndev);
536 		break;
537 	default:
538 		ret = -EOPNOTSUPP;
539 		break;
540 	}
541 
542 	return ret;
543 }
544 
545 /**
546  * xcan_write_frame - Write a frame to HW
547  * @ndev:		Pointer to net_device structure
548  * @skb:		sk_buff pointer that contains data to be Txed
549  * @frame_offset:	Register offset to write the frame to
550  */
551 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
552 			     int frame_offset)
553 {
554 	u32 id, dlc, data[2] = {0, 0};
555 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
556 	u32 ramoff, dwindex = 0, i;
557 	struct xcan_priv *priv = netdev_priv(ndev);
558 
559 	/* Watch carefully on the bit sequence */
560 	if (cf->can_id & CAN_EFF_FLAG) {
561 		/* Extended CAN ID format */
562 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
563 			XCAN_IDR_ID2_MASK;
564 		id |= (((cf->can_id & CAN_EFF_MASK) >>
565 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
566 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
567 
568 		/* The substibute remote TX request bit should be "1"
569 		 * for extended frames as in the Xilinx CAN datasheet
570 		 */
571 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
572 
573 		if (cf->can_id & CAN_RTR_FLAG)
574 			/* Extended frames remote TX request */
575 			id |= XCAN_IDR_RTR_MASK;
576 	} else {
577 		/* Standard CAN ID format */
578 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
579 			XCAN_IDR_ID1_MASK;
580 
581 		if (cf->can_id & CAN_RTR_FLAG)
582 			/* Standard frames remote TX request */
583 			id |= XCAN_IDR_SRR_MASK;
584 	}
585 
586 	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
587 	if (can_is_canfd_skb(skb)) {
588 		if (cf->flags & CANFD_BRS)
589 			dlc |= XCAN_DLCR_BRS_MASK;
590 		dlc |= XCAN_DLCR_EDL_MASK;
591 	}
592 
593 	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
594 	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
595 		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
596 	else
597 		can_put_echo_skb(skb, ndev, 0, 0);
598 
599 	priv->tx_head++;
600 
601 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
602 	/* If the CAN frame is RTR frame this write triggers transmission
603 	 * (not on CAN FD)
604 	 */
605 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
606 	if (priv->devtype.cantype == XAXI_CANFD ||
607 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
608 		for (i = 0; i < cf->len; i += 4) {
609 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
610 					(dwindex * XCANFD_DW_BYTES);
611 			priv->write_reg(priv, ramoff,
612 					be32_to_cpup((__be32 *)(cf->data + i)));
613 			dwindex++;
614 		}
615 	} else {
616 		if (cf->len > 0)
617 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
618 		if (cf->len > 4)
619 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
620 
621 		if (!(cf->can_id & CAN_RTR_FLAG)) {
622 			priv->write_reg(priv,
623 					XCAN_FRAME_DW1_OFFSET(frame_offset),
624 					data[0]);
625 			/* If the CAN frame is Standard/Extended frame this
626 			 * write triggers transmission (not on CAN FD)
627 			 */
628 			priv->write_reg(priv,
629 					XCAN_FRAME_DW2_OFFSET(frame_offset),
630 					data[1]);
631 		}
632 	}
633 }
634 
635 /**
636  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
637  * @skb:	sk_buff pointer that contains data to be Txed
638  * @ndev:	Pointer to net_device structure
639  *
640  * Return: 0 on success, -ENOSPC if FIFO is full.
641  */
642 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
643 {
644 	struct xcan_priv *priv = netdev_priv(ndev);
645 	unsigned long flags;
646 
647 	/* Check if the TX buffer is full */
648 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
649 			XCAN_SR_TXFLL_MASK))
650 		return -ENOSPC;
651 
652 	spin_lock_irqsave(&priv->tx_lock, flags);
653 
654 	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
655 
656 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
657 	if (priv->tx_max > 1)
658 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
659 
660 	/* Check if the TX buffer is full */
661 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
662 		netif_stop_queue(ndev);
663 
664 	spin_unlock_irqrestore(&priv->tx_lock, flags);
665 
666 	return 0;
667 }
668 
669 /**
670  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
671  * @skb:	sk_buff pointer that contains data to be Txed
672  * @ndev:	Pointer to net_device structure
673  *
674  * Return: 0 on success, -ENOSPC if there is no space
675  */
676 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
677 {
678 	struct xcan_priv *priv = netdev_priv(ndev);
679 	unsigned long flags;
680 
681 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
682 		     BIT(XCAN_TX_MAILBOX_IDX)))
683 		return -ENOSPC;
684 
685 	spin_lock_irqsave(&priv->tx_lock, flags);
686 
687 	xcan_write_frame(ndev, skb,
688 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
689 
690 	/* Mark buffer as ready for transmit */
691 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
692 
693 	netif_stop_queue(ndev);
694 
695 	spin_unlock_irqrestore(&priv->tx_lock, flags);
696 
697 	return 0;
698 }
699 
700 /**
701  * xcan_start_xmit - Starts the transmission
702  * @skb:	sk_buff pointer that contains data to be Txed
703  * @ndev:	Pointer to net_device structure
704  *
705  * This function is invoked from upper layers to initiate transmission.
706  *
707  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
708  */
709 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
710 {
711 	struct xcan_priv *priv = netdev_priv(ndev);
712 	int ret;
713 
714 	if (can_dropped_invalid_skb(ndev, skb))
715 		return NETDEV_TX_OK;
716 
717 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
718 		ret = xcan_start_xmit_mailbox(skb, ndev);
719 	else
720 		ret = xcan_start_xmit_fifo(skb, ndev);
721 
722 	if (ret < 0) {
723 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
724 		netif_stop_queue(ndev);
725 		return NETDEV_TX_BUSY;
726 	}
727 
728 	return NETDEV_TX_OK;
729 }
730 
731 /**
732  * xcan_rx -  Is called from CAN isr to complete the received
733  *		frame  processing
734  * @ndev:	Pointer to net_device structure
735  * @frame_base:	Register offset to the frame to be read
736  *
737  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
738  * does minimal processing and invokes "netif_receive_skb" to complete further
739  * processing.
740  * Return: 1 on success and 0 on failure.
741  */
742 static int xcan_rx(struct net_device *ndev, int frame_base)
743 {
744 	struct xcan_priv *priv = netdev_priv(ndev);
745 	struct net_device_stats *stats = &ndev->stats;
746 	struct can_frame *cf;
747 	struct sk_buff *skb;
748 	u32 id_xcan, dlc, data[2] = {0, 0};
749 
750 	skb = alloc_can_skb(ndev, &cf);
751 	if (unlikely(!skb)) {
752 		stats->rx_dropped++;
753 		return 0;
754 	}
755 
756 	/* Read a frame from Xilinx zynq CANPS */
757 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
758 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
759 				   XCAN_DLCR_DLC_SHIFT;
760 
761 	/* Change Xilinx CAN data length format to socketCAN data format */
762 	cf->len = can_cc_dlc2len(dlc);
763 
764 	/* Change Xilinx CAN ID format to socketCAN ID format */
765 	if (id_xcan & XCAN_IDR_IDE_MASK) {
766 		/* The received frame is an Extended format frame */
767 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
768 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
769 				XCAN_IDR_ID2_SHIFT;
770 		cf->can_id |= CAN_EFF_FLAG;
771 		if (id_xcan & XCAN_IDR_RTR_MASK)
772 			cf->can_id |= CAN_RTR_FLAG;
773 	} else {
774 		/* The received frame is a standard format frame */
775 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
776 				XCAN_IDR_ID1_SHIFT;
777 		if (id_xcan & XCAN_IDR_SRR_MASK)
778 			cf->can_id |= CAN_RTR_FLAG;
779 	}
780 
781 	/* DW1/DW2 must always be read to remove message from RXFIFO */
782 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
783 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
784 
785 	if (!(cf->can_id & CAN_RTR_FLAG)) {
786 		/* Change Xilinx CAN data format to socketCAN data format */
787 		if (cf->len > 0)
788 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
789 		if (cf->len > 4)
790 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
791 	}
792 
793 	stats->rx_bytes += cf->len;
794 	stats->rx_packets++;
795 	netif_receive_skb(skb);
796 
797 	return 1;
798 }
799 
800 /**
801  * xcanfd_rx -  Is called from CAN isr to complete the received
802  *		frame  processing
803  * @ndev:	Pointer to net_device structure
804  * @frame_base:	Register offset to the frame to be read
805  *
806  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
807  * does minimal processing and invokes "netif_receive_skb" to complete further
808  * processing.
809  * Return: 1 on success and 0 on failure.
810  */
811 static int xcanfd_rx(struct net_device *ndev, int frame_base)
812 {
813 	struct xcan_priv *priv = netdev_priv(ndev);
814 	struct net_device_stats *stats = &ndev->stats;
815 	struct canfd_frame *cf;
816 	struct sk_buff *skb;
817 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
818 
819 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
820 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
821 	if (dlc & XCAN_DLCR_EDL_MASK)
822 		skb = alloc_canfd_skb(ndev, &cf);
823 	else
824 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
825 
826 	if (unlikely(!skb)) {
827 		stats->rx_dropped++;
828 		return 0;
829 	}
830 
831 	/* Change Xilinx CANFD data length format to socketCAN data
832 	 * format
833 	 */
834 	if (dlc & XCAN_DLCR_EDL_MASK)
835 		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
836 				  XCAN_DLCR_DLC_SHIFT);
837 	else
838 		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
839 					  XCAN_DLCR_DLC_SHIFT);
840 
841 	/* Change Xilinx CAN ID format to socketCAN ID format */
842 	if (id_xcan & XCAN_IDR_IDE_MASK) {
843 		/* The received frame is an Extended format frame */
844 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
845 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
846 				XCAN_IDR_ID2_SHIFT;
847 		cf->can_id |= CAN_EFF_FLAG;
848 		if (id_xcan & XCAN_IDR_RTR_MASK)
849 			cf->can_id |= CAN_RTR_FLAG;
850 	} else {
851 		/* The received frame is a standard format frame */
852 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
853 				XCAN_IDR_ID1_SHIFT;
854 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
855 					XCAN_IDR_SRR_MASK))
856 			cf->can_id |= CAN_RTR_FLAG;
857 	}
858 
859 	/* Check the frame received is FD or not*/
860 	if (dlc & XCAN_DLCR_EDL_MASK) {
861 		for (i = 0; i < cf->len; i += 4) {
862 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
863 					(dwindex * XCANFD_DW_BYTES);
864 			data[0] = priv->read_reg(priv, dw_offset);
865 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
866 			dwindex++;
867 		}
868 	} else {
869 		for (i = 0; i < cf->len; i += 4) {
870 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
871 			data[0] = priv->read_reg(priv, dw_offset + i);
872 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
873 		}
874 	}
875 	stats->rx_bytes += cf->len;
876 	stats->rx_packets++;
877 	netif_receive_skb(skb);
878 
879 	return 1;
880 }
881 
882 /**
883  * xcan_current_error_state - Get current error state from HW
884  * @ndev:	Pointer to net_device structure
885  *
886  * Checks the current CAN error state from the HW. Note that this
887  * only checks for ERROR_PASSIVE and ERROR_WARNING.
888  *
889  * Return:
890  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
891  * otherwise.
892  */
893 static enum can_state xcan_current_error_state(struct net_device *ndev)
894 {
895 	struct xcan_priv *priv = netdev_priv(ndev);
896 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
897 
898 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
899 		return CAN_STATE_ERROR_PASSIVE;
900 	else if (status & XCAN_SR_ERRWRN_MASK)
901 		return CAN_STATE_ERROR_WARNING;
902 	else
903 		return CAN_STATE_ERROR_ACTIVE;
904 }
905 
906 /**
907  * xcan_set_error_state - Set new CAN error state
908  * @ndev:	Pointer to net_device structure
909  * @new_state:	The new CAN state to be set
910  * @cf:		Error frame to be populated or NULL
911  *
912  * Set new CAN error state for the device, updating statistics and
913  * populating the error frame if given.
914  */
915 static void xcan_set_error_state(struct net_device *ndev,
916 				 enum can_state new_state,
917 				 struct can_frame *cf)
918 {
919 	struct xcan_priv *priv = netdev_priv(ndev);
920 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
921 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
922 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
923 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
924 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
925 
926 	/* non-ERROR states are handled elsewhere */
927 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
928 		return;
929 
930 	can_change_state(ndev, cf, tx_state, rx_state);
931 
932 	if (cf) {
933 		cf->data[6] = txerr;
934 		cf->data[7] = rxerr;
935 	}
936 }
937 
938 /**
939  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
940  * @ndev:	Pointer to net_device structure
941  *
942  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
943  * the performed RX/TX has caused it to drop to a lesser state and set
944  * the interface state accordingly.
945  */
946 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
947 {
948 	struct xcan_priv *priv = netdev_priv(ndev);
949 	enum can_state old_state = priv->can.state;
950 	enum can_state new_state;
951 
952 	/* changing error state due to successful frame RX/TX can only
953 	 * occur from these states
954 	 */
955 	if (old_state != CAN_STATE_ERROR_WARNING &&
956 	    old_state != CAN_STATE_ERROR_PASSIVE)
957 		return;
958 
959 	new_state = xcan_current_error_state(ndev);
960 
961 	if (new_state != old_state) {
962 		struct sk_buff *skb;
963 		struct can_frame *cf;
964 
965 		skb = alloc_can_err_skb(ndev, &cf);
966 
967 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
968 
969 		if (skb) {
970 			struct net_device_stats *stats = &ndev->stats;
971 
972 			stats->rx_packets++;
973 			stats->rx_bytes += cf->len;
974 			netif_rx(skb);
975 		}
976 	}
977 }
978 
979 /**
980  * xcan_err_interrupt - error frame Isr
981  * @ndev:	net_device pointer
982  * @isr:	interrupt status register value
983  *
984  * This is the CAN error interrupt and it will
985  * check the the type of error and forward the error
986  * frame to upper layers.
987  */
988 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
989 {
990 	struct xcan_priv *priv = netdev_priv(ndev);
991 	struct net_device_stats *stats = &ndev->stats;
992 	struct can_frame cf = { };
993 	u32 err_status;
994 
995 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
996 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
997 
998 	if (isr & XCAN_IXR_BSOFF_MASK) {
999 		priv->can.state = CAN_STATE_BUS_OFF;
1000 		priv->can.can_stats.bus_off++;
1001 		/* Leave device in Config Mode in bus-off state */
1002 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1003 		can_bus_off(ndev);
1004 		cf.can_id |= CAN_ERR_BUSOFF;
1005 	} else {
1006 		enum can_state new_state = xcan_current_error_state(ndev);
1007 
1008 		if (new_state != priv->can.state)
1009 			xcan_set_error_state(ndev, new_state, &cf);
1010 	}
1011 
1012 	/* Check for Arbitration lost interrupt */
1013 	if (isr & XCAN_IXR_ARBLST_MASK) {
1014 		priv->can.can_stats.arbitration_lost++;
1015 		cf.can_id |= CAN_ERR_LOSTARB;
1016 		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1017 	}
1018 
1019 	/* Check for RX FIFO Overflow interrupt */
1020 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1021 		stats->rx_over_errors++;
1022 		stats->rx_errors++;
1023 		cf.can_id |= CAN_ERR_CRTL;
1024 		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1025 	}
1026 
1027 	/* Check for RX Match Not Finished interrupt */
1028 	if (isr & XCAN_IXR_RXMNF_MASK) {
1029 		stats->rx_dropped++;
1030 		stats->rx_errors++;
1031 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1032 		cf.can_id |= CAN_ERR_CRTL;
1033 		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1034 	}
1035 
1036 	/* Check for error interrupt */
1037 	if (isr & XCAN_IXR_ERROR_MASK) {
1038 		bool berr_reporting = false;
1039 
1040 		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1041 			berr_reporting = true;
1042 			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1043 		}
1044 
1045 		/* Check for Ack error interrupt */
1046 		if (err_status & XCAN_ESR_ACKER_MASK) {
1047 			stats->tx_errors++;
1048 			if (berr_reporting) {
1049 				cf.can_id |= CAN_ERR_ACK;
1050 				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1051 			}
1052 		}
1053 
1054 		/* Check for Bit error interrupt */
1055 		if (err_status & XCAN_ESR_BERR_MASK) {
1056 			stats->tx_errors++;
1057 			if (berr_reporting) {
1058 				cf.can_id |= CAN_ERR_PROT;
1059 				cf.data[2] = CAN_ERR_PROT_BIT;
1060 			}
1061 		}
1062 
1063 		/* Check for Stuff error interrupt */
1064 		if (err_status & XCAN_ESR_STER_MASK) {
1065 			stats->rx_errors++;
1066 			if (berr_reporting) {
1067 				cf.can_id |= CAN_ERR_PROT;
1068 				cf.data[2] = CAN_ERR_PROT_STUFF;
1069 			}
1070 		}
1071 
1072 		/* Check for Form error interrupt */
1073 		if (err_status & XCAN_ESR_FMER_MASK) {
1074 			stats->rx_errors++;
1075 			if (berr_reporting) {
1076 				cf.can_id |= CAN_ERR_PROT;
1077 				cf.data[2] = CAN_ERR_PROT_FORM;
1078 			}
1079 		}
1080 
1081 		/* Check for CRC error interrupt */
1082 		if (err_status & XCAN_ESR_CRCER_MASK) {
1083 			stats->rx_errors++;
1084 			if (berr_reporting) {
1085 				cf.can_id |= CAN_ERR_PROT;
1086 				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1087 			}
1088 		}
1089 		priv->can.can_stats.bus_error++;
1090 	}
1091 
1092 	if (cf.can_id) {
1093 		struct can_frame *skb_cf;
1094 		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1095 
1096 		if (skb) {
1097 			skb_cf->can_id |= cf.can_id;
1098 			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1099 			stats->rx_packets++;
1100 			stats->rx_bytes += CAN_ERR_DLC;
1101 			netif_rx(skb);
1102 		}
1103 	}
1104 
1105 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1106 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1107 }
1108 
1109 /**
1110  * xcan_state_interrupt - It will check the state of the CAN device
1111  * @ndev:	net_device pointer
1112  * @isr:	interrupt status register value
1113  *
1114  * This will checks the state of the CAN device
1115  * and puts the device into appropriate state.
1116  */
1117 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1118 {
1119 	struct xcan_priv *priv = netdev_priv(ndev);
1120 
1121 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1122 	if (isr & XCAN_IXR_SLP_MASK)
1123 		priv->can.state = CAN_STATE_SLEEPING;
1124 
1125 	/* Check for Wake up interrupt if set put CAN device in Active state */
1126 	if (isr & XCAN_IXR_WKUP_MASK)
1127 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1128 }
1129 
1130 /**
1131  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1132  * @priv:	Driver private data structure
1133  *
1134  * Return: Register offset of the next frame in RX FIFO.
1135  */
1136 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1137 {
1138 	int offset;
1139 
1140 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1141 		u32 fsr, mask;
1142 
1143 		/* clear RXOK before the is-empty check so that any newly
1144 		 * received frame will reassert it without a race
1145 		 */
1146 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1147 
1148 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1149 
1150 		/* check if RX FIFO is empty */
1151 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1152 			mask = XCAN_2_FSR_FL_MASK;
1153 		else
1154 			mask = XCAN_FSR_FL_MASK;
1155 
1156 		if (!(fsr & mask))
1157 			return -ENOENT;
1158 
1159 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1160 			offset =
1161 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1162 		else
1163 			offset =
1164 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1165 
1166 	} else {
1167 		/* check if RX FIFO is empty */
1168 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1169 		      XCAN_IXR_RXNEMP_MASK))
1170 			return -ENOENT;
1171 
1172 		/* frames are read from a static offset */
1173 		offset = XCAN_RXFIFO_OFFSET;
1174 	}
1175 
1176 	return offset;
1177 }
1178 
1179 /**
1180  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1181  * @napi:	napi structure pointer
1182  * @quota:	Max number of rx packets to be processed.
1183  *
1184  * This is the poll routine for rx part.
1185  * It will process the packets maximux quota value.
1186  *
1187  * Return: number of packets received
1188  */
1189 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1190 {
1191 	struct net_device *ndev = napi->dev;
1192 	struct xcan_priv *priv = netdev_priv(ndev);
1193 	u32 ier;
1194 	int work_done = 0;
1195 	int frame_offset;
1196 
1197 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1198 	       (work_done < quota)) {
1199 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1200 			work_done += xcanfd_rx(ndev, frame_offset);
1201 		else
1202 			work_done += xcan_rx(ndev, frame_offset);
1203 
1204 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1205 			/* increment read index */
1206 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1207 					XCAN_FSR_IRI_MASK);
1208 		else
1209 			/* clear rx-not-empty (will actually clear only if
1210 			 * empty)
1211 			 */
1212 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1213 					XCAN_IXR_RXNEMP_MASK);
1214 	}
1215 
1216 	if (work_done) {
1217 		can_led_event(ndev, CAN_LED_EVENT_RX);
1218 		xcan_update_error_state_after_rxtx(ndev);
1219 	}
1220 
1221 	if (work_done < quota) {
1222 		napi_complete_done(napi, work_done);
1223 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1224 		ier |= xcan_rx_int_mask(priv);
1225 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1226 	}
1227 	return work_done;
1228 }
1229 
1230 /**
1231  * xcan_tx_interrupt - Tx Done Isr
1232  * @ndev:	net_device pointer
1233  * @isr:	Interrupt status register value
1234  */
1235 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1236 {
1237 	struct xcan_priv *priv = netdev_priv(ndev);
1238 	struct net_device_stats *stats = &ndev->stats;
1239 	unsigned int frames_in_fifo;
1240 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1241 	unsigned long flags;
1242 	int retries = 0;
1243 
1244 	/* Synchronize with xmit as we need to know the exact number
1245 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1246 	 * handling.
1247 	 * This also prevents a race between netif_wake_queue() and
1248 	 * netif_stop_queue().
1249 	 */
1250 	spin_lock_irqsave(&priv->tx_lock, flags);
1251 
1252 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1253 
1254 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1255 		/* clear TXOK anyway to avoid getting back here */
1256 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1257 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1258 		return;
1259 	}
1260 
1261 	/* Check if 2 frames were sent (TXOK only means that at least 1
1262 	 * frame was sent).
1263 	 */
1264 	if (frames_in_fifo > 1) {
1265 		WARN_ON(frames_in_fifo > priv->tx_max);
1266 
1267 		/* Synchronize TXOK and isr so that after the loop:
1268 		 * (1) isr variable is up-to-date at least up to TXOK clear
1269 		 *     time. This avoids us clearing a TXOK of a second frame
1270 		 *     but not noticing that the FIFO is now empty and thus
1271 		 *     marking only a single frame as sent.
1272 		 * (2) No TXOK is left. Having one could mean leaving a
1273 		 *     stray TXOK as we might process the associated frame
1274 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1275 		 *     clear to satisfy (1).
1276 		 */
1277 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1278 		       !WARN_ON(++retries == 100)) {
1279 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1280 					XCAN_IXR_TXOK_MASK);
1281 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1282 		}
1283 
1284 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1285 			/* nothing in FIFO anymore */
1286 			frames_sent = frames_in_fifo;
1287 		}
1288 	} else {
1289 		/* single frame in fifo, just clear TXOK */
1290 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1291 	}
1292 
1293 	while (frames_sent--) {
1294 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1295 						    priv->tx_max, NULL);
1296 		priv->tx_tail++;
1297 		stats->tx_packets++;
1298 	}
1299 
1300 	netif_wake_queue(ndev);
1301 
1302 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1303 
1304 	can_led_event(ndev, CAN_LED_EVENT_TX);
1305 	xcan_update_error_state_after_rxtx(ndev);
1306 }
1307 
1308 /**
1309  * xcan_interrupt - CAN Isr
1310  * @irq:	irq number
1311  * @dev_id:	device id pointer
1312  *
1313  * This is the xilinx CAN Isr. It checks for the type of interrupt
1314  * and invokes the corresponding ISR.
1315  *
1316  * Return:
1317  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1318  */
1319 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1320 {
1321 	struct net_device *ndev = (struct net_device *)dev_id;
1322 	struct xcan_priv *priv = netdev_priv(ndev);
1323 	u32 isr, ier;
1324 	u32 isr_errors;
1325 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1326 
1327 	/* Get the interrupt status from Xilinx CAN */
1328 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1329 	if (!isr)
1330 		return IRQ_NONE;
1331 
1332 	/* Check for the type of interrupt and Processing it */
1333 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1334 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1335 				XCAN_IXR_WKUP_MASK));
1336 		xcan_state_interrupt(ndev, isr);
1337 	}
1338 
1339 	/* Check for Tx interrupt and Processing it */
1340 	if (isr & XCAN_IXR_TXOK_MASK)
1341 		xcan_tx_interrupt(ndev, isr);
1342 
1343 	/* Check for the type of error interrupt and Processing it */
1344 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1345 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1346 			    XCAN_IXR_RXMNF_MASK);
1347 	if (isr_errors) {
1348 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1349 		xcan_err_interrupt(ndev, isr);
1350 	}
1351 
1352 	/* Check for the type of receive interrupt and Processing it */
1353 	if (isr & rx_int_mask) {
1354 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1355 		ier &= ~rx_int_mask;
1356 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1357 		napi_schedule(&priv->napi);
1358 	}
1359 	return IRQ_HANDLED;
1360 }
1361 
1362 /**
1363  * xcan_chip_stop - Driver stop routine
1364  * @ndev:	Pointer to net_device structure
1365  *
1366  * This is the drivers stop routine. It will disable the
1367  * interrupts and put the device into configuration mode.
1368  */
1369 static void xcan_chip_stop(struct net_device *ndev)
1370 {
1371 	struct xcan_priv *priv = netdev_priv(ndev);
1372 	int ret;
1373 
1374 	/* Disable interrupts and leave the can in configuration mode */
1375 	ret = set_reset_mode(ndev);
1376 	if (ret < 0)
1377 		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1378 
1379 	priv->can.state = CAN_STATE_STOPPED;
1380 }
1381 
1382 /**
1383  * xcan_open - Driver open routine
1384  * @ndev:	Pointer to net_device structure
1385  *
1386  * This is the driver open routine.
1387  * Return: 0 on success and failure value on error
1388  */
1389 static int xcan_open(struct net_device *ndev)
1390 {
1391 	struct xcan_priv *priv = netdev_priv(ndev);
1392 	int ret;
1393 
1394 	ret = pm_runtime_get_sync(priv->dev);
1395 	if (ret < 0) {
1396 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1397 			   __func__, ret);
1398 		goto err;
1399 	}
1400 
1401 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1402 			  ndev->name, ndev);
1403 	if (ret < 0) {
1404 		netdev_err(ndev, "irq allocation for CAN failed\n");
1405 		goto err;
1406 	}
1407 
1408 	/* Set chip into reset mode */
1409 	ret = set_reset_mode(ndev);
1410 	if (ret < 0) {
1411 		netdev_err(ndev, "mode resetting failed!\n");
1412 		goto err_irq;
1413 	}
1414 
1415 	/* Common open */
1416 	ret = open_candev(ndev);
1417 	if (ret)
1418 		goto err_irq;
1419 
1420 	ret = xcan_chip_start(ndev);
1421 	if (ret < 0) {
1422 		netdev_err(ndev, "xcan_chip_start failed!\n");
1423 		goto err_candev;
1424 	}
1425 
1426 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1427 	napi_enable(&priv->napi);
1428 	netif_start_queue(ndev);
1429 
1430 	return 0;
1431 
1432 err_candev:
1433 	close_candev(ndev);
1434 err_irq:
1435 	free_irq(ndev->irq, ndev);
1436 err:
1437 	pm_runtime_put(priv->dev);
1438 
1439 	return ret;
1440 }
1441 
1442 /**
1443  * xcan_close - Driver close routine
1444  * @ndev:	Pointer to net_device structure
1445  *
1446  * Return: 0 always
1447  */
1448 static int xcan_close(struct net_device *ndev)
1449 {
1450 	struct xcan_priv *priv = netdev_priv(ndev);
1451 
1452 	netif_stop_queue(ndev);
1453 	napi_disable(&priv->napi);
1454 	xcan_chip_stop(ndev);
1455 	free_irq(ndev->irq, ndev);
1456 	close_candev(ndev);
1457 
1458 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1459 	pm_runtime_put(priv->dev);
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  * xcan_get_berr_counter - error counter routine
1466  * @ndev:	Pointer to net_device structure
1467  * @bec:	Pointer to can_berr_counter structure
1468  *
1469  * This is the driver error counter routine.
1470  * Return: 0 on success and failure value on error
1471  */
1472 static int xcan_get_berr_counter(const struct net_device *ndev,
1473 				 struct can_berr_counter *bec)
1474 {
1475 	struct xcan_priv *priv = netdev_priv(ndev);
1476 	int ret;
1477 
1478 	ret = pm_runtime_get_sync(priv->dev);
1479 	if (ret < 0) {
1480 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1481 			   __func__, ret);
1482 		pm_runtime_put(priv->dev);
1483 		return ret;
1484 	}
1485 
1486 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1487 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1488 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1489 
1490 	pm_runtime_put(priv->dev);
1491 
1492 	return 0;
1493 }
1494 
1495 static const struct net_device_ops xcan_netdev_ops = {
1496 	.ndo_open	= xcan_open,
1497 	.ndo_stop	= xcan_close,
1498 	.ndo_start_xmit	= xcan_start_xmit,
1499 	.ndo_change_mtu	= can_change_mtu,
1500 };
1501 
1502 /**
1503  * xcan_suspend - Suspend method for the driver
1504  * @dev:	Address of the device structure
1505  *
1506  * Put the driver into low power mode.
1507  * Return: 0 on success and failure value on error
1508  */
1509 static int __maybe_unused xcan_suspend(struct device *dev)
1510 {
1511 	struct net_device *ndev = dev_get_drvdata(dev);
1512 
1513 	if (netif_running(ndev)) {
1514 		netif_stop_queue(ndev);
1515 		netif_device_detach(ndev);
1516 		xcan_chip_stop(ndev);
1517 	}
1518 
1519 	return pm_runtime_force_suspend(dev);
1520 }
1521 
1522 /**
1523  * xcan_resume - Resume from suspend
1524  * @dev:	Address of the device structure
1525  *
1526  * Resume operation after suspend.
1527  * Return: 0 on success and failure value on error
1528  */
1529 static int __maybe_unused xcan_resume(struct device *dev)
1530 {
1531 	struct net_device *ndev = dev_get_drvdata(dev);
1532 	int ret;
1533 
1534 	ret = pm_runtime_force_resume(dev);
1535 	if (ret) {
1536 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1537 		return ret;
1538 	}
1539 
1540 	if (netif_running(ndev)) {
1541 		ret = xcan_chip_start(ndev);
1542 		if (ret) {
1543 			dev_err(dev, "xcan_chip_start failed on resume\n");
1544 			return ret;
1545 		}
1546 
1547 		netif_device_attach(ndev);
1548 		netif_start_queue(ndev);
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * xcan_runtime_suspend - Runtime suspend method for the driver
1556  * @dev:	Address of the device structure
1557  *
1558  * Put the driver into low power mode.
1559  * Return: 0 always
1560  */
1561 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1562 {
1563 	struct net_device *ndev = dev_get_drvdata(dev);
1564 	struct xcan_priv *priv = netdev_priv(ndev);
1565 
1566 	clk_disable_unprepare(priv->bus_clk);
1567 	clk_disable_unprepare(priv->can_clk);
1568 
1569 	return 0;
1570 }
1571 
1572 /**
1573  * xcan_runtime_resume - Runtime resume from suspend
1574  * @dev:	Address of the device structure
1575  *
1576  * Resume operation after suspend.
1577  * Return: 0 on success and failure value on error
1578  */
1579 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1580 {
1581 	struct net_device *ndev = dev_get_drvdata(dev);
1582 	struct xcan_priv *priv = netdev_priv(ndev);
1583 	int ret;
1584 
1585 	ret = clk_prepare_enable(priv->bus_clk);
1586 	if (ret) {
1587 		dev_err(dev, "Cannot enable clock.\n");
1588 		return ret;
1589 	}
1590 	ret = clk_prepare_enable(priv->can_clk);
1591 	if (ret) {
1592 		dev_err(dev, "Cannot enable clock.\n");
1593 		clk_disable_unprepare(priv->bus_clk);
1594 		return ret;
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 static const struct dev_pm_ops xcan_dev_pm_ops = {
1601 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1602 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1603 };
1604 
1605 static const struct xcan_devtype_data xcan_zynq_data = {
1606 	.cantype = XZYNQ_CANPS,
1607 	.flags = XCAN_FLAG_TXFEMP,
1608 	.bittiming_const = &xcan_bittiming_const,
1609 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1610 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1611 	.bus_clk_name = "pclk",
1612 };
1613 
1614 static const struct xcan_devtype_data xcan_axi_data = {
1615 	.cantype = XAXI_CAN,
1616 	.bittiming_const = &xcan_bittiming_const,
1617 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1618 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1619 	.bus_clk_name = "s_axi_aclk",
1620 };
1621 
1622 static const struct xcan_devtype_data xcan_canfd_data = {
1623 	.cantype = XAXI_CANFD,
1624 	.flags = XCAN_FLAG_EXT_FILTERS |
1625 		 XCAN_FLAG_RXMNF |
1626 		 XCAN_FLAG_TX_MAILBOXES |
1627 		 XCAN_FLAG_RX_FIFO_MULTI,
1628 	.bittiming_const = &xcan_bittiming_const_canfd,
1629 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1630 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1631 	.bus_clk_name = "s_axi_aclk",
1632 };
1633 
1634 static const struct xcan_devtype_data xcan_canfd2_data = {
1635 	.cantype = XAXI_CANFD_2_0,
1636 	.flags = XCAN_FLAG_EXT_FILTERS |
1637 		 XCAN_FLAG_RXMNF |
1638 		 XCAN_FLAG_TX_MAILBOXES |
1639 		 XCAN_FLAG_CANFD_2 |
1640 		 XCAN_FLAG_RX_FIFO_MULTI,
1641 	.bittiming_const = &xcan_bittiming_const_canfd2,
1642 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1643 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1644 	.bus_clk_name = "s_axi_aclk",
1645 };
1646 
1647 /* Match table for OF platform binding */
1648 static const struct of_device_id xcan_of_match[] = {
1649 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1650 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1651 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1652 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1653 	{ /* end of list */ },
1654 };
1655 MODULE_DEVICE_TABLE(of, xcan_of_match);
1656 
1657 /**
1658  * xcan_probe - Platform registration call
1659  * @pdev:	Handle to the platform device structure
1660  *
1661  * This function does all the memory allocation and registration for the CAN
1662  * device.
1663  *
1664  * Return: 0 on success and failure value on error
1665  */
1666 static int xcan_probe(struct platform_device *pdev)
1667 {
1668 	struct net_device *ndev;
1669 	struct xcan_priv *priv;
1670 	const struct of_device_id *of_id;
1671 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1672 	void __iomem *addr;
1673 	int ret;
1674 	int rx_max, tx_max;
1675 	u32 hw_tx_max = 0, hw_rx_max = 0;
1676 	const char *hw_tx_max_property;
1677 
1678 	/* Get the virtual base address for the device */
1679 	addr = devm_platform_ioremap_resource(pdev, 0);
1680 	if (IS_ERR(addr)) {
1681 		ret = PTR_ERR(addr);
1682 		goto err;
1683 	}
1684 
1685 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1686 	if (of_id && of_id->data)
1687 		devtype = of_id->data;
1688 
1689 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1690 			     "tx-mailbox-count" : "tx-fifo-depth";
1691 
1692 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1693 				   &hw_tx_max);
1694 	if (ret < 0) {
1695 		dev_err(&pdev->dev, "missing %s property\n",
1696 			hw_tx_max_property);
1697 		goto err;
1698 	}
1699 
1700 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1701 				   &hw_rx_max);
1702 	if (ret < 0) {
1703 		dev_err(&pdev->dev,
1704 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1705 		goto err;
1706 	}
1707 
1708 	/* With TX FIFO:
1709 	 *
1710 	 * There is no way to directly figure out how many frames have been
1711 	 * sent when the TXOK interrupt is processed. If TXFEMP
1712 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1713 	 * to determine if 1 or 2 frames have been sent.
1714 	 * Theoretically we should be able to use TXFWMEMP to determine up
1715 	 * to 3 frames, but it seems that after putting a second frame in the
1716 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1717 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1718 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1719 	 * completely synchronized with the rest of the bits?
1720 	 *
1721 	 * With TX mailboxes:
1722 	 *
1723 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1724 	 * we submit frames one at a time.
1725 	 */
1726 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1727 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1728 		tx_max = min(hw_tx_max, 2U);
1729 	else
1730 		tx_max = 1;
1731 
1732 	rx_max = hw_rx_max;
1733 
1734 	/* Create a CAN device instance */
1735 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1736 	if (!ndev)
1737 		return -ENOMEM;
1738 
1739 	priv = netdev_priv(ndev);
1740 	priv->dev = &pdev->dev;
1741 	priv->can.bittiming_const = devtype->bittiming_const;
1742 	priv->can.do_set_mode = xcan_do_set_mode;
1743 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1744 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1745 					CAN_CTRLMODE_BERR_REPORTING;
1746 
1747 	if (devtype->cantype == XAXI_CANFD)
1748 		priv->can.data_bittiming_const =
1749 			&xcan_data_bittiming_const_canfd;
1750 
1751 	if (devtype->cantype == XAXI_CANFD_2_0)
1752 		priv->can.data_bittiming_const =
1753 			&xcan_data_bittiming_const_canfd2;
1754 
1755 	if (devtype->cantype == XAXI_CANFD ||
1756 	    devtype->cantype == XAXI_CANFD_2_0)
1757 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1758 
1759 	priv->reg_base = addr;
1760 	priv->tx_max = tx_max;
1761 	priv->devtype = *devtype;
1762 	spin_lock_init(&priv->tx_lock);
1763 
1764 	/* Get IRQ for the device */
1765 	ndev->irq = platform_get_irq(pdev, 0);
1766 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1767 
1768 	platform_set_drvdata(pdev, ndev);
1769 	SET_NETDEV_DEV(ndev, &pdev->dev);
1770 	ndev->netdev_ops = &xcan_netdev_ops;
1771 
1772 	/* Getting the CAN can_clk info */
1773 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1774 	if (IS_ERR(priv->can_clk)) {
1775 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1776 				    "device clock not found\n");
1777 		goto err_free;
1778 	}
1779 
1780 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1781 	if (IS_ERR(priv->bus_clk)) {
1782 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1783 				    "bus clock not found\n");
1784 		goto err_free;
1785 	}
1786 
1787 	priv->write_reg = xcan_write_reg_le;
1788 	priv->read_reg = xcan_read_reg_le;
1789 
1790 	pm_runtime_enable(&pdev->dev);
1791 	ret = pm_runtime_get_sync(&pdev->dev);
1792 	if (ret < 0) {
1793 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1794 			   __func__, ret);
1795 		goto err_disableclks;
1796 	}
1797 
1798 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1799 		priv->write_reg = xcan_write_reg_be;
1800 		priv->read_reg = xcan_read_reg_be;
1801 	}
1802 
1803 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1804 
1805 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1806 
1807 	ret = register_candev(ndev);
1808 	if (ret) {
1809 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1810 		goto err_disableclks;
1811 	}
1812 
1813 	devm_can_led_init(ndev);
1814 
1815 	pm_runtime_put(&pdev->dev);
1816 
1817 	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1818 		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1819 		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1820 	}
1821 
1822 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1823 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1824 		   hw_tx_max, priv->tx_max);
1825 
1826 	return 0;
1827 
1828 err_disableclks:
1829 	pm_runtime_put(priv->dev);
1830 	pm_runtime_disable(&pdev->dev);
1831 err_free:
1832 	free_candev(ndev);
1833 err:
1834 	return ret;
1835 }
1836 
1837 /**
1838  * xcan_remove - Unregister the device after releasing the resources
1839  * @pdev:	Handle to the platform device structure
1840  *
1841  * This function frees all the resources allocated to the device.
1842  * Return: 0 always
1843  */
1844 static int xcan_remove(struct platform_device *pdev)
1845 {
1846 	struct net_device *ndev = platform_get_drvdata(pdev);
1847 	struct xcan_priv *priv = netdev_priv(ndev);
1848 
1849 	unregister_candev(ndev);
1850 	pm_runtime_disable(&pdev->dev);
1851 	netif_napi_del(&priv->napi);
1852 	free_candev(ndev);
1853 
1854 	return 0;
1855 }
1856 
1857 static struct platform_driver xcan_driver = {
1858 	.probe = xcan_probe,
1859 	.remove	= xcan_remove,
1860 	.driver	= {
1861 		.name = DRIVER_NAME,
1862 		.pm = &xcan_dev_pm_ops,
1863 		.of_match_table	= xcan_of_match,
1864 	},
1865 };
1866 
1867 module_platform_driver(xcan_driver);
1868 
1869 MODULE_LICENSE("GPL");
1870 MODULE_AUTHOR("Xilinx Inc");
1871 MODULE_DESCRIPTION("Xilinx CAN interface");
1872