xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision 9cfc5c90)
1 /* Xilinx CAN device driver
2  *
3  * Copyright (C) 2012 - 2014 Xilinx, Inc.
4  * Copyright (C) 2009 PetaLogix. All rights reserved.
5  *
6  * Description:
7  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/skbuff.h>
30 #include <linux/string.h>
31 #include <linux/types.h>
32 #include <linux/can/dev.h>
33 #include <linux/can/error.h>
34 #include <linux/can/led.h>
35 
36 #define DRIVER_NAME	"xilinx_can"
37 
38 /* CAN registers set */
39 enum xcan_reg {
40 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
41 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
42 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
43 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
44 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
45 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
46 	XCAN_SR_OFFSET		= 0x18, /* Status */
47 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
48 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
49 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
50 	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
51 	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
52 	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
53 	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
54 	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
55 	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
56 	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
57 	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
58 };
59 
60 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
61 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
62 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
63 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
64 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
65 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
66 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
67 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
68 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
69 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
70 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
71 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
72 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
73 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
74 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
75 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
76 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
77 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
78 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
79 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
80 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
81 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
82 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
83 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
84 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
85 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
86 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
87 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
88 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
89 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
90 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
91 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
92 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
93 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
94 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
95 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
96 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
97 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
98 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
99 
100 #define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
101 				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
102 				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
103 				 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
104 
105 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
106 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
107 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
108 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
109 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
110 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
111 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
112 
113 /* CAN frame length constants */
114 #define XCAN_FRAME_MAX_DATA_LEN		8
115 #define XCAN_TIMEOUT			(1 * HZ)
116 
117 /**
118  * struct xcan_priv - This definition define CAN driver instance
119  * @can:			CAN private data structure.
120  * @tx_head:			Tx CAN packets ready to send on the queue
121  * @tx_tail:			Tx CAN packets successfully sended on the queue
122  * @tx_max:			Maximum number packets the driver can send
123  * @napi:			NAPI structure
124  * @read_reg:			For reading data from CAN registers
125  * @write_reg:			For writing data to CAN registers
126  * @dev:			Network device data structure
127  * @reg_base:			Ioremapped address to registers
128  * @irq_flags:			For request_irq()
129  * @bus_clk:			Pointer to struct clk
130  * @can_clk:			Pointer to struct clk
131  */
132 struct xcan_priv {
133 	struct can_priv can;
134 	unsigned int tx_head;
135 	unsigned int tx_tail;
136 	unsigned int tx_max;
137 	struct napi_struct napi;
138 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
139 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
140 			u32 val);
141 	struct net_device *dev;
142 	void __iomem *reg_base;
143 	unsigned long irq_flags;
144 	struct clk *bus_clk;
145 	struct clk *can_clk;
146 };
147 
148 /* CAN Bittiming constants as per Xilinx CAN specs */
149 static const struct can_bittiming_const xcan_bittiming_const = {
150 	.name = DRIVER_NAME,
151 	.tseg1_min = 1,
152 	.tseg1_max = 16,
153 	.tseg2_min = 1,
154 	.tseg2_max = 8,
155 	.sjw_max = 4,
156 	.brp_min = 1,
157 	.brp_max = 256,
158 	.brp_inc = 1,
159 };
160 
161 /**
162  * xcan_write_reg_le - Write a value to the device register little endian
163  * @priv:	Driver private data structure
164  * @reg:	Register offset
165  * @val:	Value to write at the Register offset
166  *
167  * Write data to the paricular CAN register
168  */
169 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
170 			u32 val)
171 {
172 	iowrite32(val, priv->reg_base + reg);
173 }
174 
175 /**
176  * xcan_read_reg_le - Read a value from the device register little endian
177  * @priv:	Driver private data structure
178  * @reg:	Register offset
179  *
180  * Read data from the particular CAN register
181  * Return: value read from the CAN register
182  */
183 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
184 {
185 	return ioread32(priv->reg_base + reg);
186 }
187 
188 /**
189  * xcan_write_reg_be - Write a value to the device register big endian
190  * @priv:	Driver private data structure
191  * @reg:	Register offset
192  * @val:	Value to write at the Register offset
193  *
194  * Write data to the paricular CAN register
195  */
196 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
197 			u32 val)
198 {
199 	iowrite32be(val, priv->reg_base + reg);
200 }
201 
202 /**
203  * xcan_read_reg_be - Read a value from the device register big endian
204  * @priv:	Driver private data structure
205  * @reg:	Register offset
206  *
207  * Read data from the particular CAN register
208  * Return: value read from the CAN register
209  */
210 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
211 {
212 	return ioread32be(priv->reg_base + reg);
213 }
214 
215 /**
216  * set_reset_mode - Resets the CAN device mode
217  * @ndev:	Pointer to net_device structure
218  *
219  * This is the driver reset mode routine.The driver
220  * enters into configuration mode.
221  *
222  * Return: 0 on success and failure value on error
223  */
224 static int set_reset_mode(struct net_device *ndev)
225 {
226 	struct xcan_priv *priv = netdev_priv(ndev);
227 	unsigned long timeout;
228 
229 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
230 
231 	timeout = jiffies + XCAN_TIMEOUT;
232 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
233 		if (time_after(jiffies, timeout)) {
234 			netdev_warn(ndev, "timed out for config mode\n");
235 			return -ETIMEDOUT;
236 		}
237 		usleep_range(500, 10000);
238 	}
239 
240 	return 0;
241 }
242 
243 /**
244  * xcan_set_bittiming - CAN set bit timing routine
245  * @ndev:	Pointer to net_device structure
246  *
247  * This is the driver set bittiming  routine.
248  * Return: 0 on success and failure value on error
249  */
250 static int xcan_set_bittiming(struct net_device *ndev)
251 {
252 	struct xcan_priv *priv = netdev_priv(ndev);
253 	struct can_bittiming *bt = &priv->can.bittiming;
254 	u32 btr0, btr1;
255 	u32 is_config_mode;
256 
257 	/* Check whether Xilinx CAN is in configuration mode.
258 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
259 	 */
260 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
261 				XCAN_SR_CONFIG_MASK;
262 	if (!is_config_mode) {
263 		netdev_alert(ndev,
264 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
265 		return -EPERM;
266 	}
267 
268 	/* Setting Baud Rate prescalar value in BRPR Register */
269 	btr0 = (bt->brp - 1);
270 
271 	/* Setting Time Segment 1 in BTR Register */
272 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
273 
274 	/* Setting Time Segment 2 in BTR Register */
275 	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
276 
277 	/* Setting Synchronous jump width in BTR Register */
278 	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
279 
280 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
281 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
282 
283 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
284 			priv->read_reg(priv, XCAN_BRPR_OFFSET),
285 			priv->read_reg(priv, XCAN_BTR_OFFSET));
286 
287 	return 0;
288 }
289 
290 /**
291  * xcan_chip_start - This the drivers start routine
292  * @ndev:	Pointer to net_device structure
293  *
294  * This is the drivers start routine.
295  * Based on the State of the CAN device it puts
296  * the CAN device into a proper mode.
297  *
298  * Return: 0 on success and failure value on error
299  */
300 static int xcan_chip_start(struct net_device *ndev)
301 {
302 	struct xcan_priv *priv = netdev_priv(ndev);
303 	u32 reg_msr, reg_sr_mask;
304 	int err;
305 	unsigned long timeout;
306 
307 	/* Check if it is in reset mode */
308 	err = set_reset_mode(ndev);
309 	if (err < 0)
310 		return err;
311 
312 	err = xcan_set_bittiming(ndev);
313 	if (err < 0)
314 		return err;
315 
316 	/* Enable interrupts */
317 	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
318 
319 	/* Check whether it is loopback mode or normal mode  */
320 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
321 		reg_msr = XCAN_MSR_LBACK_MASK;
322 		reg_sr_mask = XCAN_SR_LBACK_MASK;
323 	} else {
324 		reg_msr = 0x0;
325 		reg_sr_mask = XCAN_SR_NORMAL_MASK;
326 	}
327 
328 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
329 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
330 
331 	timeout = jiffies + XCAN_TIMEOUT;
332 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
333 		if (time_after(jiffies, timeout)) {
334 			netdev_warn(ndev,
335 				"timed out for correct mode\n");
336 			return -ETIMEDOUT;
337 		}
338 	}
339 	netdev_dbg(ndev, "status:#x%08x\n",
340 			priv->read_reg(priv, XCAN_SR_OFFSET));
341 
342 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
343 	return 0;
344 }
345 
346 /**
347  * xcan_do_set_mode - This sets the mode of the driver
348  * @ndev:	Pointer to net_device structure
349  * @mode:	Tells the mode of the driver
350  *
351  * This check the drivers state and calls the
352  * the corresponding modes to set.
353  *
354  * Return: 0 on success and failure value on error
355  */
356 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
357 {
358 	int ret;
359 
360 	switch (mode) {
361 	case CAN_MODE_START:
362 		ret = xcan_chip_start(ndev);
363 		if (ret < 0) {
364 			netdev_err(ndev, "xcan_chip_start failed!\n");
365 			return ret;
366 		}
367 		netif_wake_queue(ndev);
368 		break;
369 	default:
370 		ret = -EOPNOTSUPP;
371 		break;
372 	}
373 
374 	return ret;
375 }
376 
377 /**
378  * xcan_start_xmit - Starts the transmission
379  * @skb:	sk_buff pointer that contains data to be Txed
380  * @ndev:	Pointer to net_device structure
381  *
382  * This function is invoked from upper layers to initiate transmission. This
383  * function uses the next available free txbuff and populates their fields to
384  * start the transmission.
385  *
386  * Return: 0 on success and failure value on error
387  */
388 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
389 {
390 	struct xcan_priv *priv = netdev_priv(ndev);
391 	struct net_device_stats *stats = &ndev->stats;
392 	struct can_frame *cf = (struct can_frame *)skb->data;
393 	u32 id, dlc, data[2] = {0, 0};
394 
395 	if (can_dropped_invalid_skb(ndev, skb))
396 		return NETDEV_TX_OK;
397 
398 	/* Check if the TX buffer is full */
399 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
400 			XCAN_SR_TXFLL_MASK)) {
401 		netif_stop_queue(ndev);
402 		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
403 		return NETDEV_TX_BUSY;
404 	}
405 
406 	/* Watch carefully on the bit sequence */
407 	if (cf->can_id & CAN_EFF_FLAG) {
408 		/* Extended CAN ID format */
409 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
410 			XCAN_IDR_ID2_MASK;
411 		id |= (((cf->can_id & CAN_EFF_MASK) >>
412 			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
413 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
414 
415 		/* The substibute remote TX request bit should be "1"
416 		 * for extended frames as in the Xilinx CAN datasheet
417 		 */
418 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
419 
420 		if (cf->can_id & CAN_RTR_FLAG)
421 			/* Extended frames remote TX request */
422 			id |= XCAN_IDR_RTR_MASK;
423 	} else {
424 		/* Standard CAN ID format */
425 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
426 			XCAN_IDR_ID1_MASK;
427 
428 		if (cf->can_id & CAN_RTR_FLAG)
429 			/* Standard frames remote TX request */
430 			id |= XCAN_IDR_SRR_MASK;
431 	}
432 
433 	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
434 
435 	if (cf->can_dlc > 0)
436 		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
437 	if (cf->can_dlc > 4)
438 		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
439 
440 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
441 	priv->tx_head++;
442 
443 	/* Write the Frame to Xilinx CAN TX FIFO */
444 	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
445 	/* If the CAN frame is RTR frame this write triggers tranmission */
446 	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
447 	if (!(cf->can_id & CAN_RTR_FLAG)) {
448 		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
449 		/* If the CAN frame is Standard/Extended frame this
450 		 * write triggers tranmission
451 		 */
452 		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
453 		stats->tx_bytes += cf->can_dlc;
454 	}
455 
456 	/* Check if the TX buffer is full */
457 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
458 		netif_stop_queue(ndev);
459 
460 	return NETDEV_TX_OK;
461 }
462 
463 /**
464  * xcan_rx -  Is called from CAN isr to complete the received
465  *		frame  processing
466  * @ndev:	Pointer to net_device structure
467  *
468  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
469  * does minimal processing and invokes "netif_receive_skb" to complete further
470  * processing.
471  * Return: 1 on success and 0 on failure.
472  */
473 static int xcan_rx(struct net_device *ndev)
474 {
475 	struct xcan_priv *priv = netdev_priv(ndev);
476 	struct net_device_stats *stats = &ndev->stats;
477 	struct can_frame *cf;
478 	struct sk_buff *skb;
479 	u32 id_xcan, dlc, data[2] = {0, 0};
480 
481 	skb = alloc_can_skb(ndev, &cf);
482 	if (unlikely(!skb)) {
483 		stats->rx_dropped++;
484 		return 0;
485 	}
486 
487 	/* Read a frame from Xilinx zynq CANPS */
488 	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
489 	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
490 				XCAN_DLCR_DLC_SHIFT;
491 
492 	/* Change Xilinx CAN data length format to socketCAN data format */
493 	cf->can_dlc = get_can_dlc(dlc);
494 
495 	/* Change Xilinx CAN ID format to socketCAN ID format */
496 	if (id_xcan & XCAN_IDR_IDE_MASK) {
497 		/* The received frame is an Extended format frame */
498 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
499 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
500 				XCAN_IDR_ID2_SHIFT;
501 		cf->can_id |= CAN_EFF_FLAG;
502 		if (id_xcan & XCAN_IDR_RTR_MASK)
503 			cf->can_id |= CAN_RTR_FLAG;
504 	} else {
505 		/* The received frame is a standard format frame */
506 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
507 				XCAN_IDR_ID1_SHIFT;
508 		if (id_xcan & XCAN_IDR_SRR_MASK)
509 			cf->can_id |= CAN_RTR_FLAG;
510 	}
511 
512 	/* DW1/DW2 must always be read to remove message from RXFIFO */
513 	data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
514 	data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
515 
516 	if (!(cf->can_id & CAN_RTR_FLAG)) {
517 		/* Change Xilinx CAN data format to socketCAN data format */
518 		if (cf->can_dlc > 0)
519 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
520 		if (cf->can_dlc > 4)
521 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
522 	}
523 
524 	stats->rx_bytes += cf->can_dlc;
525 	stats->rx_packets++;
526 	netif_receive_skb(skb);
527 
528 	return 1;
529 }
530 
531 /**
532  * xcan_err_interrupt - error frame Isr
533  * @ndev:	net_device pointer
534  * @isr:	interrupt status register value
535  *
536  * This is the CAN error interrupt and it will
537  * check the the type of error and forward the error
538  * frame to upper layers.
539  */
540 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
541 {
542 	struct xcan_priv *priv = netdev_priv(ndev);
543 	struct net_device_stats *stats = &ndev->stats;
544 	struct can_frame *cf;
545 	struct sk_buff *skb;
546 	u32 err_status, status, txerr = 0, rxerr = 0;
547 
548 	skb = alloc_can_err_skb(ndev, &cf);
549 
550 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
551 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
552 	txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
553 	rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
554 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
555 	status = priv->read_reg(priv, XCAN_SR_OFFSET);
556 
557 	if (isr & XCAN_IXR_BSOFF_MASK) {
558 		priv->can.state = CAN_STATE_BUS_OFF;
559 		priv->can.can_stats.bus_off++;
560 		/* Leave device in Config Mode in bus-off state */
561 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
562 		can_bus_off(ndev);
563 		if (skb)
564 			cf->can_id |= CAN_ERR_BUSOFF;
565 	} else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
566 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
567 		priv->can.can_stats.error_passive++;
568 		if (skb) {
569 			cf->can_id |= CAN_ERR_CRTL;
570 			cf->data[1] = (rxerr > 127) ?
571 					CAN_ERR_CRTL_RX_PASSIVE :
572 					CAN_ERR_CRTL_TX_PASSIVE;
573 			cf->data[6] = txerr;
574 			cf->data[7] = rxerr;
575 		}
576 	} else if (status & XCAN_SR_ERRWRN_MASK) {
577 		priv->can.state = CAN_STATE_ERROR_WARNING;
578 		priv->can.can_stats.error_warning++;
579 		if (skb) {
580 			cf->can_id |= CAN_ERR_CRTL;
581 			cf->data[1] |= (txerr > rxerr) ?
582 					CAN_ERR_CRTL_TX_WARNING :
583 					CAN_ERR_CRTL_RX_WARNING;
584 			cf->data[6] = txerr;
585 			cf->data[7] = rxerr;
586 		}
587 	}
588 
589 	/* Check for Arbitration lost interrupt */
590 	if (isr & XCAN_IXR_ARBLST_MASK) {
591 		priv->can.can_stats.arbitration_lost++;
592 		if (skb) {
593 			cf->can_id |= CAN_ERR_LOSTARB;
594 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
595 		}
596 	}
597 
598 	/* Check for RX FIFO Overflow interrupt */
599 	if (isr & XCAN_IXR_RXOFLW_MASK) {
600 		stats->rx_over_errors++;
601 		stats->rx_errors++;
602 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
603 		if (skb) {
604 			cf->can_id |= CAN_ERR_CRTL;
605 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
606 		}
607 	}
608 
609 	/* Check for error interrupt */
610 	if (isr & XCAN_IXR_ERROR_MASK) {
611 		if (skb) {
612 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
613 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
614 		}
615 
616 		/* Check for Ack error interrupt */
617 		if (err_status & XCAN_ESR_ACKER_MASK) {
618 			stats->tx_errors++;
619 			if (skb) {
620 				cf->can_id |= CAN_ERR_ACK;
621 				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
622 			}
623 		}
624 
625 		/* Check for Bit error interrupt */
626 		if (err_status & XCAN_ESR_BERR_MASK) {
627 			stats->tx_errors++;
628 			if (skb) {
629 				cf->can_id |= CAN_ERR_PROT;
630 				cf->data[2] = CAN_ERR_PROT_BIT;
631 			}
632 		}
633 
634 		/* Check for Stuff error interrupt */
635 		if (err_status & XCAN_ESR_STER_MASK) {
636 			stats->rx_errors++;
637 			if (skb) {
638 				cf->can_id |= CAN_ERR_PROT;
639 				cf->data[2] = CAN_ERR_PROT_STUFF;
640 			}
641 		}
642 
643 		/* Check for Form error interrupt */
644 		if (err_status & XCAN_ESR_FMER_MASK) {
645 			stats->rx_errors++;
646 			if (skb) {
647 				cf->can_id |= CAN_ERR_PROT;
648 				cf->data[2] = CAN_ERR_PROT_FORM;
649 			}
650 		}
651 
652 		/* Check for CRC error interrupt */
653 		if (err_status & XCAN_ESR_CRCER_MASK) {
654 			stats->rx_errors++;
655 			if (skb) {
656 				cf->can_id |= CAN_ERR_PROT;
657 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ |
658 						CAN_ERR_PROT_LOC_CRC_DEL;
659 			}
660 		}
661 			priv->can.can_stats.bus_error++;
662 	}
663 
664 	if (skb) {
665 		stats->rx_packets++;
666 		stats->rx_bytes += cf->can_dlc;
667 		netif_rx(skb);
668 	}
669 
670 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
671 			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
672 }
673 
674 /**
675  * xcan_state_interrupt - It will check the state of the CAN device
676  * @ndev:	net_device pointer
677  * @isr:	interrupt status register value
678  *
679  * This will checks the state of the CAN device
680  * and puts the device into appropriate state.
681  */
682 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
683 {
684 	struct xcan_priv *priv = netdev_priv(ndev);
685 
686 	/* Check for Sleep interrupt if set put CAN device in sleep state */
687 	if (isr & XCAN_IXR_SLP_MASK)
688 		priv->can.state = CAN_STATE_SLEEPING;
689 
690 	/* Check for Wake up interrupt if set put CAN device in Active state */
691 	if (isr & XCAN_IXR_WKUP_MASK)
692 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
693 }
694 
695 /**
696  * xcan_rx_poll - Poll routine for rx packets (NAPI)
697  * @napi:	napi structure pointer
698  * @quota:	Max number of rx packets to be processed.
699  *
700  * This is the poll routine for rx part.
701  * It will process the packets maximux quota value.
702  *
703  * Return: number of packets received
704  */
705 static int xcan_rx_poll(struct napi_struct *napi, int quota)
706 {
707 	struct net_device *ndev = napi->dev;
708 	struct xcan_priv *priv = netdev_priv(ndev);
709 	u32 isr, ier;
710 	int work_done = 0;
711 
712 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
713 	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
714 		if (isr & XCAN_IXR_RXOK_MASK) {
715 			priv->write_reg(priv, XCAN_ICR_OFFSET,
716 				XCAN_IXR_RXOK_MASK);
717 			work_done += xcan_rx(ndev);
718 		} else {
719 			priv->write_reg(priv, XCAN_ICR_OFFSET,
720 				XCAN_IXR_RXNEMP_MASK);
721 			break;
722 		}
723 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
724 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
725 	}
726 
727 	if (work_done)
728 		can_led_event(ndev, CAN_LED_EVENT_RX);
729 
730 	if (work_done < quota) {
731 		napi_complete(napi);
732 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
733 		ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
734 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
735 	}
736 	return work_done;
737 }
738 
739 /**
740  * xcan_tx_interrupt - Tx Done Isr
741  * @ndev:	net_device pointer
742  * @isr:	Interrupt status register value
743  */
744 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
745 {
746 	struct xcan_priv *priv = netdev_priv(ndev);
747 	struct net_device_stats *stats = &ndev->stats;
748 
749 	while ((priv->tx_head - priv->tx_tail > 0) &&
750 			(isr & XCAN_IXR_TXOK_MASK)) {
751 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
752 		can_get_echo_skb(ndev, priv->tx_tail %
753 					priv->tx_max);
754 		priv->tx_tail++;
755 		stats->tx_packets++;
756 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
757 	}
758 	can_led_event(ndev, CAN_LED_EVENT_TX);
759 	netif_wake_queue(ndev);
760 }
761 
762 /**
763  * xcan_interrupt - CAN Isr
764  * @irq:	irq number
765  * @dev_id:	device id poniter
766  *
767  * This is the xilinx CAN Isr. It checks for the type of interrupt
768  * and invokes the corresponding ISR.
769  *
770  * Return:
771  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
772  */
773 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
774 {
775 	struct net_device *ndev = (struct net_device *)dev_id;
776 	struct xcan_priv *priv = netdev_priv(ndev);
777 	u32 isr, ier;
778 
779 	/* Get the interrupt status from Xilinx CAN */
780 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
781 	if (!isr)
782 		return IRQ_NONE;
783 
784 	/* Check for the type of interrupt and Processing it */
785 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
786 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
787 				XCAN_IXR_WKUP_MASK));
788 		xcan_state_interrupt(ndev, isr);
789 	}
790 
791 	/* Check for Tx interrupt and Processing it */
792 	if (isr & XCAN_IXR_TXOK_MASK)
793 		xcan_tx_interrupt(ndev, isr);
794 
795 	/* Check for the type of error interrupt and Processing it */
796 	if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
797 			XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
798 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
799 				XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
800 				XCAN_IXR_ARBLST_MASK));
801 		xcan_err_interrupt(ndev, isr);
802 	}
803 
804 	/* Check for the type of receive interrupt and Processing it */
805 	if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
806 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
807 		ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
808 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
809 		napi_schedule(&priv->napi);
810 	}
811 	return IRQ_HANDLED;
812 }
813 
814 /**
815  * xcan_chip_stop - Driver stop routine
816  * @ndev:	Pointer to net_device structure
817  *
818  * This is the drivers stop routine. It will disable the
819  * interrupts and put the device into configuration mode.
820  */
821 static void xcan_chip_stop(struct net_device *ndev)
822 {
823 	struct xcan_priv *priv = netdev_priv(ndev);
824 	u32 ier;
825 
826 	/* Disable interrupts and leave the can in configuration mode */
827 	ier = priv->read_reg(priv, XCAN_IER_OFFSET);
828 	ier &= ~XCAN_INTR_ALL;
829 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
830 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
831 	priv->can.state = CAN_STATE_STOPPED;
832 }
833 
834 /**
835  * xcan_open - Driver open routine
836  * @ndev:	Pointer to net_device structure
837  *
838  * This is the driver open routine.
839  * Return: 0 on success and failure value on error
840  */
841 static int xcan_open(struct net_device *ndev)
842 {
843 	struct xcan_priv *priv = netdev_priv(ndev);
844 	int ret;
845 
846 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
847 			ndev->name, ndev);
848 	if (ret < 0) {
849 		netdev_err(ndev, "irq allocation for CAN failed\n");
850 		goto err;
851 	}
852 
853 	ret = clk_prepare_enable(priv->can_clk);
854 	if (ret) {
855 		netdev_err(ndev, "unable to enable device clock\n");
856 		goto err_irq;
857 	}
858 
859 	ret = clk_prepare_enable(priv->bus_clk);
860 	if (ret) {
861 		netdev_err(ndev, "unable to enable bus clock\n");
862 		goto err_can_clk;
863 	}
864 
865 	/* Set chip into reset mode */
866 	ret = set_reset_mode(ndev);
867 	if (ret < 0) {
868 		netdev_err(ndev, "mode resetting failed!\n");
869 		goto err_bus_clk;
870 	}
871 
872 	/* Common open */
873 	ret = open_candev(ndev);
874 	if (ret)
875 		goto err_bus_clk;
876 
877 	ret = xcan_chip_start(ndev);
878 	if (ret < 0) {
879 		netdev_err(ndev, "xcan_chip_start failed!\n");
880 		goto err_candev;
881 	}
882 
883 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
884 	napi_enable(&priv->napi);
885 	netif_start_queue(ndev);
886 
887 	return 0;
888 
889 err_candev:
890 	close_candev(ndev);
891 err_bus_clk:
892 	clk_disable_unprepare(priv->bus_clk);
893 err_can_clk:
894 	clk_disable_unprepare(priv->can_clk);
895 err_irq:
896 	free_irq(ndev->irq, ndev);
897 err:
898 	return ret;
899 }
900 
901 /**
902  * xcan_close - Driver close routine
903  * @ndev:	Pointer to net_device structure
904  *
905  * Return: 0 always
906  */
907 static int xcan_close(struct net_device *ndev)
908 {
909 	struct xcan_priv *priv = netdev_priv(ndev);
910 
911 	netif_stop_queue(ndev);
912 	napi_disable(&priv->napi);
913 	xcan_chip_stop(ndev);
914 	clk_disable_unprepare(priv->bus_clk);
915 	clk_disable_unprepare(priv->can_clk);
916 	free_irq(ndev->irq, ndev);
917 	close_candev(ndev);
918 
919 	can_led_event(ndev, CAN_LED_EVENT_STOP);
920 
921 	return 0;
922 }
923 
924 /**
925  * xcan_get_berr_counter - error counter routine
926  * @ndev:	Pointer to net_device structure
927  * @bec:	Pointer to can_berr_counter structure
928  *
929  * This is the driver error counter routine.
930  * Return: 0 on success and failure value on error
931  */
932 static int xcan_get_berr_counter(const struct net_device *ndev,
933 					struct can_berr_counter *bec)
934 {
935 	struct xcan_priv *priv = netdev_priv(ndev);
936 	int ret;
937 
938 	ret = clk_prepare_enable(priv->can_clk);
939 	if (ret)
940 		goto err;
941 
942 	ret = clk_prepare_enable(priv->bus_clk);
943 	if (ret)
944 		goto err_clk;
945 
946 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
947 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
948 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
949 
950 	clk_disable_unprepare(priv->bus_clk);
951 	clk_disable_unprepare(priv->can_clk);
952 
953 	return 0;
954 
955 err_clk:
956 	clk_disable_unprepare(priv->can_clk);
957 err:
958 	return ret;
959 }
960 
961 
962 static const struct net_device_ops xcan_netdev_ops = {
963 	.ndo_open	= xcan_open,
964 	.ndo_stop	= xcan_close,
965 	.ndo_start_xmit	= xcan_start_xmit,
966 	.ndo_change_mtu	= can_change_mtu,
967 };
968 
969 /**
970  * xcan_suspend - Suspend method for the driver
971  * @dev:	Address of the platform_device structure
972  *
973  * Put the driver into low power mode.
974  * Return: 0 always
975  */
976 static int __maybe_unused xcan_suspend(struct device *dev)
977 {
978 	struct platform_device *pdev = dev_get_drvdata(dev);
979 	struct net_device *ndev = platform_get_drvdata(pdev);
980 	struct xcan_priv *priv = netdev_priv(ndev);
981 
982 	if (netif_running(ndev)) {
983 		netif_stop_queue(ndev);
984 		netif_device_detach(ndev);
985 	}
986 
987 	priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
988 	priv->can.state = CAN_STATE_SLEEPING;
989 
990 	clk_disable(priv->bus_clk);
991 	clk_disable(priv->can_clk);
992 
993 	return 0;
994 }
995 
996 /**
997  * xcan_resume - Resume from suspend
998  * @dev:	Address of the platformdevice structure
999  *
1000  * Resume operation after suspend.
1001  * Return: 0 on success and failure value on error
1002  */
1003 static int __maybe_unused xcan_resume(struct device *dev)
1004 {
1005 	struct platform_device *pdev = dev_get_drvdata(dev);
1006 	struct net_device *ndev = platform_get_drvdata(pdev);
1007 	struct xcan_priv *priv = netdev_priv(ndev);
1008 	int ret;
1009 
1010 	ret = clk_enable(priv->bus_clk);
1011 	if (ret) {
1012 		dev_err(dev, "Cannot enable clock.\n");
1013 		return ret;
1014 	}
1015 	ret = clk_enable(priv->can_clk);
1016 	if (ret) {
1017 		dev_err(dev, "Cannot enable clock.\n");
1018 		clk_disable_unprepare(priv->bus_clk);
1019 		return ret;
1020 	}
1021 
1022 	priv->write_reg(priv, XCAN_MSR_OFFSET, 0);
1023 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
1024 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1025 
1026 	if (netif_running(ndev)) {
1027 		netif_device_attach(ndev);
1028 		netif_start_queue(ndev);
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static SIMPLE_DEV_PM_OPS(xcan_dev_pm_ops, xcan_suspend, xcan_resume);
1035 
1036 /**
1037  * xcan_probe - Platform registration call
1038  * @pdev:	Handle to the platform device structure
1039  *
1040  * This function does all the memory allocation and registration for the CAN
1041  * device.
1042  *
1043  * Return: 0 on success and failure value on error
1044  */
1045 static int xcan_probe(struct platform_device *pdev)
1046 {
1047 	struct resource *res; /* IO mem resources */
1048 	struct net_device *ndev;
1049 	struct xcan_priv *priv;
1050 	void __iomem *addr;
1051 	int ret, rx_max, tx_max;
1052 
1053 	/* Get the virtual base address for the device */
1054 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1055 	addr = devm_ioremap_resource(&pdev->dev, res);
1056 	if (IS_ERR(addr)) {
1057 		ret = PTR_ERR(addr);
1058 		goto err;
1059 	}
1060 
1061 	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1062 	if (ret < 0)
1063 		goto err;
1064 
1065 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1066 	if (ret < 0)
1067 		goto err;
1068 
1069 	/* Create a CAN device instance */
1070 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1071 	if (!ndev)
1072 		return -ENOMEM;
1073 
1074 	priv = netdev_priv(ndev);
1075 	priv->dev = ndev;
1076 	priv->can.bittiming_const = &xcan_bittiming_const;
1077 	priv->can.do_set_mode = xcan_do_set_mode;
1078 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1079 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1080 					CAN_CTRLMODE_BERR_REPORTING;
1081 	priv->reg_base = addr;
1082 	priv->tx_max = tx_max;
1083 
1084 	/* Get IRQ for the device */
1085 	ndev->irq = platform_get_irq(pdev, 0);
1086 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1087 
1088 	platform_set_drvdata(pdev, ndev);
1089 	SET_NETDEV_DEV(ndev, &pdev->dev);
1090 	ndev->netdev_ops = &xcan_netdev_ops;
1091 
1092 	/* Getting the CAN can_clk info */
1093 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1094 	if (IS_ERR(priv->can_clk)) {
1095 		dev_err(&pdev->dev, "Device clock not found.\n");
1096 		ret = PTR_ERR(priv->can_clk);
1097 		goto err_free;
1098 	}
1099 	/* Check for type of CAN device */
1100 	if (of_device_is_compatible(pdev->dev.of_node,
1101 				    "xlnx,zynq-can-1.0")) {
1102 		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1103 		if (IS_ERR(priv->bus_clk)) {
1104 			dev_err(&pdev->dev, "bus clock not found\n");
1105 			ret = PTR_ERR(priv->bus_clk);
1106 			goto err_free;
1107 		}
1108 	} else {
1109 		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1110 		if (IS_ERR(priv->bus_clk)) {
1111 			dev_err(&pdev->dev, "bus clock not found\n");
1112 			ret = PTR_ERR(priv->bus_clk);
1113 			goto err_free;
1114 		}
1115 	}
1116 
1117 	ret = clk_prepare_enable(priv->can_clk);
1118 	if (ret) {
1119 		dev_err(&pdev->dev, "unable to enable device clock\n");
1120 		goto err_free;
1121 	}
1122 
1123 	ret = clk_prepare_enable(priv->bus_clk);
1124 	if (ret) {
1125 		dev_err(&pdev->dev, "unable to enable bus clock\n");
1126 		goto err_unprepare_disable_dev;
1127 	}
1128 
1129 	priv->write_reg = xcan_write_reg_le;
1130 	priv->read_reg = xcan_read_reg_le;
1131 
1132 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1133 		priv->write_reg = xcan_write_reg_be;
1134 		priv->read_reg = xcan_read_reg_be;
1135 	}
1136 
1137 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1138 
1139 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1140 
1141 	ret = register_candev(ndev);
1142 	if (ret) {
1143 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1144 		goto err_unprepare_disable_busclk;
1145 	}
1146 
1147 	devm_can_led_init(ndev);
1148 	clk_disable_unprepare(priv->bus_clk);
1149 	clk_disable_unprepare(priv->can_clk);
1150 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1151 			priv->reg_base, ndev->irq, priv->can.clock.freq,
1152 			priv->tx_max);
1153 
1154 	return 0;
1155 
1156 err_unprepare_disable_busclk:
1157 	clk_disable_unprepare(priv->bus_clk);
1158 err_unprepare_disable_dev:
1159 	clk_disable_unprepare(priv->can_clk);
1160 err_free:
1161 	free_candev(ndev);
1162 err:
1163 	return ret;
1164 }
1165 
1166 /**
1167  * xcan_remove - Unregister the device after releasing the resources
1168  * @pdev:	Handle to the platform device structure
1169  *
1170  * This function frees all the resources allocated to the device.
1171  * Return: 0 always
1172  */
1173 static int xcan_remove(struct platform_device *pdev)
1174 {
1175 	struct net_device *ndev = platform_get_drvdata(pdev);
1176 	struct xcan_priv *priv = netdev_priv(ndev);
1177 
1178 	if (set_reset_mode(ndev) < 0)
1179 		netdev_err(ndev, "mode resetting failed!\n");
1180 
1181 	unregister_candev(ndev);
1182 	netif_napi_del(&priv->napi);
1183 	free_candev(ndev);
1184 
1185 	return 0;
1186 }
1187 
1188 /* Match table for OF platform binding */
1189 static const struct of_device_id xcan_of_match[] = {
1190 	{ .compatible = "xlnx,zynq-can-1.0", },
1191 	{ .compatible = "xlnx,axi-can-1.00.a", },
1192 	{ /* end of list */ },
1193 };
1194 MODULE_DEVICE_TABLE(of, xcan_of_match);
1195 
1196 static struct platform_driver xcan_driver = {
1197 	.probe = xcan_probe,
1198 	.remove	= xcan_remove,
1199 	.driver	= {
1200 		.name = DRIVER_NAME,
1201 		.pm = &xcan_dev_pm_ops,
1202 		.of_match_table	= xcan_of_match,
1203 	},
1204 };
1205 
1206 module_platform_driver(xcan_driver);
1207 
1208 MODULE_LICENSE("GPL");
1209 MODULE_AUTHOR("Xilinx Inc");
1210 MODULE_DESCRIPTION("Xilinx CAN interface");
1211