xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2014 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
31 
32 #define DRIVER_NAME	"xilinx_can"
33 
34 /* CAN registers set */
35 enum xcan_reg {
36 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
37 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
38 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
39 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
40 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
41 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
42 	XCAN_SR_OFFSET		= 0x18, /* Status */
43 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
44 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
45 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
46 
47 	/* not on CAN FD cores */
48 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
49 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
50 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
51 
52 	/* only on CAN FD cores */
53 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
54 					  * Prescalar
55 					  */
56 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
57 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
58 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
59 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
60 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
61 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
62 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
63 };
64 
65 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
66 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
67 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
68 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
69 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
70 
71 #define XCAN_CANFD_FRAME_SIZE		0x48
72 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
73 					 XCAN_CANFD_FRAME_SIZE * (n))
74 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
75 					 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
77 					 XCAN_CANFD_FRAME_SIZE * (n))
78 
79 /* the single TX mailbox used by this driver on CAN FD HW */
80 #define XCAN_TX_MAILBOX_IDX		0
81 
82 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
83 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
84 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
85 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
86 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
87 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
88 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
89 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
90 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
91 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
92 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
93 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
94 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
95 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
96 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
97 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
98 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
99 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
100 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
101 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
102 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
103 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
104 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
105 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
106 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
107 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
108 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
109 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
110 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
111 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
112 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
113 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
114 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
115 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
116 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
117 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
118 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
119 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
120 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
121 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
122 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
123 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
124 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
125 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
126 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
127 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
128 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
129 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
130 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
131 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
132 
133 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
134 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
135 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
136 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
137 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
138 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
139 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
140 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
141 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
142 
143 /* CAN frame length constants */
144 #define XCAN_FRAME_MAX_DATA_LEN		8
145 #define XCANFD_DW_BYTES			4
146 #define XCAN_TIMEOUT			(1 * HZ)
147 
148 /* TX-FIFO-empty interrupt available */
149 #define XCAN_FLAG_TXFEMP	0x0001
150 /* RX Match Not Finished interrupt available */
151 #define XCAN_FLAG_RXMNF		0x0002
152 /* Extended acceptance filters with control at 0xE0 */
153 #define XCAN_FLAG_EXT_FILTERS	0x0004
154 /* TX mailboxes instead of TX FIFO */
155 #define XCAN_FLAG_TX_MAILBOXES	0x0008
156 /* RX FIFO with each buffer in separate registers at 0x1100
157  * instead of the regular FIFO at 0x50
158  */
159 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
160 #define XCAN_FLAG_CANFD_2	0x0020
161 
162 enum xcan_ip_type {
163 	XAXI_CAN = 0,
164 	XZYNQ_CANPS,
165 	XAXI_CANFD,
166 	XAXI_CANFD_2_0,
167 };
168 
169 struct xcan_devtype_data {
170 	enum xcan_ip_type cantype;
171 	unsigned int flags;
172 	const struct can_bittiming_const *bittiming_const;
173 	const char *bus_clk_name;
174 	unsigned int btr_ts2_shift;
175 	unsigned int btr_sjw_shift;
176 };
177 
178 /**
179  * struct xcan_priv - This definition define CAN driver instance
180  * @can:			CAN private data structure.
181  * @tx_lock:			Lock for synchronizing TX interrupt handling
182  * @tx_head:			Tx CAN packets ready to send on the queue
183  * @tx_tail:			Tx CAN packets successfully sended on the queue
184  * @tx_max:			Maximum number packets the driver can send
185  * @napi:			NAPI structure
186  * @read_reg:			For reading data from CAN registers
187  * @write_reg:			For writing data to CAN registers
188  * @dev:			Network device data structure
189  * @reg_base:			Ioremapped address to registers
190  * @irq_flags:			For request_irq()
191  * @bus_clk:			Pointer to struct clk
192  * @can_clk:			Pointer to struct clk
193  * @devtype:			Device type specific constants
194  */
195 struct xcan_priv {
196 	struct can_priv can;
197 	spinlock_t tx_lock;
198 	unsigned int tx_head;
199 	unsigned int tx_tail;
200 	unsigned int tx_max;
201 	struct napi_struct napi;
202 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
203 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
204 			  u32 val);
205 	struct device *dev;
206 	void __iomem *reg_base;
207 	unsigned long irq_flags;
208 	struct clk *bus_clk;
209 	struct clk *can_clk;
210 	struct xcan_devtype_data devtype;
211 };
212 
213 /* CAN Bittiming constants as per Xilinx CAN specs */
214 static const struct can_bittiming_const xcan_bittiming_const = {
215 	.name = DRIVER_NAME,
216 	.tseg1_min = 1,
217 	.tseg1_max = 16,
218 	.tseg2_min = 1,
219 	.tseg2_max = 8,
220 	.sjw_max = 4,
221 	.brp_min = 1,
222 	.brp_max = 256,
223 	.brp_inc = 1,
224 };
225 
226 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
227 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
228 	.name = DRIVER_NAME,
229 	.tseg1_min = 1,
230 	.tseg1_max = 64,
231 	.tseg2_min = 1,
232 	.tseg2_max = 16,
233 	.sjw_max = 16,
234 	.brp_min = 1,
235 	.brp_max = 256,
236 	.brp_inc = 1,
237 };
238 
239 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
240 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
241 	.name = DRIVER_NAME,
242 	.tseg1_min = 1,
243 	.tseg1_max = 16,
244 	.tseg2_min = 1,
245 	.tseg2_max = 8,
246 	.sjw_max = 8,
247 	.brp_min = 1,
248 	.brp_max = 256,
249 	.brp_inc = 1,
250 };
251 
252 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
253 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
254 	.name = DRIVER_NAME,
255 	.tseg1_min = 1,
256 	.tseg1_max = 256,
257 	.tseg2_min = 1,
258 	.tseg2_max = 128,
259 	.sjw_max = 128,
260 	.brp_min = 1,
261 	.brp_max = 256,
262 	.brp_inc = 1,
263 };
264 
265 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
266 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
267 	.name = DRIVER_NAME,
268 	.tseg1_min = 1,
269 	.tseg1_max = 32,
270 	.tseg2_min = 1,
271 	.tseg2_max = 16,
272 	.sjw_max = 16,
273 	.brp_min = 1,
274 	.brp_max = 256,
275 	.brp_inc = 1,
276 };
277 
278 /**
279  * xcan_write_reg_le - Write a value to the device register little endian
280  * @priv:	Driver private data structure
281  * @reg:	Register offset
282  * @val:	Value to write at the Register offset
283  *
284  * Write data to the paricular CAN register
285  */
286 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
287 			      u32 val)
288 {
289 	iowrite32(val, priv->reg_base + reg);
290 }
291 
292 /**
293  * xcan_read_reg_le - Read a value from the device register little endian
294  * @priv:	Driver private data structure
295  * @reg:	Register offset
296  *
297  * Read data from the particular CAN register
298  * Return: value read from the CAN register
299  */
300 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
301 {
302 	return ioread32(priv->reg_base + reg);
303 }
304 
305 /**
306  * xcan_write_reg_be - Write a value to the device register big endian
307  * @priv:	Driver private data structure
308  * @reg:	Register offset
309  * @val:	Value to write at the Register offset
310  *
311  * Write data to the paricular CAN register
312  */
313 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
314 			      u32 val)
315 {
316 	iowrite32be(val, priv->reg_base + reg);
317 }
318 
319 /**
320  * xcan_read_reg_be - Read a value from the device register big endian
321  * @priv:	Driver private data structure
322  * @reg:	Register offset
323  *
324  * Read data from the particular CAN register
325  * Return: value read from the CAN register
326  */
327 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
328 {
329 	return ioread32be(priv->reg_base + reg);
330 }
331 
332 /**
333  * xcan_rx_int_mask - Get the mask for the receive interrupt
334  * @priv:	Driver private data structure
335  *
336  * Return: The receive interrupt mask used by the driver on this HW
337  */
338 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
339 {
340 	/* RXNEMP is better suited for our use case as it cannot be cleared
341 	 * while the FIFO is non-empty, but CAN FD HW does not have it
342 	 */
343 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
344 		return XCAN_IXR_RXOK_MASK;
345 	else
346 		return XCAN_IXR_RXNEMP_MASK;
347 }
348 
349 /**
350  * set_reset_mode - Resets the CAN device mode
351  * @ndev:	Pointer to net_device structure
352  *
353  * This is the driver reset mode routine.The driver
354  * enters into configuration mode.
355  *
356  * Return: 0 on success and failure value on error
357  */
358 static int set_reset_mode(struct net_device *ndev)
359 {
360 	struct xcan_priv *priv = netdev_priv(ndev);
361 	unsigned long timeout;
362 
363 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
364 
365 	timeout = jiffies + XCAN_TIMEOUT;
366 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
367 		if (time_after(jiffies, timeout)) {
368 			netdev_warn(ndev, "timed out for config mode\n");
369 			return -ETIMEDOUT;
370 		}
371 		usleep_range(500, 10000);
372 	}
373 
374 	/* reset clears FIFOs */
375 	priv->tx_head = 0;
376 	priv->tx_tail = 0;
377 
378 	return 0;
379 }
380 
381 /**
382  * xcan_set_bittiming - CAN set bit timing routine
383  * @ndev:	Pointer to net_device structure
384  *
385  * This is the driver set bittiming  routine.
386  * Return: 0 on success and failure value on error
387  */
388 static int xcan_set_bittiming(struct net_device *ndev)
389 {
390 	struct xcan_priv *priv = netdev_priv(ndev);
391 	struct can_bittiming *bt = &priv->can.bittiming;
392 	struct can_bittiming *dbt = &priv->can.data_bittiming;
393 	u32 btr0, btr1;
394 	u32 is_config_mode;
395 
396 	/* Check whether Xilinx CAN is in configuration mode.
397 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
398 	 */
399 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
400 				XCAN_SR_CONFIG_MASK;
401 	if (!is_config_mode) {
402 		netdev_alert(ndev,
403 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
404 		return -EPERM;
405 	}
406 
407 	/* Setting Baud Rate prescalar value in BRPR Register */
408 	btr0 = (bt->brp - 1);
409 
410 	/* Setting Time Segment 1 in BTR Register */
411 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
412 
413 	/* Setting Time Segment 2 in BTR Register */
414 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
415 
416 	/* Setting Synchronous jump width in BTR Register */
417 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
418 
419 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
420 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
421 
422 	if (priv->devtype.cantype == XAXI_CANFD ||
423 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
424 		/* Setting Baud Rate prescalar value in F_BRPR Register */
425 		btr0 = dbt->brp - 1;
426 
427 		/* Setting Time Segment 1 in BTR Register */
428 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
429 
430 		/* Setting Time Segment 2 in BTR Register */
431 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
432 
433 		/* Setting Synchronous jump width in BTR Register */
434 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
435 
436 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
437 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
438 	}
439 
440 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
441 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
442 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
443 
444 	return 0;
445 }
446 
447 /**
448  * xcan_chip_start - This the drivers start routine
449  * @ndev:	Pointer to net_device structure
450  *
451  * This is the drivers start routine.
452  * Based on the State of the CAN device it puts
453  * the CAN device into a proper mode.
454  *
455  * Return: 0 on success and failure value on error
456  */
457 static int xcan_chip_start(struct net_device *ndev)
458 {
459 	struct xcan_priv *priv = netdev_priv(ndev);
460 	u32 reg_msr;
461 	int err;
462 	u32 ier;
463 
464 	/* Check if it is in reset mode */
465 	err = set_reset_mode(ndev);
466 	if (err < 0)
467 		return err;
468 
469 	err = xcan_set_bittiming(ndev);
470 	if (err < 0)
471 		return err;
472 
473 	/* Enable interrupts */
474 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
475 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
476 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
477 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
478 
479 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
480 		ier |= XCAN_IXR_RXMNF_MASK;
481 
482 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
483 
484 	/* Check whether it is loopback mode or normal mode  */
485 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
486 		reg_msr = XCAN_MSR_LBACK_MASK;
487 	} else {
488 		reg_msr = 0x0;
489 	}
490 
491 	/* enable the first extended filter, if any, as cores with extended
492 	 * filtering default to non-receipt if all filters are disabled
493 	 */
494 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
495 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
496 
497 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
498 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
499 
500 	netdev_dbg(ndev, "status:#x%08x\n",
501 		   priv->read_reg(priv, XCAN_SR_OFFSET));
502 
503 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
504 	return 0;
505 }
506 
507 /**
508  * xcan_do_set_mode - This sets the mode of the driver
509  * @ndev:	Pointer to net_device structure
510  * @mode:	Tells the mode of the driver
511  *
512  * This check the drivers state and calls the
513  * the corresponding modes to set.
514  *
515  * Return: 0 on success and failure value on error
516  */
517 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
518 {
519 	int ret;
520 
521 	switch (mode) {
522 	case CAN_MODE_START:
523 		ret = xcan_chip_start(ndev);
524 		if (ret < 0) {
525 			netdev_err(ndev, "xcan_chip_start failed!\n");
526 			return ret;
527 		}
528 		netif_wake_queue(ndev);
529 		break;
530 	default:
531 		ret = -EOPNOTSUPP;
532 		break;
533 	}
534 
535 	return ret;
536 }
537 
538 /**
539  * xcan_write_frame - Write a frame to HW
540  * @priv:		Driver private data structure
541  * @skb:		sk_buff pointer that contains data to be Txed
542  * @frame_offset:	Register offset to write the frame to
543  */
544 static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
545 			     int frame_offset)
546 {
547 	u32 id, dlc, data[2] = {0, 0};
548 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
549 	u32 ramoff, dwindex = 0, i;
550 
551 	/* Watch carefully on the bit sequence */
552 	if (cf->can_id & CAN_EFF_FLAG) {
553 		/* Extended CAN ID format */
554 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
555 			XCAN_IDR_ID2_MASK;
556 		id |= (((cf->can_id & CAN_EFF_MASK) >>
557 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
558 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
559 
560 		/* The substibute remote TX request bit should be "1"
561 		 * for extended frames as in the Xilinx CAN datasheet
562 		 */
563 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
564 
565 		if (cf->can_id & CAN_RTR_FLAG)
566 			/* Extended frames remote TX request */
567 			id |= XCAN_IDR_RTR_MASK;
568 	} else {
569 		/* Standard CAN ID format */
570 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
571 			XCAN_IDR_ID1_MASK;
572 
573 		if (cf->can_id & CAN_RTR_FLAG)
574 			/* Standard frames remote TX request */
575 			id |= XCAN_IDR_SRR_MASK;
576 	}
577 
578 	dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
579 	if (can_is_canfd_skb(skb)) {
580 		if (cf->flags & CANFD_BRS)
581 			dlc |= XCAN_DLCR_BRS_MASK;
582 		dlc |= XCAN_DLCR_EDL_MASK;
583 	}
584 
585 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
586 	/* If the CAN frame is RTR frame this write triggers transmission
587 	 * (not on CAN FD)
588 	 */
589 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
590 	if (priv->devtype.cantype == XAXI_CANFD ||
591 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
592 		for (i = 0; i < cf->len; i += 4) {
593 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
594 					(dwindex * XCANFD_DW_BYTES);
595 			priv->write_reg(priv, ramoff,
596 					be32_to_cpup((__be32 *)(cf->data + i)));
597 			dwindex++;
598 		}
599 	} else {
600 		if (cf->len > 0)
601 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
602 		if (cf->len > 4)
603 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
604 
605 		if (!(cf->can_id & CAN_RTR_FLAG)) {
606 			priv->write_reg(priv,
607 					XCAN_FRAME_DW1_OFFSET(frame_offset),
608 					data[0]);
609 			/* If the CAN frame is Standard/Extended frame this
610 			 * write triggers transmission (not on CAN FD)
611 			 */
612 			priv->write_reg(priv,
613 					XCAN_FRAME_DW2_OFFSET(frame_offset),
614 					data[1]);
615 		}
616 	}
617 }
618 
619 /**
620  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
621  * @skb:	sk_buff pointer that contains data to be Txed
622  * @ndev:	Pointer to net_device structure
623  *
624  * Return: 0 on success, -ENOSPC if FIFO is full.
625  */
626 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
627 {
628 	struct xcan_priv *priv = netdev_priv(ndev);
629 	unsigned long flags;
630 
631 	/* Check if the TX buffer is full */
632 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
633 			XCAN_SR_TXFLL_MASK))
634 		return -ENOSPC;
635 
636 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
637 
638 	spin_lock_irqsave(&priv->tx_lock, flags);
639 
640 	priv->tx_head++;
641 
642 	xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
643 
644 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
645 	if (priv->tx_max > 1)
646 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
647 
648 	/* Check if the TX buffer is full */
649 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
650 		netif_stop_queue(ndev);
651 
652 	spin_unlock_irqrestore(&priv->tx_lock, flags);
653 
654 	return 0;
655 }
656 
657 /**
658  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
659  * @skb:	sk_buff pointer that contains data to be Txed
660  * @ndev:	Pointer to net_device structure
661  *
662  * Return: 0 on success, -ENOSPC if there is no space
663  */
664 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
665 {
666 	struct xcan_priv *priv = netdev_priv(ndev);
667 	unsigned long flags;
668 
669 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
670 		     BIT(XCAN_TX_MAILBOX_IDX)))
671 		return -ENOSPC;
672 
673 	can_put_echo_skb(skb, ndev, 0);
674 
675 	spin_lock_irqsave(&priv->tx_lock, flags);
676 
677 	priv->tx_head++;
678 
679 	xcan_write_frame(priv, skb,
680 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
681 
682 	/* Mark buffer as ready for transmit */
683 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
684 
685 	netif_stop_queue(ndev);
686 
687 	spin_unlock_irqrestore(&priv->tx_lock, flags);
688 
689 	return 0;
690 }
691 
692 /**
693  * xcan_start_xmit - Starts the transmission
694  * @skb:	sk_buff pointer that contains data to be Txed
695  * @ndev:	Pointer to net_device structure
696  *
697  * This function is invoked from upper layers to initiate transmission.
698  *
699  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
700  */
701 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
702 {
703 	struct xcan_priv *priv = netdev_priv(ndev);
704 	int ret;
705 
706 	if (can_dropped_invalid_skb(ndev, skb))
707 		return NETDEV_TX_OK;
708 
709 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
710 		ret = xcan_start_xmit_mailbox(skb, ndev);
711 	else
712 		ret = xcan_start_xmit_fifo(skb, ndev);
713 
714 	if (ret < 0) {
715 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
716 		netif_stop_queue(ndev);
717 		return NETDEV_TX_BUSY;
718 	}
719 
720 	return NETDEV_TX_OK;
721 }
722 
723 /**
724  * xcan_rx -  Is called from CAN isr to complete the received
725  *		frame  processing
726  * @ndev:	Pointer to net_device structure
727  * @frame_base:	Register offset to the frame to be read
728  *
729  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
730  * does minimal processing and invokes "netif_receive_skb" to complete further
731  * processing.
732  * Return: 1 on success and 0 on failure.
733  */
734 static int xcan_rx(struct net_device *ndev, int frame_base)
735 {
736 	struct xcan_priv *priv = netdev_priv(ndev);
737 	struct net_device_stats *stats = &ndev->stats;
738 	struct can_frame *cf;
739 	struct sk_buff *skb;
740 	u32 id_xcan, dlc, data[2] = {0, 0};
741 
742 	skb = alloc_can_skb(ndev, &cf);
743 	if (unlikely(!skb)) {
744 		stats->rx_dropped++;
745 		return 0;
746 	}
747 
748 	/* Read a frame from Xilinx zynq CANPS */
749 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
750 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
751 				   XCAN_DLCR_DLC_SHIFT;
752 
753 	/* Change Xilinx CAN data length format to socketCAN data format */
754 	cf->can_dlc = get_can_dlc(dlc);
755 
756 	/* Change Xilinx CAN ID format to socketCAN ID format */
757 	if (id_xcan & XCAN_IDR_IDE_MASK) {
758 		/* The received frame is an Extended format frame */
759 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
760 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
761 				XCAN_IDR_ID2_SHIFT;
762 		cf->can_id |= CAN_EFF_FLAG;
763 		if (id_xcan & XCAN_IDR_RTR_MASK)
764 			cf->can_id |= CAN_RTR_FLAG;
765 	} else {
766 		/* The received frame is a standard format frame */
767 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
768 				XCAN_IDR_ID1_SHIFT;
769 		if (id_xcan & XCAN_IDR_SRR_MASK)
770 			cf->can_id |= CAN_RTR_FLAG;
771 	}
772 
773 	/* DW1/DW2 must always be read to remove message from RXFIFO */
774 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
775 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
776 
777 	if (!(cf->can_id & CAN_RTR_FLAG)) {
778 		/* Change Xilinx CAN data format to socketCAN data format */
779 		if (cf->can_dlc > 0)
780 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
781 		if (cf->can_dlc > 4)
782 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
783 	}
784 
785 	stats->rx_bytes += cf->can_dlc;
786 	stats->rx_packets++;
787 	netif_receive_skb(skb);
788 
789 	return 1;
790 }
791 
792 /**
793  * xcanfd_rx -  Is called from CAN isr to complete the received
794  *		frame  processing
795  * @ndev:	Pointer to net_device structure
796  * @frame_base:	Register offset to the frame to be read
797  *
798  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
799  * does minimal processing and invokes "netif_receive_skb" to complete further
800  * processing.
801  * Return: 1 on success and 0 on failure.
802  */
803 static int xcanfd_rx(struct net_device *ndev, int frame_base)
804 {
805 	struct xcan_priv *priv = netdev_priv(ndev);
806 	struct net_device_stats *stats = &ndev->stats;
807 	struct canfd_frame *cf;
808 	struct sk_buff *skb;
809 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
810 
811 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
812 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
813 	if (dlc & XCAN_DLCR_EDL_MASK)
814 		skb = alloc_canfd_skb(ndev, &cf);
815 	else
816 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
817 
818 	if (unlikely(!skb)) {
819 		stats->rx_dropped++;
820 		return 0;
821 	}
822 
823 	/* Change Xilinx CANFD data length format to socketCAN data
824 	 * format
825 	 */
826 	if (dlc & XCAN_DLCR_EDL_MASK)
827 		cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
828 				  XCAN_DLCR_DLC_SHIFT);
829 	else
830 		cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
831 					  XCAN_DLCR_DLC_SHIFT);
832 
833 	/* Change Xilinx CAN ID format to socketCAN ID format */
834 	if (id_xcan & XCAN_IDR_IDE_MASK) {
835 		/* The received frame is an Extended format frame */
836 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
837 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
838 				XCAN_IDR_ID2_SHIFT;
839 		cf->can_id |= CAN_EFF_FLAG;
840 		if (id_xcan & XCAN_IDR_RTR_MASK)
841 			cf->can_id |= CAN_RTR_FLAG;
842 	} else {
843 		/* The received frame is a standard format frame */
844 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
845 				XCAN_IDR_ID1_SHIFT;
846 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
847 					XCAN_IDR_SRR_MASK))
848 			cf->can_id |= CAN_RTR_FLAG;
849 	}
850 
851 	/* Check the frame received is FD or not*/
852 	if (dlc & XCAN_DLCR_EDL_MASK) {
853 		for (i = 0; i < cf->len; i += 4) {
854 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
855 					(dwindex * XCANFD_DW_BYTES);
856 			data[0] = priv->read_reg(priv, dw_offset);
857 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
858 			dwindex++;
859 		}
860 	} else {
861 		for (i = 0; i < cf->len; i += 4) {
862 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
863 			data[0] = priv->read_reg(priv, dw_offset + i);
864 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
865 		}
866 	}
867 	stats->rx_bytes += cf->len;
868 	stats->rx_packets++;
869 	netif_receive_skb(skb);
870 
871 	return 1;
872 }
873 
874 /**
875  * xcan_current_error_state - Get current error state from HW
876  * @ndev:	Pointer to net_device structure
877  *
878  * Checks the current CAN error state from the HW. Note that this
879  * only checks for ERROR_PASSIVE and ERROR_WARNING.
880  *
881  * Return:
882  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
883  * otherwise.
884  */
885 static enum can_state xcan_current_error_state(struct net_device *ndev)
886 {
887 	struct xcan_priv *priv = netdev_priv(ndev);
888 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
889 
890 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
891 		return CAN_STATE_ERROR_PASSIVE;
892 	else if (status & XCAN_SR_ERRWRN_MASK)
893 		return CAN_STATE_ERROR_WARNING;
894 	else
895 		return CAN_STATE_ERROR_ACTIVE;
896 }
897 
898 /**
899  * xcan_set_error_state - Set new CAN error state
900  * @ndev:	Pointer to net_device structure
901  * @new_state:	The new CAN state to be set
902  * @cf:		Error frame to be populated or NULL
903  *
904  * Set new CAN error state for the device, updating statistics and
905  * populating the error frame if given.
906  */
907 static void xcan_set_error_state(struct net_device *ndev,
908 				 enum can_state new_state,
909 				 struct can_frame *cf)
910 {
911 	struct xcan_priv *priv = netdev_priv(ndev);
912 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
913 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
914 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
915 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
916 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
917 
918 	/* non-ERROR states are handled elsewhere */
919 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
920 		return;
921 
922 	can_change_state(ndev, cf, tx_state, rx_state);
923 
924 	if (cf) {
925 		cf->data[6] = txerr;
926 		cf->data[7] = rxerr;
927 	}
928 }
929 
930 /**
931  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
932  * @ndev:	Pointer to net_device structure
933  *
934  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
935  * the performed RX/TX has caused it to drop to a lesser state and set
936  * the interface state accordingly.
937  */
938 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
939 {
940 	struct xcan_priv *priv = netdev_priv(ndev);
941 	enum can_state old_state = priv->can.state;
942 	enum can_state new_state;
943 
944 	/* changing error state due to successful frame RX/TX can only
945 	 * occur from these states
946 	 */
947 	if (old_state != CAN_STATE_ERROR_WARNING &&
948 	    old_state != CAN_STATE_ERROR_PASSIVE)
949 		return;
950 
951 	new_state = xcan_current_error_state(ndev);
952 
953 	if (new_state != old_state) {
954 		struct sk_buff *skb;
955 		struct can_frame *cf;
956 
957 		skb = alloc_can_err_skb(ndev, &cf);
958 
959 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
960 
961 		if (skb) {
962 			struct net_device_stats *stats = &ndev->stats;
963 
964 			stats->rx_packets++;
965 			stats->rx_bytes += cf->can_dlc;
966 			netif_rx(skb);
967 		}
968 	}
969 }
970 
971 /**
972  * xcan_err_interrupt - error frame Isr
973  * @ndev:	net_device pointer
974  * @isr:	interrupt status register value
975  *
976  * This is the CAN error interrupt and it will
977  * check the the type of error and forward the error
978  * frame to upper layers.
979  */
980 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
981 {
982 	struct xcan_priv *priv = netdev_priv(ndev);
983 	struct net_device_stats *stats = &ndev->stats;
984 	struct can_frame *cf;
985 	struct sk_buff *skb;
986 	u32 err_status;
987 
988 	skb = alloc_can_err_skb(ndev, &cf);
989 
990 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
991 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
992 
993 	if (isr & XCAN_IXR_BSOFF_MASK) {
994 		priv->can.state = CAN_STATE_BUS_OFF;
995 		priv->can.can_stats.bus_off++;
996 		/* Leave device in Config Mode in bus-off state */
997 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
998 		can_bus_off(ndev);
999 		if (skb)
1000 			cf->can_id |= CAN_ERR_BUSOFF;
1001 	} else {
1002 		enum can_state new_state = xcan_current_error_state(ndev);
1003 
1004 		if (new_state != priv->can.state)
1005 			xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1006 	}
1007 
1008 	/* Check for Arbitration lost interrupt */
1009 	if (isr & XCAN_IXR_ARBLST_MASK) {
1010 		priv->can.can_stats.arbitration_lost++;
1011 		if (skb) {
1012 			cf->can_id |= CAN_ERR_LOSTARB;
1013 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
1014 		}
1015 	}
1016 
1017 	/* Check for RX FIFO Overflow interrupt */
1018 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1019 		stats->rx_over_errors++;
1020 		stats->rx_errors++;
1021 		if (skb) {
1022 			cf->can_id |= CAN_ERR_CRTL;
1023 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1024 		}
1025 	}
1026 
1027 	/* Check for RX Match Not Finished interrupt */
1028 	if (isr & XCAN_IXR_RXMNF_MASK) {
1029 		stats->rx_dropped++;
1030 		stats->rx_errors++;
1031 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1032 		if (skb) {
1033 			cf->can_id |= CAN_ERR_CRTL;
1034 			cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
1035 		}
1036 	}
1037 
1038 	/* Check for error interrupt */
1039 	if (isr & XCAN_IXR_ERROR_MASK) {
1040 		if (skb)
1041 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1042 
1043 		/* Check for Ack error interrupt */
1044 		if (err_status & XCAN_ESR_ACKER_MASK) {
1045 			stats->tx_errors++;
1046 			if (skb) {
1047 				cf->can_id |= CAN_ERR_ACK;
1048 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1049 			}
1050 		}
1051 
1052 		/* Check for Bit error interrupt */
1053 		if (err_status & XCAN_ESR_BERR_MASK) {
1054 			stats->tx_errors++;
1055 			if (skb) {
1056 				cf->can_id |= CAN_ERR_PROT;
1057 				cf->data[2] = CAN_ERR_PROT_BIT;
1058 			}
1059 		}
1060 
1061 		/* Check for Stuff error interrupt */
1062 		if (err_status & XCAN_ESR_STER_MASK) {
1063 			stats->rx_errors++;
1064 			if (skb) {
1065 				cf->can_id |= CAN_ERR_PROT;
1066 				cf->data[2] = CAN_ERR_PROT_STUFF;
1067 			}
1068 		}
1069 
1070 		/* Check for Form error interrupt */
1071 		if (err_status & XCAN_ESR_FMER_MASK) {
1072 			stats->rx_errors++;
1073 			if (skb) {
1074 				cf->can_id |= CAN_ERR_PROT;
1075 				cf->data[2] = CAN_ERR_PROT_FORM;
1076 			}
1077 		}
1078 
1079 		/* Check for CRC error interrupt */
1080 		if (err_status & XCAN_ESR_CRCER_MASK) {
1081 			stats->rx_errors++;
1082 			if (skb) {
1083 				cf->can_id |= CAN_ERR_PROT;
1084 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1085 			}
1086 		}
1087 		priv->can.can_stats.bus_error++;
1088 	}
1089 
1090 	if (skb) {
1091 		stats->rx_packets++;
1092 		stats->rx_bytes += cf->can_dlc;
1093 		netif_rx(skb);
1094 	}
1095 
1096 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1097 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1098 }
1099 
1100 /**
1101  * xcan_state_interrupt - It will check the state of the CAN device
1102  * @ndev:	net_device pointer
1103  * @isr:	interrupt status register value
1104  *
1105  * This will checks the state of the CAN device
1106  * and puts the device into appropriate state.
1107  */
1108 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1109 {
1110 	struct xcan_priv *priv = netdev_priv(ndev);
1111 
1112 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1113 	if (isr & XCAN_IXR_SLP_MASK)
1114 		priv->can.state = CAN_STATE_SLEEPING;
1115 
1116 	/* Check for Wake up interrupt if set put CAN device in Active state */
1117 	if (isr & XCAN_IXR_WKUP_MASK)
1118 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1119 }
1120 
1121 /**
1122  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1123  * @priv:	Driver private data structure
1124  *
1125  * Return: Register offset of the next frame in RX FIFO.
1126  */
1127 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1128 {
1129 	int offset;
1130 
1131 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1132 		u32 fsr, mask;
1133 
1134 		/* clear RXOK before the is-empty check so that any newly
1135 		 * received frame will reassert it without a race
1136 		 */
1137 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1138 
1139 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1140 
1141 		/* check if RX FIFO is empty */
1142 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1143 			mask = XCAN_2_FSR_FL_MASK;
1144 		else
1145 			mask = XCAN_FSR_FL_MASK;
1146 
1147 		if (!(fsr & mask))
1148 			return -ENOENT;
1149 
1150 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1151 			offset =
1152 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1153 		else
1154 			offset =
1155 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1156 
1157 	} else {
1158 		/* check if RX FIFO is empty */
1159 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1160 		      XCAN_IXR_RXNEMP_MASK))
1161 			return -ENOENT;
1162 
1163 		/* frames are read from a static offset */
1164 		offset = XCAN_RXFIFO_OFFSET;
1165 	}
1166 
1167 	return offset;
1168 }
1169 
1170 /**
1171  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1172  * @napi:	napi structure pointer
1173  * @quota:	Max number of rx packets to be processed.
1174  *
1175  * This is the poll routine for rx part.
1176  * It will process the packets maximux quota value.
1177  *
1178  * Return: number of packets received
1179  */
1180 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1181 {
1182 	struct net_device *ndev = napi->dev;
1183 	struct xcan_priv *priv = netdev_priv(ndev);
1184 	u32 ier;
1185 	int work_done = 0;
1186 	int frame_offset;
1187 
1188 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1189 	       (work_done < quota)) {
1190 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1191 			work_done += xcanfd_rx(ndev, frame_offset);
1192 		else
1193 			work_done += xcan_rx(ndev, frame_offset);
1194 
1195 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1196 			/* increment read index */
1197 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1198 					XCAN_FSR_IRI_MASK);
1199 		else
1200 			/* clear rx-not-empty (will actually clear only if
1201 			 * empty)
1202 			 */
1203 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1204 					XCAN_IXR_RXNEMP_MASK);
1205 	}
1206 
1207 	if (work_done) {
1208 		can_led_event(ndev, CAN_LED_EVENT_RX);
1209 		xcan_update_error_state_after_rxtx(ndev);
1210 	}
1211 
1212 	if (work_done < quota) {
1213 		napi_complete_done(napi, work_done);
1214 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1215 		ier |= xcan_rx_int_mask(priv);
1216 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1217 	}
1218 	return work_done;
1219 }
1220 
1221 /**
1222  * xcan_tx_interrupt - Tx Done Isr
1223  * @ndev:	net_device pointer
1224  * @isr:	Interrupt status register value
1225  */
1226 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1227 {
1228 	struct xcan_priv *priv = netdev_priv(ndev);
1229 	struct net_device_stats *stats = &ndev->stats;
1230 	unsigned int frames_in_fifo;
1231 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1232 	unsigned long flags;
1233 	int retries = 0;
1234 
1235 	/* Synchronize with xmit as we need to know the exact number
1236 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1237 	 * handling.
1238 	 * This also prevents a race between netif_wake_queue() and
1239 	 * netif_stop_queue().
1240 	 */
1241 	spin_lock_irqsave(&priv->tx_lock, flags);
1242 
1243 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1244 
1245 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1246 		/* clear TXOK anyway to avoid getting back here */
1247 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1248 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1249 		return;
1250 	}
1251 
1252 	/* Check if 2 frames were sent (TXOK only means that at least 1
1253 	 * frame was sent).
1254 	 */
1255 	if (frames_in_fifo > 1) {
1256 		WARN_ON(frames_in_fifo > priv->tx_max);
1257 
1258 		/* Synchronize TXOK and isr so that after the loop:
1259 		 * (1) isr variable is up-to-date at least up to TXOK clear
1260 		 *     time. This avoids us clearing a TXOK of a second frame
1261 		 *     but not noticing that the FIFO is now empty and thus
1262 		 *     marking only a single frame as sent.
1263 		 * (2) No TXOK is left. Having one could mean leaving a
1264 		 *     stray TXOK as we might process the associated frame
1265 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1266 		 *     clear to satisfy (1).
1267 		 */
1268 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1269 		       !WARN_ON(++retries == 100)) {
1270 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1271 					XCAN_IXR_TXOK_MASK);
1272 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1273 		}
1274 
1275 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1276 			/* nothing in FIFO anymore */
1277 			frames_sent = frames_in_fifo;
1278 		}
1279 	} else {
1280 		/* single frame in fifo, just clear TXOK */
1281 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1282 	}
1283 
1284 	while (frames_sent--) {
1285 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1286 						    priv->tx_max);
1287 		priv->tx_tail++;
1288 		stats->tx_packets++;
1289 	}
1290 
1291 	netif_wake_queue(ndev);
1292 
1293 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1294 
1295 	can_led_event(ndev, CAN_LED_EVENT_TX);
1296 	xcan_update_error_state_after_rxtx(ndev);
1297 }
1298 
1299 /**
1300  * xcan_interrupt - CAN Isr
1301  * @irq:	irq number
1302  * @dev_id:	device id poniter
1303  *
1304  * This is the xilinx CAN Isr. It checks for the type of interrupt
1305  * and invokes the corresponding ISR.
1306  *
1307  * Return:
1308  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1309  */
1310 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1311 {
1312 	struct net_device *ndev = (struct net_device *)dev_id;
1313 	struct xcan_priv *priv = netdev_priv(ndev);
1314 	u32 isr, ier;
1315 	u32 isr_errors;
1316 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1317 
1318 	/* Get the interrupt status from Xilinx CAN */
1319 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1320 	if (!isr)
1321 		return IRQ_NONE;
1322 
1323 	/* Check for the type of interrupt and Processing it */
1324 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1325 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1326 				XCAN_IXR_WKUP_MASK));
1327 		xcan_state_interrupt(ndev, isr);
1328 	}
1329 
1330 	/* Check for Tx interrupt and Processing it */
1331 	if (isr & XCAN_IXR_TXOK_MASK)
1332 		xcan_tx_interrupt(ndev, isr);
1333 
1334 	/* Check for the type of error interrupt and Processing it */
1335 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1336 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1337 			    XCAN_IXR_RXMNF_MASK);
1338 	if (isr_errors) {
1339 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1340 		xcan_err_interrupt(ndev, isr);
1341 	}
1342 
1343 	/* Check for the type of receive interrupt and Processing it */
1344 	if (isr & rx_int_mask) {
1345 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1346 		ier &= ~rx_int_mask;
1347 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1348 		napi_schedule(&priv->napi);
1349 	}
1350 	return IRQ_HANDLED;
1351 }
1352 
1353 /**
1354  * xcan_chip_stop - Driver stop routine
1355  * @ndev:	Pointer to net_device structure
1356  *
1357  * This is the drivers stop routine. It will disable the
1358  * interrupts and put the device into configuration mode.
1359  */
1360 static void xcan_chip_stop(struct net_device *ndev)
1361 {
1362 	struct xcan_priv *priv = netdev_priv(ndev);
1363 
1364 	/* Disable interrupts and leave the can in configuration mode */
1365 	set_reset_mode(ndev);
1366 	priv->can.state = CAN_STATE_STOPPED;
1367 }
1368 
1369 /**
1370  * xcan_open - Driver open routine
1371  * @ndev:	Pointer to net_device structure
1372  *
1373  * This is the driver open routine.
1374  * Return: 0 on success and failure value on error
1375  */
1376 static int xcan_open(struct net_device *ndev)
1377 {
1378 	struct xcan_priv *priv = netdev_priv(ndev);
1379 	int ret;
1380 
1381 	ret = pm_runtime_get_sync(priv->dev);
1382 	if (ret < 0) {
1383 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1384 			   __func__, ret);
1385 		return ret;
1386 	}
1387 
1388 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1389 			  ndev->name, ndev);
1390 	if (ret < 0) {
1391 		netdev_err(ndev, "irq allocation for CAN failed\n");
1392 		goto err;
1393 	}
1394 
1395 	/* Set chip into reset mode */
1396 	ret = set_reset_mode(ndev);
1397 	if (ret < 0) {
1398 		netdev_err(ndev, "mode resetting failed!\n");
1399 		goto err_irq;
1400 	}
1401 
1402 	/* Common open */
1403 	ret = open_candev(ndev);
1404 	if (ret)
1405 		goto err_irq;
1406 
1407 	ret = xcan_chip_start(ndev);
1408 	if (ret < 0) {
1409 		netdev_err(ndev, "xcan_chip_start failed!\n");
1410 		goto err_candev;
1411 	}
1412 
1413 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1414 	napi_enable(&priv->napi);
1415 	netif_start_queue(ndev);
1416 
1417 	return 0;
1418 
1419 err_candev:
1420 	close_candev(ndev);
1421 err_irq:
1422 	free_irq(ndev->irq, ndev);
1423 err:
1424 	pm_runtime_put(priv->dev);
1425 
1426 	return ret;
1427 }
1428 
1429 /**
1430  * xcan_close - Driver close routine
1431  * @ndev:	Pointer to net_device structure
1432  *
1433  * Return: 0 always
1434  */
1435 static int xcan_close(struct net_device *ndev)
1436 {
1437 	struct xcan_priv *priv = netdev_priv(ndev);
1438 
1439 	netif_stop_queue(ndev);
1440 	napi_disable(&priv->napi);
1441 	xcan_chip_stop(ndev);
1442 	free_irq(ndev->irq, ndev);
1443 	close_candev(ndev);
1444 
1445 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1446 	pm_runtime_put(priv->dev);
1447 
1448 	return 0;
1449 }
1450 
1451 /**
1452  * xcan_get_berr_counter - error counter routine
1453  * @ndev:	Pointer to net_device structure
1454  * @bec:	Pointer to can_berr_counter structure
1455  *
1456  * This is the driver error counter routine.
1457  * Return: 0 on success and failure value on error
1458  */
1459 static int xcan_get_berr_counter(const struct net_device *ndev,
1460 				 struct can_berr_counter *bec)
1461 {
1462 	struct xcan_priv *priv = netdev_priv(ndev);
1463 	int ret;
1464 
1465 	ret = pm_runtime_get_sync(priv->dev);
1466 	if (ret < 0) {
1467 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1468 			   __func__, ret);
1469 		return ret;
1470 	}
1471 
1472 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1473 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1474 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1475 
1476 	pm_runtime_put(priv->dev);
1477 
1478 	return 0;
1479 }
1480 
1481 static const struct net_device_ops xcan_netdev_ops = {
1482 	.ndo_open	= xcan_open,
1483 	.ndo_stop	= xcan_close,
1484 	.ndo_start_xmit	= xcan_start_xmit,
1485 	.ndo_change_mtu	= can_change_mtu,
1486 };
1487 
1488 /**
1489  * xcan_suspend - Suspend method for the driver
1490  * @dev:	Address of the device structure
1491  *
1492  * Put the driver into low power mode.
1493  * Return: 0 on success and failure value on error
1494  */
1495 static int __maybe_unused xcan_suspend(struct device *dev)
1496 {
1497 	struct net_device *ndev = dev_get_drvdata(dev);
1498 
1499 	if (netif_running(ndev)) {
1500 		netif_stop_queue(ndev);
1501 		netif_device_detach(ndev);
1502 		xcan_chip_stop(ndev);
1503 	}
1504 
1505 	return pm_runtime_force_suspend(dev);
1506 }
1507 
1508 /**
1509  * xcan_resume - Resume from suspend
1510  * @dev:	Address of the device structure
1511  *
1512  * Resume operation after suspend.
1513  * Return: 0 on success and failure value on error
1514  */
1515 static int __maybe_unused xcan_resume(struct device *dev)
1516 {
1517 	struct net_device *ndev = dev_get_drvdata(dev);
1518 	int ret;
1519 
1520 	ret = pm_runtime_force_resume(dev);
1521 	if (ret) {
1522 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1523 		return ret;
1524 	}
1525 
1526 	if (netif_running(ndev)) {
1527 		ret = xcan_chip_start(ndev);
1528 		if (ret) {
1529 			dev_err(dev, "xcan_chip_start failed on resume\n");
1530 			return ret;
1531 		}
1532 
1533 		netif_device_attach(ndev);
1534 		netif_start_queue(ndev);
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * xcan_runtime_suspend - Runtime suspend method for the driver
1542  * @dev:	Address of the device structure
1543  *
1544  * Put the driver into low power mode.
1545  * Return: 0 always
1546  */
1547 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1548 {
1549 	struct net_device *ndev = dev_get_drvdata(dev);
1550 	struct xcan_priv *priv = netdev_priv(ndev);
1551 
1552 	clk_disable_unprepare(priv->bus_clk);
1553 	clk_disable_unprepare(priv->can_clk);
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * xcan_runtime_resume - Runtime resume from suspend
1560  * @dev:	Address of the device structure
1561  *
1562  * Resume operation after suspend.
1563  * Return: 0 on success and failure value on error
1564  */
1565 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1566 {
1567 	struct net_device *ndev = dev_get_drvdata(dev);
1568 	struct xcan_priv *priv = netdev_priv(ndev);
1569 	int ret;
1570 
1571 	ret = clk_prepare_enable(priv->bus_clk);
1572 	if (ret) {
1573 		dev_err(dev, "Cannot enable clock.\n");
1574 		return ret;
1575 	}
1576 	ret = clk_prepare_enable(priv->can_clk);
1577 	if (ret) {
1578 		dev_err(dev, "Cannot enable clock.\n");
1579 		clk_disable_unprepare(priv->bus_clk);
1580 		return ret;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 static const struct dev_pm_ops xcan_dev_pm_ops = {
1587 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1588 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1589 };
1590 
1591 static const struct xcan_devtype_data xcan_zynq_data = {
1592 	.cantype = XZYNQ_CANPS,
1593 	.flags = XCAN_FLAG_TXFEMP,
1594 	.bittiming_const = &xcan_bittiming_const,
1595 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1596 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1597 	.bus_clk_name = "pclk",
1598 };
1599 
1600 static const struct xcan_devtype_data xcan_axi_data = {
1601 	.cantype = XAXI_CAN,
1602 	.flags = XCAN_FLAG_TXFEMP,
1603 	.bittiming_const = &xcan_bittiming_const,
1604 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1605 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1606 	.bus_clk_name = "s_axi_aclk",
1607 };
1608 
1609 static const struct xcan_devtype_data xcan_canfd_data = {
1610 	.cantype = XAXI_CANFD,
1611 	.flags = XCAN_FLAG_EXT_FILTERS |
1612 		 XCAN_FLAG_RXMNF |
1613 		 XCAN_FLAG_TX_MAILBOXES |
1614 		 XCAN_FLAG_RX_FIFO_MULTI,
1615 	.bittiming_const = &xcan_bittiming_const_canfd,
1616 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1617 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1618 	.bus_clk_name = "s_axi_aclk",
1619 };
1620 
1621 static const struct xcan_devtype_data xcan_canfd2_data = {
1622 	.cantype = XAXI_CANFD_2_0,
1623 	.flags = XCAN_FLAG_EXT_FILTERS |
1624 		 XCAN_FLAG_RXMNF |
1625 		 XCAN_FLAG_TX_MAILBOXES |
1626 		 XCAN_FLAG_CANFD_2 |
1627 		 XCAN_FLAG_RX_FIFO_MULTI,
1628 	.bittiming_const = &xcan_bittiming_const_canfd2,
1629 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1630 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1631 	.bus_clk_name = "s_axi_aclk",
1632 };
1633 
1634 /* Match table for OF platform binding */
1635 static const struct of_device_id xcan_of_match[] = {
1636 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1637 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1638 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1639 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1640 	{ /* end of list */ },
1641 };
1642 MODULE_DEVICE_TABLE(of, xcan_of_match);
1643 
1644 /**
1645  * xcan_probe - Platform registration call
1646  * @pdev:	Handle to the platform device structure
1647  *
1648  * This function does all the memory allocation and registration for the CAN
1649  * device.
1650  *
1651  * Return: 0 on success and failure value on error
1652  */
1653 static int xcan_probe(struct platform_device *pdev)
1654 {
1655 	struct resource *res; /* IO mem resources */
1656 	struct net_device *ndev;
1657 	struct xcan_priv *priv;
1658 	const struct of_device_id *of_id;
1659 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1660 	void __iomem *addr;
1661 	int ret;
1662 	int rx_max, tx_max;
1663 	int hw_tx_max, hw_rx_max;
1664 	const char *hw_tx_max_property;
1665 
1666 	/* Get the virtual base address for the device */
1667 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1668 	addr = devm_ioremap_resource(&pdev->dev, res);
1669 	if (IS_ERR(addr)) {
1670 		ret = PTR_ERR(addr);
1671 		goto err;
1672 	}
1673 
1674 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1675 	if (of_id && of_id->data)
1676 		devtype = of_id->data;
1677 
1678 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1679 			     "tx-mailbox-count" : "tx-fifo-depth";
1680 
1681 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1682 				   &hw_tx_max);
1683 	if (ret < 0) {
1684 		dev_err(&pdev->dev, "missing %s property\n",
1685 			hw_tx_max_property);
1686 		goto err;
1687 	}
1688 
1689 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1690 				   &hw_rx_max);
1691 	if (ret < 0) {
1692 		dev_err(&pdev->dev,
1693 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1694 		goto err;
1695 	}
1696 
1697 	/* With TX FIFO:
1698 	 *
1699 	 * There is no way to directly figure out how many frames have been
1700 	 * sent when the TXOK interrupt is processed. If TXFEMP
1701 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1702 	 * to determine if 1 or 2 frames have been sent.
1703 	 * Theoretically we should be able to use TXFWMEMP to determine up
1704 	 * to 3 frames, but it seems that after putting a second frame in the
1705 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1706 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1707 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1708 	 * completely synchronized with the rest of the bits?
1709 	 *
1710 	 * With TX mailboxes:
1711 	 *
1712 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1713 	 * we submit frames one at a time.
1714 	 */
1715 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1716 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1717 		tx_max = min(hw_tx_max, 2);
1718 	else
1719 		tx_max = 1;
1720 
1721 	rx_max = hw_rx_max;
1722 
1723 	/* Create a CAN device instance */
1724 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1725 	if (!ndev)
1726 		return -ENOMEM;
1727 
1728 	priv = netdev_priv(ndev);
1729 	priv->dev = &pdev->dev;
1730 	priv->can.bittiming_const = devtype->bittiming_const;
1731 	priv->can.do_set_mode = xcan_do_set_mode;
1732 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1733 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1734 					CAN_CTRLMODE_BERR_REPORTING;
1735 
1736 	if (devtype->cantype == XAXI_CANFD)
1737 		priv->can.data_bittiming_const =
1738 			&xcan_data_bittiming_const_canfd;
1739 
1740 	if (devtype->cantype == XAXI_CANFD_2_0)
1741 		priv->can.data_bittiming_const =
1742 			&xcan_data_bittiming_const_canfd2;
1743 
1744 	if (devtype->cantype == XAXI_CANFD ||
1745 	    devtype->cantype == XAXI_CANFD_2_0)
1746 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1747 
1748 	priv->reg_base = addr;
1749 	priv->tx_max = tx_max;
1750 	priv->devtype = *devtype;
1751 	spin_lock_init(&priv->tx_lock);
1752 
1753 	/* Get IRQ for the device */
1754 	ndev->irq = platform_get_irq(pdev, 0);
1755 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1756 
1757 	platform_set_drvdata(pdev, ndev);
1758 	SET_NETDEV_DEV(ndev, &pdev->dev);
1759 	ndev->netdev_ops = &xcan_netdev_ops;
1760 
1761 	/* Getting the CAN can_clk info */
1762 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1763 	if (IS_ERR(priv->can_clk)) {
1764 		if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1765 			dev_err(&pdev->dev, "Device clock not found.\n");
1766 		ret = PTR_ERR(priv->can_clk);
1767 		goto err_free;
1768 	}
1769 
1770 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1771 	if (IS_ERR(priv->bus_clk)) {
1772 		dev_err(&pdev->dev, "bus clock not found\n");
1773 		ret = PTR_ERR(priv->bus_clk);
1774 		goto err_free;
1775 	}
1776 
1777 	priv->write_reg = xcan_write_reg_le;
1778 	priv->read_reg = xcan_read_reg_le;
1779 
1780 	pm_runtime_enable(&pdev->dev);
1781 	ret = pm_runtime_get_sync(&pdev->dev);
1782 	if (ret < 0) {
1783 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1784 			   __func__, ret);
1785 		goto err_pmdisable;
1786 	}
1787 
1788 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1789 		priv->write_reg = xcan_write_reg_be;
1790 		priv->read_reg = xcan_read_reg_be;
1791 	}
1792 
1793 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1794 
1795 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1796 
1797 	ret = register_candev(ndev);
1798 	if (ret) {
1799 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1800 		goto err_disableclks;
1801 	}
1802 
1803 	devm_can_led_init(ndev);
1804 
1805 	pm_runtime_put(&pdev->dev);
1806 
1807 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1808 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1809 		   hw_tx_max, priv->tx_max);
1810 
1811 	return 0;
1812 
1813 err_disableclks:
1814 	pm_runtime_put(priv->dev);
1815 err_pmdisable:
1816 	pm_runtime_disable(&pdev->dev);
1817 err_free:
1818 	free_candev(ndev);
1819 err:
1820 	return ret;
1821 }
1822 
1823 /**
1824  * xcan_remove - Unregister the device after releasing the resources
1825  * @pdev:	Handle to the platform device structure
1826  *
1827  * This function frees all the resources allocated to the device.
1828  * Return: 0 always
1829  */
1830 static int xcan_remove(struct platform_device *pdev)
1831 {
1832 	struct net_device *ndev = platform_get_drvdata(pdev);
1833 	struct xcan_priv *priv = netdev_priv(ndev);
1834 
1835 	unregister_candev(ndev);
1836 	pm_runtime_disable(&pdev->dev);
1837 	netif_napi_del(&priv->napi);
1838 	free_candev(ndev);
1839 
1840 	return 0;
1841 }
1842 
1843 static struct platform_driver xcan_driver = {
1844 	.probe = xcan_probe,
1845 	.remove	= xcan_remove,
1846 	.driver	= {
1847 		.name = DRIVER_NAME,
1848 		.pm = &xcan_dev_pm_ops,
1849 		.of_match_table	= xcan_of_match,
1850 	},
1851 };
1852 
1853 module_platform_driver(xcan_driver);
1854 
1855 MODULE_LICENSE("GPL");
1856 MODULE_AUTHOR("Xilinx Inc");
1857 MODULE_DESCRIPTION("Xilinx CAN interface");
1858