xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /* Xilinx CAN device driver
2  *
3  * Copyright (C) 2012 - 2014 Xilinx, Inc.
4  * Copyright (C) 2009 PetaLogix. All rights reserved.
5  *
6  * Description:
7  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/skbuff.h>
30 #include <linux/string.h>
31 #include <linux/types.h>
32 #include <linux/can/dev.h>
33 #include <linux/can/error.h>
34 #include <linux/can/led.h>
35 #include <linux/pm_runtime.h>
36 
37 #define DRIVER_NAME	"xilinx_can"
38 
39 /* CAN registers set */
40 enum xcan_reg {
41 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
42 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
43 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
44 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
45 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
46 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
47 	XCAN_SR_OFFSET		= 0x18, /* Status */
48 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
49 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
50 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
51 	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
52 	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
53 	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
54 	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
55 	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
56 	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
57 	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
58 	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
59 };
60 
61 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
62 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
63 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
64 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
65 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
66 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
67 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
68 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
69 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
70 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
71 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
72 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
73 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
74 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
75 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
76 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
77 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
78 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
79 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
80 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
81 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
82 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
83 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
84 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
85 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
86 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
87 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
88 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
89 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
90 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
91 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
92 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
93 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
94 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
95 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
96 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
97 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
98 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
99 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
100 
101 #define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
102 				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
103 				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
104 				 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
105 
106 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
107 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
108 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
109 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
110 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
111 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
112 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
113 
114 /* CAN frame length constants */
115 #define XCAN_FRAME_MAX_DATA_LEN		8
116 #define XCAN_TIMEOUT			(1 * HZ)
117 
118 /**
119  * struct xcan_priv - This definition define CAN driver instance
120  * @can:			CAN private data structure.
121  * @tx_head:			Tx CAN packets ready to send on the queue
122  * @tx_tail:			Tx CAN packets successfully sended on the queue
123  * @tx_max:			Maximum number packets the driver can send
124  * @napi:			NAPI structure
125  * @read_reg:			For reading data from CAN registers
126  * @write_reg:			For writing data to CAN registers
127  * @dev:			Network device data structure
128  * @reg_base:			Ioremapped address to registers
129  * @irq_flags:			For request_irq()
130  * @bus_clk:			Pointer to struct clk
131  * @can_clk:			Pointer to struct clk
132  */
133 struct xcan_priv {
134 	struct can_priv can;
135 	unsigned int tx_head;
136 	unsigned int tx_tail;
137 	unsigned int tx_max;
138 	struct napi_struct napi;
139 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
140 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
141 			u32 val);
142 	struct device *dev;
143 	void __iomem *reg_base;
144 	unsigned long irq_flags;
145 	struct clk *bus_clk;
146 	struct clk *can_clk;
147 };
148 
149 /* CAN Bittiming constants as per Xilinx CAN specs */
150 static const struct can_bittiming_const xcan_bittiming_const = {
151 	.name = DRIVER_NAME,
152 	.tseg1_min = 1,
153 	.tseg1_max = 16,
154 	.tseg2_min = 1,
155 	.tseg2_max = 8,
156 	.sjw_max = 4,
157 	.brp_min = 1,
158 	.brp_max = 256,
159 	.brp_inc = 1,
160 };
161 
162 /**
163  * xcan_write_reg_le - Write a value to the device register little endian
164  * @priv:	Driver private data structure
165  * @reg:	Register offset
166  * @val:	Value to write at the Register offset
167  *
168  * Write data to the paricular CAN register
169  */
170 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
171 			u32 val)
172 {
173 	iowrite32(val, priv->reg_base + reg);
174 }
175 
176 /**
177  * xcan_read_reg_le - Read a value from the device register little endian
178  * @priv:	Driver private data structure
179  * @reg:	Register offset
180  *
181  * Read data from the particular CAN register
182  * Return: value read from the CAN register
183  */
184 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
185 {
186 	return ioread32(priv->reg_base + reg);
187 }
188 
189 /**
190  * xcan_write_reg_be - Write a value to the device register big endian
191  * @priv:	Driver private data structure
192  * @reg:	Register offset
193  * @val:	Value to write at the Register offset
194  *
195  * Write data to the paricular CAN register
196  */
197 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
198 			u32 val)
199 {
200 	iowrite32be(val, priv->reg_base + reg);
201 }
202 
203 /**
204  * xcan_read_reg_be - Read a value from the device register big endian
205  * @priv:	Driver private data structure
206  * @reg:	Register offset
207  *
208  * Read data from the particular CAN register
209  * Return: value read from the CAN register
210  */
211 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
212 {
213 	return ioread32be(priv->reg_base + reg);
214 }
215 
216 /**
217  * set_reset_mode - Resets the CAN device mode
218  * @ndev:	Pointer to net_device structure
219  *
220  * This is the driver reset mode routine.The driver
221  * enters into configuration mode.
222  *
223  * Return: 0 on success and failure value on error
224  */
225 static int set_reset_mode(struct net_device *ndev)
226 {
227 	struct xcan_priv *priv = netdev_priv(ndev);
228 	unsigned long timeout;
229 
230 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
231 
232 	timeout = jiffies + XCAN_TIMEOUT;
233 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
234 		if (time_after(jiffies, timeout)) {
235 			netdev_warn(ndev, "timed out for config mode\n");
236 			return -ETIMEDOUT;
237 		}
238 		usleep_range(500, 10000);
239 	}
240 
241 	return 0;
242 }
243 
244 /**
245  * xcan_set_bittiming - CAN set bit timing routine
246  * @ndev:	Pointer to net_device structure
247  *
248  * This is the driver set bittiming  routine.
249  * Return: 0 on success and failure value on error
250  */
251 static int xcan_set_bittiming(struct net_device *ndev)
252 {
253 	struct xcan_priv *priv = netdev_priv(ndev);
254 	struct can_bittiming *bt = &priv->can.bittiming;
255 	u32 btr0, btr1;
256 	u32 is_config_mode;
257 
258 	/* Check whether Xilinx CAN is in configuration mode.
259 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
260 	 */
261 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
262 				XCAN_SR_CONFIG_MASK;
263 	if (!is_config_mode) {
264 		netdev_alert(ndev,
265 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
266 		return -EPERM;
267 	}
268 
269 	/* Setting Baud Rate prescalar value in BRPR Register */
270 	btr0 = (bt->brp - 1);
271 
272 	/* Setting Time Segment 1 in BTR Register */
273 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
274 
275 	/* Setting Time Segment 2 in BTR Register */
276 	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
277 
278 	/* Setting Synchronous jump width in BTR Register */
279 	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
280 
281 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
282 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
283 
284 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
285 			priv->read_reg(priv, XCAN_BRPR_OFFSET),
286 			priv->read_reg(priv, XCAN_BTR_OFFSET));
287 
288 	return 0;
289 }
290 
291 /**
292  * xcan_chip_start - This the drivers start routine
293  * @ndev:	Pointer to net_device structure
294  *
295  * This is the drivers start routine.
296  * Based on the State of the CAN device it puts
297  * the CAN device into a proper mode.
298  *
299  * Return: 0 on success and failure value on error
300  */
301 static int xcan_chip_start(struct net_device *ndev)
302 {
303 	struct xcan_priv *priv = netdev_priv(ndev);
304 	u32 reg_msr, reg_sr_mask;
305 	int err;
306 	unsigned long timeout;
307 
308 	/* Check if it is in reset mode */
309 	err = set_reset_mode(ndev);
310 	if (err < 0)
311 		return err;
312 
313 	err = xcan_set_bittiming(ndev);
314 	if (err < 0)
315 		return err;
316 
317 	/* Enable interrupts */
318 	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
319 
320 	/* Check whether it is loopback mode or normal mode  */
321 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
322 		reg_msr = XCAN_MSR_LBACK_MASK;
323 		reg_sr_mask = XCAN_SR_LBACK_MASK;
324 	} else {
325 		reg_msr = 0x0;
326 		reg_sr_mask = XCAN_SR_NORMAL_MASK;
327 	}
328 
329 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
330 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
331 
332 	timeout = jiffies + XCAN_TIMEOUT;
333 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
334 		if (time_after(jiffies, timeout)) {
335 			netdev_warn(ndev,
336 				"timed out for correct mode\n");
337 			return -ETIMEDOUT;
338 		}
339 	}
340 	netdev_dbg(ndev, "status:#x%08x\n",
341 			priv->read_reg(priv, XCAN_SR_OFFSET));
342 
343 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
344 	return 0;
345 }
346 
347 /**
348  * xcan_do_set_mode - This sets the mode of the driver
349  * @ndev:	Pointer to net_device structure
350  * @mode:	Tells the mode of the driver
351  *
352  * This check the drivers state and calls the
353  * the corresponding modes to set.
354  *
355  * Return: 0 on success and failure value on error
356  */
357 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
358 {
359 	int ret;
360 
361 	switch (mode) {
362 	case CAN_MODE_START:
363 		ret = xcan_chip_start(ndev);
364 		if (ret < 0) {
365 			netdev_err(ndev, "xcan_chip_start failed!\n");
366 			return ret;
367 		}
368 		netif_wake_queue(ndev);
369 		break;
370 	default:
371 		ret = -EOPNOTSUPP;
372 		break;
373 	}
374 
375 	return ret;
376 }
377 
378 /**
379  * xcan_start_xmit - Starts the transmission
380  * @skb:	sk_buff pointer that contains data to be Txed
381  * @ndev:	Pointer to net_device structure
382  *
383  * This function is invoked from upper layers to initiate transmission. This
384  * function uses the next available free txbuff and populates their fields to
385  * start the transmission.
386  *
387  * Return: 0 on success and failure value on error
388  */
389 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
390 {
391 	struct xcan_priv *priv = netdev_priv(ndev);
392 	struct net_device_stats *stats = &ndev->stats;
393 	struct can_frame *cf = (struct can_frame *)skb->data;
394 	u32 id, dlc, data[2] = {0, 0};
395 
396 	if (can_dropped_invalid_skb(ndev, skb))
397 		return NETDEV_TX_OK;
398 
399 	/* Check if the TX buffer is full */
400 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
401 			XCAN_SR_TXFLL_MASK)) {
402 		netif_stop_queue(ndev);
403 		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
404 		return NETDEV_TX_BUSY;
405 	}
406 
407 	/* Watch carefully on the bit sequence */
408 	if (cf->can_id & CAN_EFF_FLAG) {
409 		/* Extended CAN ID format */
410 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
411 			XCAN_IDR_ID2_MASK;
412 		id |= (((cf->can_id & CAN_EFF_MASK) >>
413 			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
414 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
415 
416 		/* The substibute remote TX request bit should be "1"
417 		 * for extended frames as in the Xilinx CAN datasheet
418 		 */
419 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
420 
421 		if (cf->can_id & CAN_RTR_FLAG)
422 			/* Extended frames remote TX request */
423 			id |= XCAN_IDR_RTR_MASK;
424 	} else {
425 		/* Standard CAN ID format */
426 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
427 			XCAN_IDR_ID1_MASK;
428 
429 		if (cf->can_id & CAN_RTR_FLAG)
430 			/* Standard frames remote TX request */
431 			id |= XCAN_IDR_SRR_MASK;
432 	}
433 
434 	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
435 
436 	if (cf->can_dlc > 0)
437 		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
438 	if (cf->can_dlc > 4)
439 		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
440 
441 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
442 	priv->tx_head++;
443 
444 	/* Write the Frame to Xilinx CAN TX FIFO */
445 	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
446 	/* If the CAN frame is RTR frame this write triggers tranmission */
447 	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
448 	if (!(cf->can_id & CAN_RTR_FLAG)) {
449 		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
450 		/* If the CAN frame is Standard/Extended frame this
451 		 * write triggers tranmission
452 		 */
453 		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
454 		stats->tx_bytes += cf->can_dlc;
455 	}
456 
457 	/* Check if the TX buffer is full */
458 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
459 		netif_stop_queue(ndev);
460 
461 	return NETDEV_TX_OK;
462 }
463 
464 /**
465  * xcan_rx -  Is called from CAN isr to complete the received
466  *		frame  processing
467  * @ndev:	Pointer to net_device structure
468  *
469  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
470  * does minimal processing and invokes "netif_receive_skb" to complete further
471  * processing.
472  * Return: 1 on success and 0 on failure.
473  */
474 static int xcan_rx(struct net_device *ndev)
475 {
476 	struct xcan_priv *priv = netdev_priv(ndev);
477 	struct net_device_stats *stats = &ndev->stats;
478 	struct can_frame *cf;
479 	struct sk_buff *skb;
480 	u32 id_xcan, dlc, data[2] = {0, 0};
481 
482 	skb = alloc_can_skb(ndev, &cf);
483 	if (unlikely(!skb)) {
484 		stats->rx_dropped++;
485 		return 0;
486 	}
487 
488 	/* Read a frame from Xilinx zynq CANPS */
489 	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
490 	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
491 				XCAN_DLCR_DLC_SHIFT;
492 
493 	/* Change Xilinx CAN data length format to socketCAN data format */
494 	cf->can_dlc = get_can_dlc(dlc);
495 
496 	/* Change Xilinx CAN ID format to socketCAN ID format */
497 	if (id_xcan & XCAN_IDR_IDE_MASK) {
498 		/* The received frame is an Extended format frame */
499 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
500 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
501 				XCAN_IDR_ID2_SHIFT;
502 		cf->can_id |= CAN_EFF_FLAG;
503 		if (id_xcan & XCAN_IDR_RTR_MASK)
504 			cf->can_id |= CAN_RTR_FLAG;
505 	} else {
506 		/* The received frame is a standard format frame */
507 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
508 				XCAN_IDR_ID1_SHIFT;
509 		if (id_xcan & XCAN_IDR_SRR_MASK)
510 			cf->can_id |= CAN_RTR_FLAG;
511 	}
512 
513 	/* DW1/DW2 must always be read to remove message from RXFIFO */
514 	data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
515 	data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
516 
517 	if (!(cf->can_id & CAN_RTR_FLAG)) {
518 		/* Change Xilinx CAN data format to socketCAN data format */
519 		if (cf->can_dlc > 0)
520 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
521 		if (cf->can_dlc > 4)
522 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
523 	}
524 
525 	stats->rx_bytes += cf->can_dlc;
526 	stats->rx_packets++;
527 	netif_receive_skb(skb);
528 
529 	return 1;
530 }
531 
532 /**
533  * xcan_err_interrupt - error frame Isr
534  * @ndev:	net_device pointer
535  * @isr:	interrupt status register value
536  *
537  * This is the CAN error interrupt and it will
538  * check the the type of error and forward the error
539  * frame to upper layers.
540  */
541 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
542 {
543 	struct xcan_priv *priv = netdev_priv(ndev);
544 	struct net_device_stats *stats = &ndev->stats;
545 	struct can_frame *cf;
546 	struct sk_buff *skb;
547 	u32 err_status, status, txerr = 0, rxerr = 0;
548 
549 	skb = alloc_can_err_skb(ndev, &cf);
550 
551 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
552 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
553 	txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
554 	rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
555 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
556 	status = priv->read_reg(priv, XCAN_SR_OFFSET);
557 
558 	if (isr & XCAN_IXR_BSOFF_MASK) {
559 		priv->can.state = CAN_STATE_BUS_OFF;
560 		priv->can.can_stats.bus_off++;
561 		/* Leave device in Config Mode in bus-off state */
562 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
563 		can_bus_off(ndev);
564 		if (skb)
565 			cf->can_id |= CAN_ERR_BUSOFF;
566 	} else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
567 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
568 		priv->can.can_stats.error_passive++;
569 		if (skb) {
570 			cf->can_id |= CAN_ERR_CRTL;
571 			cf->data[1] = (rxerr > 127) ?
572 					CAN_ERR_CRTL_RX_PASSIVE :
573 					CAN_ERR_CRTL_TX_PASSIVE;
574 			cf->data[6] = txerr;
575 			cf->data[7] = rxerr;
576 		}
577 	} else if (status & XCAN_SR_ERRWRN_MASK) {
578 		priv->can.state = CAN_STATE_ERROR_WARNING;
579 		priv->can.can_stats.error_warning++;
580 		if (skb) {
581 			cf->can_id |= CAN_ERR_CRTL;
582 			cf->data[1] |= (txerr > rxerr) ?
583 					CAN_ERR_CRTL_TX_WARNING :
584 					CAN_ERR_CRTL_RX_WARNING;
585 			cf->data[6] = txerr;
586 			cf->data[7] = rxerr;
587 		}
588 	}
589 
590 	/* Check for Arbitration lost interrupt */
591 	if (isr & XCAN_IXR_ARBLST_MASK) {
592 		priv->can.can_stats.arbitration_lost++;
593 		if (skb) {
594 			cf->can_id |= CAN_ERR_LOSTARB;
595 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
596 		}
597 	}
598 
599 	/* Check for RX FIFO Overflow interrupt */
600 	if (isr & XCAN_IXR_RXOFLW_MASK) {
601 		stats->rx_over_errors++;
602 		stats->rx_errors++;
603 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
604 		if (skb) {
605 			cf->can_id |= CAN_ERR_CRTL;
606 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
607 		}
608 	}
609 
610 	/* Check for error interrupt */
611 	if (isr & XCAN_IXR_ERROR_MASK) {
612 		if (skb)
613 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
614 
615 		/* Check for Ack error interrupt */
616 		if (err_status & XCAN_ESR_ACKER_MASK) {
617 			stats->tx_errors++;
618 			if (skb) {
619 				cf->can_id |= CAN_ERR_ACK;
620 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
621 			}
622 		}
623 
624 		/* Check for Bit error interrupt */
625 		if (err_status & XCAN_ESR_BERR_MASK) {
626 			stats->tx_errors++;
627 			if (skb) {
628 				cf->can_id |= CAN_ERR_PROT;
629 				cf->data[2] = CAN_ERR_PROT_BIT;
630 			}
631 		}
632 
633 		/* Check for Stuff error interrupt */
634 		if (err_status & XCAN_ESR_STER_MASK) {
635 			stats->rx_errors++;
636 			if (skb) {
637 				cf->can_id |= CAN_ERR_PROT;
638 				cf->data[2] = CAN_ERR_PROT_STUFF;
639 			}
640 		}
641 
642 		/* Check for Form error interrupt */
643 		if (err_status & XCAN_ESR_FMER_MASK) {
644 			stats->rx_errors++;
645 			if (skb) {
646 				cf->can_id |= CAN_ERR_PROT;
647 				cf->data[2] = CAN_ERR_PROT_FORM;
648 			}
649 		}
650 
651 		/* Check for CRC error interrupt */
652 		if (err_status & XCAN_ESR_CRCER_MASK) {
653 			stats->rx_errors++;
654 			if (skb) {
655 				cf->can_id |= CAN_ERR_PROT;
656 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
657 			}
658 		}
659 			priv->can.can_stats.bus_error++;
660 	}
661 
662 	if (skb) {
663 		stats->rx_packets++;
664 		stats->rx_bytes += cf->can_dlc;
665 		netif_rx(skb);
666 	}
667 
668 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
669 			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
670 }
671 
672 /**
673  * xcan_state_interrupt - It will check the state of the CAN device
674  * @ndev:	net_device pointer
675  * @isr:	interrupt status register value
676  *
677  * This will checks the state of the CAN device
678  * and puts the device into appropriate state.
679  */
680 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
681 {
682 	struct xcan_priv *priv = netdev_priv(ndev);
683 
684 	/* Check for Sleep interrupt if set put CAN device in sleep state */
685 	if (isr & XCAN_IXR_SLP_MASK)
686 		priv->can.state = CAN_STATE_SLEEPING;
687 
688 	/* Check for Wake up interrupt if set put CAN device in Active state */
689 	if (isr & XCAN_IXR_WKUP_MASK)
690 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
691 }
692 
693 /**
694  * xcan_rx_poll - Poll routine for rx packets (NAPI)
695  * @napi:	napi structure pointer
696  * @quota:	Max number of rx packets to be processed.
697  *
698  * This is the poll routine for rx part.
699  * It will process the packets maximux quota value.
700  *
701  * Return: number of packets received
702  */
703 static int xcan_rx_poll(struct napi_struct *napi, int quota)
704 {
705 	struct net_device *ndev = napi->dev;
706 	struct xcan_priv *priv = netdev_priv(ndev);
707 	u32 isr, ier;
708 	int work_done = 0;
709 
710 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
711 	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
712 		if (isr & XCAN_IXR_RXOK_MASK) {
713 			priv->write_reg(priv, XCAN_ICR_OFFSET,
714 				XCAN_IXR_RXOK_MASK);
715 			work_done += xcan_rx(ndev);
716 		} else {
717 			priv->write_reg(priv, XCAN_ICR_OFFSET,
718 				XCAN_IXR_RXNEMP_MASK);
719 			break;
720 		}
721 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
722 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
723 	}
724 
725 	if (work_done)
726 		can_led_event(ndev, CAN_LED_EVENT_RX);
727 
728 	if (work_done < quota) {
729 		napi_complete_done(napi, work_done);
730 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
731 		ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
732 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
733 	}
734 	return work_done;
735 }
736 
737 /**
738  * xcan_tx_interrupt - Tx Done Isr
739  * @ndev:	net_device pointer
740  * @isr:	Interrupt status register value
741  */
742 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
743 {
744 	struct xcan_priv *priv = netdev_priv(ndev);
745 	struct net_device_stats *stats = &ndev->stats;
746 
747 	while ((priv->tx_head - priv->tx_tail > 0) &&
748 			(isr & XCAN_IXR_TXOK_MASK)) {
749 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
750 		can_get_echo_skb(ndev, priv->tx_tail %
751 					priv->tx_max);
752 		priv->tx_tail++;
753 		stats->tx_packets++;
754 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
755 	}
756 	can_led_event(ndev, CAN_LED_EVENT_TX);
757 	netif_wake_queue(ndev);
758 }
759 
760 /**
761  * xcan_interrupt - CAN Isr
762  * @irq:	irq number
763  * @dev_id:	device id poniter
764  *
765  * This is the xilinx CAN Isr. It checks for the type of interrupt
766  * and invokes the corresponding ISR.
767  *
768  * Return:
769  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
770  */
771 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
772 {
773 	struct net_device *ndev = (struct net_device *)dev_id;
774 	struct xcan_priv *priv = netdev_priv(ndev);
775 	u32 isr, ier;
776 
777 	/* Get the interrupt status from Xilinx CAN */
778 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
779 	if (!isr)
780 		return IRQ_NONE;
781 
782 	/* Check for the type of interrupt and Processing it */
783 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
784 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
785 				XCAN_IXR_WKUP_MASK));
786 		xcan_state_interrupt(ndev, isr);
787 	}
788 
789 	/* Check for Tx interrupt and Processing it */
790 	if (isr & XCAN_IXR_TXOK_MASK)
791 		xcan_tx_interrupt(ndev, isr);
792 
793 	/* Check for the type of error interrupt and Processing it */
794 	if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
795 			XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
796 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
797 				XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
798 				XCAN_IXR_ARBLST_MASK));
799 		xcan_err_interrupt(ndev, isr);
800 	}
801 
802 	/* Check for the type of receive interrupt and Processing it */
803 	if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
804 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
805 		ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
806 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
807 		napi_schedule(&priv->napi);
808 	}
809 	return IRQ_HANDLED;
810 }
811 
812 /**
813  * xcan_chip_stop - Driver stop routine
814  * @ndev:	Pointer to net_device structure
815  *
816  * This is the drivers stop routine. It will disable the
817  * interrupts and put the device into configuration mode.
818  */
819 static void xcan_chip_stop(struct net_device *ndev)
820 {
821 	struct xcan_priv *priv = netdev_priv(ndev);
822 	u32 ier;
823 
824 	/* Disable interrupts and leave the can in configuration mode */
825 	ier = priv->read_reg(priv, XCAN_IER_OFFSET);
826 	ier &= ~XCAN_INTR_ALL;
827 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
828 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
829 	priv->can.state = CAN_STATE_STOPPED;
830 }
831 
832 /**
833  * xcan_open - Driver open routine
834  * @ndev:	Pointer to net_device structure
835  *
836  * This is the driver open routine.
837  * Return: 0 on success and failure value on error
838  */
839 static int xcan_open(struct net_device *ndev)
840 {
841 	struct xcan_priv *priv = netdev_priv(ndev);
842 	int ret;
843 
844 	ret = pm_runtime_get_sync(priv->dev);
845 	if (ret < 0) {
846 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
847 				__func__, ret);
848 		return ret;
849 	}
850 
851 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
852 			ndev->name, ndev);
853 	if (ret < 0) {
854 		netdev_err(ndev, "irq allocation for CAN failed\n");
855 		goto err;
856 	}
857 
858 	/* Set chip into reset mode */
859 	ret = set_reset_mode(ndev);
860 	if (ret < 0) {
861 		netdev_err(ndev, "mode resetting failed!\n");
862 		goto err_irq;
863 	}
864 
865 	/* Common open */
866 	ret = open_candev(ndev);
867 	if (ret)
868 		goto err_irq;
869 
870 	ret = xcan_chip_start(ndev);
871 	if (ret < 0) {
872 		netdev_err(ndev, "xcan_chip_start failed!\n");
873 		goto err_candev;
874 	}
875 
876 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
877 	napi_enable(&priv->napi);
878 	netif_start_queue(ndev);
879 
880 	return 0;
881 
882 err_candev:
883 	close_candev(ndev);
884 err_irq:
885 	free_irq(ndev->irq, ndev);
886 err:
887 	pm_runtime_put(priv->dev);
888 
889 	return ret;
890 }
891 
892 /**
893  * xcan_close - Driver close routine
894  * @ndev:	Pointer to net_device structure
895  *
896  * Return: 0 always
897  */
898 static int xcan_close(struct net_device *ndev)
899 {
900 	struct xcan_priv *priv = netdev_priv(ndev);
901 
902 	netif_stop_queue(ndev);
903 	napi_disable(&priv->napi);
904 	xcan_chip_stop(ndev);
905 	free_irq(ndev->irq, ndev);
906 	close_candev(ndev);
907 
908 	can_led_event(ndev, CAN_LED_EVENT_STOP);
909 	pm_runtime_put(priv->dev);
910 
911 	return 0;
912 }
913 
914 /**
915  * xcan_get_berr_counter - error counter routine
916  * @ndev:	Pointer to net_device structure
917  * @bec:	Pointer to can_berr_counter structure
918  *
919  * This is the driver error counter routine.
920  * Return: 0 on success and failure value on error
921  */
922 static int xcan_get_berr_counter(const struct net_device *ndev,
923 					struct can_berr_counter *bec)
924 {
925 	struct xcan_priv *priv = netdev_priv(ndev);
926 	int ret;
927 
928 	ret = pm_runtime_get_sync(priv->dev);
929 	if (ret < 0) {
930 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
931 				__func__, ret);
932 		return ret;
933 	}
934 
935 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
936 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
937 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
938 
939 	pm_runtime_put(priv->dev);
940 
941 	return 0;
942 }
943 
944 
945 static const struct net_device_ops xcan_netdev_ops = {
946 	.ndo_open	= xcan_open,
947 	.ndo_stop	= xcan_close,
948 	.ndo_start_xmit	= xcan_start_xmit,
949 	.ndo_change_mtu	= can_change_mtu,
950 };
951 
952 /**
953  * xcan_suspend - Suspend method for the driver
954  * @dev:	Address of the device structure
955  *
956  * Put the driver into low power mode.
957  * Return: 0 on success and failure value on error
958  */
959 static int __maybe_unused xcan_suspend(struct device *dev)
960 {
961 	if (!device_may_wakeup(dev))
962 		return pm_runtime_force_suspend(dev);
963 
964 	return 0;
965 }
966 
967 /**
968  * xcan_resume - Resume from suspend
969  * @dev:	Address of the device structure
970  *
971  * Resume operation after suspend.
972  * Return: 0 on success and failure value on error
973  */
974 static int __maybe_unused xcan_resume(struct device *dev)
975 {
976 	if (!device_may_wakeup(dev))
977 		return pm_runtime_force_resume(dev);
978 
979 	return 0;
980 
981 }
982 
983 /**
984  * xcan_runtime_suspend - Runtime suspend method for the driver
985  * @dev:	Address of the device structure
986  *
987  * Put the driver into low power mode.
988  * Return: 0 always
989  */
990 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
991 {
992 	struct net_device *ndev = dev_get_drvdata(dev);
993 	struct xcan_priv *priv = netdev_priv(ndev);
994 
995 	if (netif_running(ndev)) {
996 		netif_stop_queue(ndev);
997 		netif_device_detach(ndev);
998 	}
999 
1000 	priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
1001 	priv->can.state = CAN_STATE_SLEEPING;
1002 
1003 	clk_disable_unprepare(priv->bus_clk);
1004 	clk_disable_unprepare(priv->can_clk);
1005 
1006 	return 0;
1007 }
1008 
1009 /**
1010  * xcan_runtime_resume - Runtime resume from suspend
1011  * @dev:	Address of the device structure
1012  *
1013  * Resume operation after suspend.
1014  * Return: 0 on success and failure value on error
1015  */
1016 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1017 {
1018 	struct net_device *ndev = dev_get_drvdata(dev);
1019 	struct xcan_priv *priv = netdev_priv(ndev);
1020 	int ret;
1021 	u32 isr, status;
1022 
1023 	ret = clk_prepare_enable(priv->bus_clk);
1024 	if (ret) {
1025 		dev_err(dev, "Cannot enable clock.\n");
1026 		return ret;
1027 	}
1028 	ret = clk_prepare_enable(priv->can_clk);
1029 	if (ret) {
1030 		dev_err(dev, "Cannot enable clock.\n");
1031 		clk_disable_unprepare(priv->bus_clk);
1032 		return ret;
1033 	}
1034 
1035 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1036 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1037 	status = priv->read_reg(priv, XCAN_SR_OFFSET);
1038 
1039 	if (netif_running(ndev)) {
1040 		if (isr & XCAN_IXR_BSOFF_MASK) {
1041 			priv->can.state = CAN_STATE_BUS_OFF;
1042 			priv->write_reg(priv, XCAN_SRR_OFFSET,
1043 					XCAN_SRR_RESET_MASK);
1044 		} else if ((status & XCAN_SR_ESTAT_MASK) ==
1045 					XCAN_SR_ESTAT_MASK) {
1046 			priv->can.state = CAN_STATE_ERROR_PASSIVE;
1047 		} else if (status & XCAN_SR_ERRWRN_MASK) {
1048 			priv->can.state = CAN_STATE_ERROR_WARNING;
1049 		} else {
1050 			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1051 		}
1052 		netif_device_attach(ndev);
1053 		netif_start_queue(ndev);
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static const struct dev_pm_ops xcan_dev_pm_ops = {
1060 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1061 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1062 };
1063 
1064 /**
1065  * xcan_probe - Platform registration call
1066  * @pdev:	Handle to the platform device structure
1067  *
1068  * This function does all the memory allocation and registration for the CAN
1069  * device.
1070  *
1071  * Return: 0 on success and failure value on error
1072  */
1073 static int xcan_probe(struct platform_device *pdev)
1074 {
1075 	struct resource *res; /* IO mem resources */
1076 	struct net_device *ndev;
1077 	struct xcan_priv *priv;
1078 	void __iomem *addr;
1079 	int ret, rx_max, tx_max;
1080 
1081 	/* Get the virtual base address for the device */
1082 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1083 	addr = devm_ioremap_resource(&pdev->dev, res);
1084 	if (IS_ERR(addr)) {
1085 		ret = PTR_ERR(addr);
1086 		goto err;
1087 	}
1088 
1089 	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1090 	if (ret < 0)
1091 		goto err;
1092 
1093 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1094 	if (ret < 0)
1095 		goto err;
1096 
1097 	/* Create a CAN device instance */
1098 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1099 	if (!ndev)
1100 		return -ENOMEM;
1101 
1102 	priv = netdev_priv(ndev);
1103 	priv->dev = &pdev->dev;
1104 	priv->can.bittiming_const = &xcan_bittiming_const;
1105 	priv->can.do_set_mode = xcan_do_set_mode;
1106 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1107 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1108 					CAN_CTRLMODE_BERR_REPORTING;
1109 	priv->reg_base = addr;
1110 	priv->tx_max = tx_max;
1111 
1112 	/* Get IRQ for the device */
1113 	ndev->irq = platform_get_irq(pdev, 0);
1114 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1115 
1116 	platform_set_drvdata(pdev, ndev);
1117 	SET_NETDEV_DEV(ndev, &pdev->dev);
1118 	ndev->netdev_ops = &xcan_netdev_ops;
1119 
1120 	/* Getting the CAN can_clk info */
1121 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1122 	if (IS_ERR(priv->can_clk)) {
1123 		dev_err(&pdev->dev, "Device clock not found.\n");
1124 		ret = PTR_ERR(priv->can_clk);
1125 		goto err_free;
1126 	}
1127 	/* Check for type of CAN device */
1128 	if (of_device_is_compatible(pdev->dev.of_node,
1129 				    "xlnx,zynq-can-1.0")) {
1130 		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1131 		if (IS_ERR(priv->bus_clk)) {
1132 			dev_err(&pdev->dev, "bus clock not found\n");
1133 			ret = PTR_ERR(priv->bus_clk);
1134 			goto err_free;
1135 		}
1136 	} else {
1137 		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1138 		if (IS_ERR(priv->bus_clk)) {
1139 			dev_err(&pdev->dev, "bus clock not found\n");
1140 			ret = PTR_ERR(priv->bus_clk);
1141 			goto err_free;
1142 		}
1143 	}
1144 
1145 	priv->write_reg = xcan_write_reg_le;
1146 	priv->read_reg = xcan_read_reg_le;
1147 
1148 	pm_runtime_enable(&pdev->dev);
1149 	ret = pm_runtime_get_sync(&pdev->dev);
1150 	if (ret < 0) {
1151 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1152 			__func__, ret);
1153 		goto err_pmdisable;
1154 	}
1155 
1156 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1157 		priv->write_reg = xcan_write_reg_be;
1158 		priv->read_reg = xcan_read_reg_be;
1159 	}
1160 
1161 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1162 
1163 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1164 
1165 	ret = register_candev(ndev);
1166 	if (ret) {
1167 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1168 		goto err_disableclks;
1169 	}
1170 
1171 	devm_can_led_init(ndev);
1172 
1173 	pm_runtime_put(&pdev->dev);
1174 
1175 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1176 			priv->reg_base, ndev->irq, priv->can.clock.freq,
1177 			priv->tx_max);
1178 
1179 	return 0;
1180 
1181 err_disableclks:
1182 	pm_runtime_put(priv->dev);
1183 err_pmdisable:
1184 	pm_runtime_disable(&pdev->dev);
1185 err_free:
1186 	free_candev(ndev);
1187 err:
1188 	return ret;
1189 }
1190 
1191 /**
1192  * xcan_remove - Unregister the device after releasing the resources
1193  * @pdev:	Handle to the platform device structure
1194  *
1195  * This function frees all the resources allocated to the device.
1196  * Return: 0 always
1197  */
1198 static int xcan_remove(struct platform_device *pdev)
1199 {
1200 	struct net_device *ndev = platform_get_drvdata(pdev);
1201 	struct xcan_priv *priv = netdev_priv(ndev);
1202 
1203 	unregister_candev(ndev);
1204 	pm_runtime_disable(&pdev->dev);
1205 	netif_napi_del(&priv->napi);
1206 	free_candev(ndev);
1207 
1208 	return 0;
1209 }
1210 
1211 /* Match table for OF platform binding */
1212 static const struct of_device_id xcan_of_match[] = {
1213 	{ .compatible = "xlnx,zynq-can-1.0", },
1214 	{ .compatible = "xlnx,axi-can-1.00.a", },
1215 	{ /* end of list */ },
1216 };
1217 MODULE_DEVICE_TABLE(of, xcan_of_match);
1218 
1219 static struct platform_driver xcan_driver = {
1220 	.probe = xcan_probe,
1221 	.remove	= xcan_remove,
1222 	.driver	= {
1223 		.name = DRIVER_NAME,
1224 		.pm = &xcan_dev_pm_ops,
1225 		.of_match_table	= xcan_of_match,
1226 	},
1227 };
1228 
1229 module_platform_driver(xcan_driver);
1230 
1231 MODULE_LICENSE("GPL");
1232 MODULE_AUTHOR("Xilinx Inc");
1233 MODULE_DESCRIPTION("Xilinx CAN interface");
1234