xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /* Xilinx CAN device driver
2  *
3  * Copyright (C) 2012 - 2014 Xilinx, Inc.
4  * Copyright (C) 2009 PetaLogix. All rights reserved.
5  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
6  *
7  * Description:
8  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/clk.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/netdevice.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/platform_device.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/can/dev.h>
36 #include <linux/can/error.h>
37 #include <linux/can/led.h>
38 #include <linux/pm_runtime.h>
39 
40 #define DRIVER_NAME	"xilinx_can"
41 
42 /* CAN registers set */
43 enum xcan_reg {
44 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
45 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
46 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
47 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
48 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
49 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
50 	XCAN_SR_OFFSET		= 0x18, /* Status */
51 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
52 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
53 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
54 
55 	/* not on CAN FD cores */
56 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
57 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
58 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
59 
60 	/* only on CAN FD cores */
61 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
62 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
63 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
64 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
65 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
66 };
67 
68 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
69 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
70 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
71 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
72 
73 #define XCAN_CANFD_FRAME_SIZE		0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
75 					 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
77 					 XCAN_CANFD_FRAME_SIZE * (n))
78 
79 /* the single TX mailbox used by this driver on CAN FD HW */
80 #define XCAN_TX_MAILBOX_IDX		0
81 
82 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
83 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
84 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
85 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
86 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
87 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
88 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
89 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
90 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
91 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
92 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
93 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
94 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
95 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
96 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
97 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
98 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
99 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
100 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
101 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
102 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
103 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
104 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
105 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
106 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
107 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
108 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
109 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
110 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
111 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
112 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
113 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
114 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
115 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
116 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
117 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
118 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
119 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
120 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
121 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
122 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
123 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
124 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
125 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
126 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
127 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
128 
129 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
130 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
131 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
132 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
133 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
134 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
135 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
136 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
137 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
138 
139 /* CAN frame length constants */
140 #define XCAN_FRAME_MAX_DATA_LEN		8
141 #define XCAN_TIMEOUT			(1 * HZ)
142 
143 /* TX-FIFO-empty interrupt available */
144 #define XCAN_FLAG_TXFEMP	0x0001
145 /* RX Match Not Finished interrupt available */
146 #define XCAN_FLAG_RXMNF		0x0002
147 /* Extended acceptance filters with control at 0xE0 */
148 #define XCAN_FLAG_EXT_FILTERS	0x0004
149 /* TX mailboxes instead of TX FIFO */
150 #define XCAN_FLAG_TX_MAILBOXES	0x0008
151 /* RX FIFO with each buffer in separate registers at 0x1100
152  * instead of the regular FIFO at 0x50
153  */
154 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
155 
156 struct xcan_devtype_data {
157 	unsigned int flags;
158 	const struct can_bittiming_const *bittiming_const;
159 	const char *bus_clk_name;
160 	unsigned int btr_ts2_shift;
161 	unsigned int btr_sjw_shift;
162 };
163 
164 /**
165  * struct xcan_priv - This definition define CAN driver instance
166  * @can:			CAN private data structure.
167  * @tx_lock:			Lock for synchronizing TX interrupt handling
168  * @tx_head:			Tx CAN packets ready to send on the queue
169  * @tx_tail:			Tx CAN packets successfully sended on the queue
170  * @tx_max:			Maximum number packets the driver can send
171  * @napi:			NAPI structure
172  * @read_reg:			For reading data from CAN registers
173  * @write_reg:			For writing data to CAN registers
174  * @dev:			Network device data structure
175  * @reg_base:			Ioremapped address to registers
176  * @irq_flags:			For request_irq()
177  * @bus_clk:			Pointer to struct clk
178  * @can_clk:			Pointer to struct clk
179  * @devtype:			Device type specific constants
180  */
181 struct xcan_priv {
182 	struct can_priv can;
183 	spinlock_t tx_lock;
184 	unsigned int tx_head;
185 	unsigned int tx_tail;
186 	unsigned int tx_max;
187 	struct napi_struct napi;
188 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
189 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
190 			u32 val);
191 	struct device *dev;
192 	void __iomem *reg_base;
193 	unsigned long irq_flags;
194 	struct clk *bus_clk;
195 	struct clk *can_clk;
196 	struct xcan_devtype_data devtype;
197 };
198 
199 /* CAN Bittiming constants as per Xilinx CAN specs */
200 static const struct can_bittiming_const xcan_bittiming_const = {
201 	.name = DRIVER_NAME,
202 	.tseg1_min = 1,
203 	.tseg1_max = 16,
204 	.tseg2_min = 1,
205 	.tseg2_max = 8,
206 	.sjw_max = 4,
207 	.brp_min = 1,
208 	.brp_max = 256,
209 	.brp_inc = 1,
210 };
211 
212 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
213 	.name = DRIVER_NAME,
214 	.tseg1_min = 1,
215 	.tseg1_max = 64,
216 	.tseg2_min = 1,
217 	.tseg2_max = 16,
218 	.sjw_max = 16,
219 	.brp_min = 1,
220 	.brp_max = 256,
221 	.brp_inc = 1,
222 };
223 
224 /**
225  * xcan_write_reg_le - Write a value to the device register little endian
226  * @priv:	Driver private data structure
227  * @reg:	Register offset
228  * @val:	Value to write at the Register offset
229  *
230  * Write data to the paricular CAN register
231  */
232 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
233 			u32 val)
234 {
235 	iowrite32(val, priv->reg_base + reg);
236 }
237 
238 /**
239  * xcan_read_reg_le - Read a value from the device register little endian
240  * @priv:	Driver private data structure
241  * @reg:	Register offset
242  *
243  * Read data from the particular CAN register
244  * Return: value read from the CAN register
245  */
246 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
247 {
248 	return ioread32(priv->reg_base + reg);
249 }
250 
251 /**
252  * xcan_write_reg_be - Write a value to the device register big endian
253  * @priv:	Driver private data structure
254  * @reg:	Register offset
255  * @val:	Value to write at the Register offset
256  *
257  * Write data to the paricular CAN register
258  */
259 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
260 			u32 val)
261 {
262 	iowrite32be(val, priv->reg_base + reg);
263 }
264 
265 /**
266  * xcan_read_reg_be - Read a value from the device register big endian
267  * @priv:	Driver private data structure
268  * @reg:	Register offset
269  *
270  * Read data from the particular CAN register
271  * Return: value read from the CAN register
272  */
273 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
274 {
275 	return ioread32be(priv->reg_base + reg);
276 }
277 
278 /**
279  * xcan_rx_int_mask - Get the mask for the receive interrupt
280  * @priv:	Driver private data structure
281  *
282  * Return: The receive interrupt mask used by the driver on this HW
283  */
284 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
285 {
286 	/* RXNEMP is better suited for our use case as it cannot be cleared
287 	 * while the FIFO is non-empty, but CAN FD HW does not have it
288 	 */
289 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
290 		return XCAN_IXR_RXOK_MASK;
291 	else
292 		return XCAN_IXR_RXNEMP_MASK;
293 }
294 
295 /**
296  * set_reset_mode - Resets the CAN device mode
297  * @ndev:	Pointer to net_device structure
298  *
299  * This is the driver reset mode routine.The driver
300  * enters into configuration mode.
301  *
302  * Return: 0 on success and failure value on error
303  */
304 static int set_reset_mode(struct net_device *ndev)
305 {
306 	struct xcan_priv *priv = netdev_priv(ndev);
307 	unsigned long timeout;
308 
309 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
310 
311 	timeout = jiffies + XCAN_TIMEOUT;
312 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
313 		if (time_after(jiffies, timeout)) {
314 			netdev_warn(ndev, "timed out for config mode\n");
315 			return -ETIMEDOUT;
316 		}
317 		usleep_range(500, 10000);
318 	}
319 
320 	/* reset clears FIFOs */
321 	priv->tx_head = 0;
322 	priv->tx_tail = 0;
323 
324 	return 0;
325 }
326 
327 /**
328  * xcan_set_bittiming - CAN set bit timing routine
329  * @ndev:	Pointer to net_device structure
330  *
331  * This is the driver set bittiming  routine.
332  * Return: 0 on success and failure value on error
333  */
334 static int xcan_set_bittiming(struct net_device *ndev)
335 {
336 	struct xcan_priv *priv = netdev_priv(ndev);
337 	struct can_bittiming *bt = &priv->can.bittiming;
338 	u32 btr0, btr1;
339 	u32 is_config_mode;
340 
341 	/* Check whether Xilinx CAN is in configuration mode.
342 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
343 	 */
344 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
345 				XCAN_SR_CONFIG_MASK;
346 	if (!is_config_mode) {
347 		netdev_alert(ndev,
348 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
349 		return -EPERM;
350 	}
351 
352 	/* Setting Baud Rate prescalar value in BRPR Register */
353 	btr0 = (bt->brp - 1);
354 
355 	/* Setting Time Segment 1 in BTR Register */
356 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
357 
358 	/* Setting Time Segment 2 in BTR Register */
359 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
360 
361 	/* Setting Synchronous jump width in BTR Register */
362 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
363 
364 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
365 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
366 
367 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
368 			priv->read_reg(priv, XCAN_BRPR_OFFSET),
369 			priv->read_reg(priv, XCAN_BTR_OFFSET));
370 
371 	return 0;
372 }
373 
374 /**
375  * xcan_chip_start - This the drivers start routine
376  * @ndev:	Pointer to net_device structure
377  *
378  * This is the drivers start routine.
379  * Based on the State of the CAN device it puts
380  * the CAN device into a proper mode.
381  *
382  * Return: 0 on success and failure value on error
383  */
384 static int xcan_chip_start(struct net_device *ndev)
385 {
386 	struct xcan_priv *priv = netdev_priv(ndev);
387 	u32 reg_msr, reg_sr_mask;
388 	int err;
389 	unsigned long timeout;
390 	u32 ier;
391 
392 	/* Check if it is in reset mode */
393 	err = set_reset_mode(ndev);
394 	if (err < 0)
395 		return err;
396 
397 	err = xcan_set_bittiming(ndev);
398 	if (err < 0)
399 		return err;
400 
401 	/* Enable interrupts */
402 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
403 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
404 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
405 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
406 
407 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
408 		ier |= XCAN_IXR_RXMNF_MASK;
409 
410 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
411 
412 	/* Check whether it is loopback mode or normal mode  */
413 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
414 		reg_msr = XCAN_MSR_LBACK_MASK;
415 		reg_sr_mask = XCAN_SR_LBACK_MASK;
416 	} else {
417 		reg_msr = 0x0;
418 		reg_sr_mask = XCAN_SR_NORMAL_MASK;
419 	}
420 
421 	/* enable the first extended filter, if any, as cores with extended
422 	 * filtering default to non-receipt if all filters are disabled
423 	 */
424 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
425 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
426 
427 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
428 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
429 
430 	timeout = jiffies + XCAN_TIMEOUT;
431 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
432 		if (time_after(jiffies, timeout)) {
433 			netdev_warn(ndev,
434 				"timed out for correct mode\n");
435 			return -ETIMEDOUT;
436 		}
437 	}
438 	netdev_dbg(ndev, "status:#x%08x\n",
439 			priv->read_reg(priv, XCAN_SR_OFFSET));
440 
441 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
442 	return 0;
443 }
444 
445 /**
446  * xcan_do_set_mode - This sets the mode of the driver
447  * @ndev:	Pointer to net_device structure
448  * @mode:	Tells the mode of the driver
449  *
450  * This check the drivers state and calls the
451  * the corresponding modes to set.
452  *
453  * Return: 0 on success and failure value on error
454  */
455 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
456 {
457 	int ret;
458 
459 	switch (mode) {
460 	case CAN_MODE_START:
461 		ret = xcan_chip_start(ndev);
462 		if (ret < 0) {
463 			netdev_err(ndev, "xcan_chip_start failed!\n");
464 			return ret;
465 		}
466 		netif_wake_queue(ndev);
467 		break;
468 	default:
469 		ret = -EOPNOTSUPP;
470 		break;
471 	}
472 
473 	return ret;
474 }
475 
476 /**
477  * xcan_write_frame - Write a frame to HW
478  * @skb:		sk_buff pointer that contains data to be Txed
479  * @frame_offset:	Register offset to write the frame to
480  */
481 static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
482 			     int frame_offset)
483 {
484 	u32 id, dlc, data[2] = {0, 0};
485 	struct can_frame *cf = (struct can_frame *)skb->data;
486 
487 	/* Watch carefully on the bit sequence */
488 	if (cf->can_id & CAN_EFF_FLAG) {
489 		/* Extended CAN ID format */
490 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
491 			XCAN_IDR_ID2_MASK;
492 		id |= (((cf->can_id & CAN_EFF_MASK) >>
493 			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
494 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
495 
496 		/* The substibute remote TX request bit should be "1"
497 		 * for extended frames as in the Xilinx CAN datasheet
498 		 */
499 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
500 
501 		if (cf->can_id & CAN_RTR_FLAG)
502 			/* Extended frames remote TX request */
503 			id |= XCAN_IDR_RTR_MASK;
504 	} else {
505 		/* Standard CAN ID format */
506 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
507 			XCAN_IDR_ID1_MASK;
508 
509 		if (cf->can_id & CAN_RTR_FLAG)
510 			/* Standard frames remote TX request */
511 			id |= XCAN_IDR_SRR_MASK;
512 	}
513 
514 	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
515 
516 	if (cf->can_dlc > 0)
517 		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
518 	if (cf->can_dlc > 4)
519 		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
520 
521 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
522 	/* If the CAN frame is RTR frame this write triggers transmission
523 	 * (not on CAN FD)
524 	 */
525 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
526 	if (!(cf->can_id & CAN_RTR_FLAG)) {
527 		priv->write_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_offset),
528 				data[0]);
529 		/* If the CAN frame is Standard/Extended frame this
530 		 * write triggers transmission (not on CAN FD)
531 		 */
532 		priv->write_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_offset),
533 				data[1]);
534 	}
535 }
536 
537 /**
538  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
539  *
540  * Return: 0 on success, -ENOSPC if FIFO is full.
541  */
542 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
543 {
544 	struct xcan_priv *priv = netdev_priv(ndev);
545 	unsigned long flags;
546 
547 	/* Check if the TX buffer is full */
548 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
549 			XCAN_SR_TXFLL_MASK))
550 		return -ENOSPC;
551 
552 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
553 
554 	spin_lock_irqsave(&priv->tx_lock, flags);
555 
556 	priv->tx_head++;
557 
558 	xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
559 
560 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
561 	if (priv->tx_max > 1)
562 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
563 
564 	/* Check if the TX buffer is full */
565 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
566 		netif_stop_queue(ndev);
567 
568 	spin_unlock_irqrestore(&priv->tx_lock, flags);
569 
570 	return 0;
571 }
572 
573 /**
574  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
575  *
576  * Return: 0 on success, -ENOSPC if there is no space
577  */
578 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
579 {
580 	struct xcan_priv *priv = netdev_priv(ndev);
581 	unsigned long flags;
582 
583 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
584 		     BIT(XCAN_TX_MAILBOX_IDX)))
585 		return -ENOSPC;
586 
587 	can_put_echo_skb(skb, ndev, 0);
588 
589 	spin_lock_irqsave(&priv->tx_lock, flags);
590 
591 	priv->tx_head++;
592 
593 	xcan_write_frame(priv, skb,
594 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
595 
596 	/* Mark buffer as ready for transmit */
597 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
598 
599 	netif_stop_queue(ndev);
600 
601 	spin_unlock_irqrestore(&priv->tx_lock, flags);
602 
603 	return 0;
604 }
605 
606 /**
607  * xcan_start_xmit - Starts the transmission
608  * @skb:	sk_buff pointer that contains data to be Txed
609  * @ndev:	Pointer to net_device structure
610  *
611  * This function is invoked from upper layers to initiate transmission.
612  *
613  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
614  */
615 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
616 {
617 	struct xcan_priv *priv = netdev_priv(ndev);
618 	int ret;
619 
620 	if (can_dropped_invalid_skb(ndev, skb))
621 		return NETDEV_TX_OK;
622 
623 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
624 		ret = xcan_start_xmit_mailbox(skb, ndev);
625 	else
626 		ret = xcan_start_xmit_fifo(skb, ndev);
627 
628 	if (ret < 0) {
629 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
630 		netif_stop_queue(ndev);
631 		return NETDEV_TX_BUSY;
632 	}
633 
634 	return NETDEV_TX_OK;
635 }
636 
637 /**
638  * xcan_rx -  Is called from CAN isr to complete the received
639  *		frame  processing
640  * @ndev:	Pointer to net_device structure
641  * @frame_base:	Register offset to the frame to be read
642  *
643  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
644  * does minimal processing and invokes "netif_receive_skb" to complete further
645  * processing.
646  * Return: 1 on success and 0 on failure.
647  */
648 static int xcan_rx(struct net_device *ndev, int frame_base)
649 {
650 	struct xcan_priv *priv = netdev_priv(ndev);
651 	struct net_device_stats *stats = &ndev->stats;
652 	struct can_frame *cf;
653 	struct sk_buff *skb;
654 	u32 id_xcan, dlc, data[2] = {0, 0};
655 
656 	skb = alloc_can_skb(ndev, &cf);
657 	if (unlikely(!skb)) {
658 		stats->rx_dropped++;
659 		return 0;
660 	}
661 
662 	/* Read a frame from Xilinx zynq CANPS */
663 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
664 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
665 				   XCAN_DLCR_DLC_SHIFT;
666 
667 	/* Change Xilinx CAN data length format to socketCAN data format */
668 	cf->can_dlc = get_can_dlc(dlc);
669 
670 	/* Change Xilinx CAN ID format to socketCAN ID format */
671 	if (id_xcan & XCAN_IDR_IDE_MASK) {
672 		/* The received frame is an Extended format frame */
673 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
674 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
675 				XCAN_IDR_ID2_SHIFT;
676 		cf->can_id |= CAN_EFF_FLAG;
677 		if (id_xcan & XCAN_IDR_RTR_MASK)
678 			cf->can_id |= CAN_RTR_FLAG;
679 	} else {
680 		/* The received frame is a standard format frame */
681 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
682 				XCAN_IDR_ID1_SHIFT;
683 		if (id_xcan & XCAN_IDR_SRR_MASK)
684 			cf->can_id |= CAN_RTR_FLAG;
685 	}
686 
687 	/* DW1/DW2 must always be read to remove message from RXFIFO */
688 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
689 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
690 
691 	if (!(cf->can_id & CAN_RTR_FLAG)) {
692 		/* Change Xilinx CAN data format to socketCAN data format */
693 		if (cf->can_dlc > 0)
694 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
695 		if (cf->can_dlc > 4)
696 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
697 	}
698 
699 	stats->rx_bytes += cf->can_dlc;
700 	stats->rx_packets++;
701 	netif_receive_skb(skb);
702 
703 	return 1;
704 }
705 
706 /**
707  * xcan_current_error_state - Get current error state from HW
708  * @ndev:	Pointer to net_device structure
709  *
710  * Checks the current CAN error state from the HW. Note that this
711  * only checks for ERROR_PASSIVE and ERROR_WARNING.
712  *
713  * Return:
714  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
715  * otherwise.
716  */
717 static enum can_state xcan_current_error_state(struct net_device *ndev)
718 {
719 	struct xcan_priv *priv = netdev_priv(ndev);
720 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
721 
722 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
723 		return CAN_STATE_ERROR_PASSIVE;
724 	else if (status & XCAN_SR_ERRWRN_MASK)
725 		return CAN_STATE_ERROR_WARNING;
726 	else
727 		return CAN_STATE_ERROR_ACTIVE;
728 }
729 
730 /**
731  * xcan_set_error_state - Set new CAN error state
732  * @ndev:	Pointer to net_device structure
733  * @new_state:	The new CAN state to be set
734  * @cf:		Error frame to be populated or NULL
735  *
736  * Set new CAN error state for the device, updating statistics and
737  * populating the error frame if given.
738  */
739 static void xcan_set_error_state(struct net_device *ndev,
740 				 enum can_state new_state,
741 				 struct can_frame *cf)
742 {
743 	struct xcan_priv *priv = netdev_priv(ndev);
744 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
745 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
746 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
747 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
748 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
749 
750 	/* non-ERROR states are handled elsewhere */
751 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
752 		return;
753 
754 	can_change_state(ndev, cf, tx_state, rx_state);
755 
756 	if (cf) {
757 		cf->data[6] = txerr;
758 		cf->data[7] = rxerr;
759 	}
760 }
761 
762 /**
763  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
764  * @ndev:	Pointer to net_device structure
765  *
766  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
767  * the performed RX/TX has caused it to drop to a lesser state and set
768  * the interface state accordingly.
769  */
770 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
771 {
772 	struct xcan_priv *priv = netdev_priv(ndev);
773 	enum can_state old_state = priv->can.state;
774 	enum can_state new_state;
775 
776 	/* changing error state due to successful frame RX/TX can only
777 	 * occur from these states
778 	 */
779 	if (old_state != CAN_STATE_ERROR_WARNING &&
780 	    old_state != CAN_STATE_ERROR_PASSIVE)
781 		return;
782 
783 	new_state = xcan_current_error_state(ndev);
784 
785 	if (new_state != old_state) {
786 		struct sk_buff *skb;
787 		struct can_frame *cf;
788 
789 		skb = alloc_can_err_skb(ndev, &cf);
790 
791 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
792 
793 		if (skb) {
794 			struct net_device_stats *stats = &ndev->stats;
795 
796 			stats->rx_packets++;
797 			stats->rx_bytes += cf->can_dlc;
798 			netif_rx(skb);
799 		}
800 	}
801 }
802 
803 /**
804  * xcan_err_interrupt - error frame Isr
805  * @ndev:	net_device pointer
806  * @isr:	interrupt status register value
807  *
808  * This is the CAN error interrupt and it will
809  * check the the type of error and forward the error
810  * frame to upper layers.
811  */
812 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
813 {
814 	struct xcan_priv *priv = netdev_priv(ndev);
815 	struct net_device_stats *stats = &ndev->stats;
816 	struct can_frame *cf;
817 	struct sk_buff *skb;
818 	u32 err_status;
819 
820 	skb = alloc_can_err_skb(ndev, &cf);
821 
822 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
823 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
824 
825 	if (isr & XCAN_IXR_BSOFF_MASK) {
826 		priv->can.state = CAN_STATE_BUS_OFF;
827 		priv->can.can_stats.bus_off++;
828 		/* Leave device in Config Mode in bus-off state */
829 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
830 		can_bus_off(ndev);
831 		if (skb)
832 			cf->can_id |= CAN_ERR_BUSOFF;
833 	} else {
834 		enum can_state new_state = xcan_current_error_state(ndev);
835 
836 		if (new_state != priv->can.state)
837 			xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
838 	}
839 
840 	/* Check for Arbitration lost interrupt */
841 	if (isr & XCAN_IXR_ARBLST_MASK) {
842 		priv->can.can_stats.arbitration_lost++;
843 		if (skb) {
844 			cf->can_id |= CAN_ERR_LOSTARB;
845 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
846 		}
847 	}
848 
849 	/* Check for RX FIFO Overflow interrupt */
850 	if (isr & XCAN_IXR_RXOFLW_MASK) {
851 		stats->rx_over_errors++;
852 		stats->rx_errors++;
853 		if (skb) {
854 			cf->can_id |= CAN_ERR_CRTL;
855 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
856 		}
857 	}
858 
859 	/* Check for RX Match Not Finished interrupt */
860 	if (isr & XCAN_IXR_RXMNF_MASK) {
861 		stats->rx_dropped++;
862 		stats->rx_errors++;
863 		netdev_err(ndev, "RX match not finished, frame discarded\n");
864 		if (skb) {
865 			cf->can_id |= CAN_ERR_CRTL;
866 			cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
867 		}
868 	}
869 
870 	/* Check for error interrupt */
871 	if (isr & XCAN_IXR_ERROR_MASK) {
872 		if (skb)
873 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
874 
875 		/* Check for Ack error interrupt */
876 		if (err_status & XCAN_ESR_ACKER_MASK) {
877 			stats->tx_errors++;
878 			if (skb) {
879 				cf->can_id |= CAN_ERR_ACK;
880 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
881 			}
882 		}
883 
884 		/* Check for Bit error interrupt */
885 		if (err_status & XCAN_ESR_BERR_MASK) {
886 			stats->tx_errors++;
887 			if (skb) {
888 				cf->can_id |= CAN_ERR_PROT;
889 				cf->data[2] = CAN_ERR_PROT_BIT;
890 			}
891 		}
892 
893 		/* Check for Stuff error interrupt */
894 		if (err_status & XCAN_ESR_STER_MASK) {
895 			stats->rx_errors++;
896 			if (skb) {
897 				cf->can_id |= CAN_ERR_PROT;
898 				cf->data[2] = CAN_ERR_PROT_STUFF;
899 			}
900 		}
901 
902 		/* Check for Form error interrupt */
903 		if (err_status & XCAN_ESR_FMER_MASK) {
904 			stats->rx_errors++;
905 			if (skb) {
906 				cf->can_id |= CAN_ERR_PROT;
907 				cf->data[2] = CAN_ERR_PROT_FORM;
908 			}
909 		}
910 
911 		/* Check for CRC error interrupt */
912 		if (err_status & XCAN_ESR_CRCER_MASK) {
913 			stats->rx_errors++;
914 			if (skb) {
915 				cf->can_id |= CAN_ERR_PROT;
916 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
917 			}
918 		}
919 			priv->can.can_stats.bus_error++;
920 	}
921 
922 	if (skb) {
923 		stats->rx_packets++;
924 		stats->rx_bytes += cf->can_dlc;
925 		netif_rx(skb);
926 	}
927 
928 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
929 			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
930 }
931 
932 /**
933  * xcan_state_interrupt - It will check the state of the CAN device
934  * @ndev:	net_device pointer
935  * @isr:	interrupt status register value
936  *
937  * This will checks the state of the CAN device
938  * and puts the device into appropriate state.
939  */
940 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
941 {
942 	struct xcan_priv *priv = netdev_priv(ndev);
943 
944 	/* Check for Sleep interrupt if set put CAN device in sleep state */
945 	if (isr & XCAN_IXR_SLP_MASK)
946 		priv->can.state = CAN_STATE_SLEEPING;
947 
948 	/* Check for Wake up interrupt if set put CAN device in Active state */
949 	if (isr & XCAN_IXR_WKUP_MASK)
950 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
951 }
952 
953 /**
954  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
955  *
956  * Return: Register offset of the next frame in RX FIFO.
957  */
958 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
959 {
960 	int offset;
961 
962 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
963 		u32 fsr;
964 
965 		/* clear RXOK before the is-empty check so that any newly
966 		 * received frame will reassert it without a race
967 		 */
968 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
969 
970 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
971 
972 		/* check if RX FIFO is empty */
973 		if (!(fsr & XCAN_FSR_FL_MASK))
974 			return -ENOENT;
975 
976 		offset = XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
977 
978 	} else {
979 		/* check if RX FIFO is empty */
980 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
981 		      XCAN_IXR_RXNEMP_MASK))
982 			return -ENOENT;
983 
984 		/* frames are read from a static offset */
985 		offset = XCAN_RXFIFO_OFFSET;
986 	}
987 
988 	return offset;
989 }
990 
991 /**
992  * xcan_rx_poll - Poll routine for rx packets (NAPI)
993  * @napi:	napi structure pointer
994  * @quota:	Max number of rx packets to be processed.
995  *
996  * This is the poll routine for rx part.
997  * It will process the packets maximux quota value.
998  *
999  * Return: number of packets received
1000  */
1001 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1002 {
1003 	struct net_device *ndev = napi->dev;
1004 	struct xcan_priv *priv = netdev_priv(ndev);
1005 	u32 ier;
1006 	int work_done = 0;
1007 	int frame_offset;
1008 
1009 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1010 	       (work_done < quota)) {
1011 		work_done += xcan_rx(ndev, frame_offset);
1012 
1013 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1014 			/* increment read index */
1015 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1016 					XCAN_FSR_IRI_MASK);
1017 		else
1018 			/* clear rx-not-empty (will actually clear only if
1019 			 * empty)
1020 			 */
1021 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1022 					XCAN_IXR_RXNEMP_MASK);
1023 	}
1024 
1025 	if (work_done) {
1026 		can_led_event(ndev, CAN_LED_EVENT_RX);
1027 		xcan_update_error_state_after_rxtx(ndev);
1028 	}
1029 
1030 	if (work_done < quota) {
1031 		napi_complete_done(napi, work_done);
1032 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1033 		ier |= xcan_rx_int_mask(priv);
1034 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1035 	}
1036 	return work_done;
1037 }
1038 
1039 /**
1040  * xcan_tx_interrupt - Tx Done Isr
1041  * @ndev:	net_device pointer
1042  * @isr:	Interrupt status register value
1043  */
1044 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1045 {
1046 	struct xcan_priv *priv = netdev_priv(ndev);
1047 	struct net_device_stats *stats = &ndev->stats;
1048 	unsigned int frames_in_fifo;
1049 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1050 	unsigned long flags;
1051 	int retries = 0;
1052 
1053 	/* Synchronize with xmit as we need to know the exact number
1054 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1055 	 * handling.
1056 	 * This also prevents a race between netif_wake_queue() and
1057 	 * netif_stop_queue().
1058 	 */
1059 	spin_lock_irqsave(&priv->tx_lock, flags);
1060 
1061 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1062 
1063 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1064 		/* clear TXOK anyway to avoid getting back here */
1065 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1066 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1067 		return;
1068 	}
1069 
1070 	/* Check if 2 frames were sent (TXOK only means that at least 1
1071 	 * frame was sent).
1072 	 */
1073 	if (frames_in_fifo > 1) {
1074 		WARN_ON(frames_in_fifo > priv->tx_max);
1075 
1076 		/* Synchronize TXOK and isr so that after the loop:
1077 		 * (1) isr variable is up-to-date at least up to TXOK clear
1078 		 *     time. This avoids us clearing a TXOK of a second frame
1079 		 *     but not noticing that the FIFO is now empty and thus
1080 		 *     marking only a single frame as sent.
1081 		 * (2) No TXOK is left. Having one could mean leaving a
1082 		 *     stray TXOK as we might process the associated frame
1083 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1084 		 *     clear to satisfy (1).
1085 		 */
1086 		while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) {
1087 			priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1088 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1089 		}
1090 
1091 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1092 			/* nothing in FIFO anymore */
1093 			frames_sent = frames_in_fifo;
1094 		}
1095 	} else {
1096 		/* single frame in fifo, just clear TXOK */
1097 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1098 	}
1099 
1100 	while (frames_sent--) {
1101 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1102 						    priv->tx_max);
1103 		priv->tx_tail++;
1104 		stats->tx_packets++;
1105 	}
1106 
1107 	netif_wake_queue(ndev);
1108 
1109 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1110 
1111 	can_led_event(ndev, CAN_LED_EVENT_TX);
1112 	xcan_update_error_state_after_rxtx(ndev);
1113 }
1114 
1115 /**
1116  * xcan_interrupt - CAN Isr
1117  * @irq:	irq number
1118  * @dev_id:	device id poniter
1119  *
1120  * This is the xilinx CAN Isr. It checks for the type of interrupt
1121  * and invokes the corresponding ISR.
1122  *
1123  * Return:
1124  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1125  */
1126 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1127 {
1128 	struct net_device *ndev = (struct net_device *)dev_id;
1129 	struct xcan_priv *priv = netdev_priv(ndev);
1130 	u32 isr, ier;
1131 	u32 isr_errors;
1132 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1133 
1134 	/* Get the interrupt status from Xilinx CAN */
1135 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1136 	if (!isr)
1137 		return IRQ_NONE;
1138 
1139 	/* Check for the type of interrupt and Processing it */
1140 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1141 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1142 				XCAN_IXR_WKUP_MASK));
1143 		xcan_state_interrupt(ndev, isr);
1144 	}
1145 
1146 	/* Check for Tx interrupt and Processing it */
1147 	if (isr & XCAN_IXR_TXOK_MASK)
1148 		xcan_tx_interrupt(ndev, isr);
1149 
1150 	/* Check for the type of error interrupt and Processing it */
1151 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1152 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1153 			    XCAN_IXR_RXMNF_MASK);
1154 	if (isr_errors) {
1155 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1156 		xcan_err_interrupt(ndev, isr);
1157 	}
1158 
1159 	/* Check for the type of receive interrupt and Processing it */
1160 	if (isr & rx_int_mask) {
1161 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1162 		ier &= ~rx_int_mask;
1163 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1164 		napi_schedule(&priv->napi);
1165 	}
1166 	return IRQ_HANDLED;
1167 }
1168 
1169 /**
1170  * xcan_chip_stop - Driver stop routine
1171  * @ndev:	Pointer to net_device structure
1172  *
1173  * This is the drivers stop routine. It will disable the
1174  * interrupts and put the device into configuration mode.
1175  */
1176 static void xcan_chip_stop(struct net_device *ndev)
1177 {
1178 	struct xcan_priv *priv = netdev_priv(ndev);
1179 
1180 	/* Disable interrupts and leave the can in configuration mode */
1181 	set_reset_mode(ndev);
1182 	priv->can.state = CAN_STATE_STOPPED;
1183 }
1184 
1185 /**
1186  * xcan_open - Driver open routine
1187  * @ndev:	Pointer to net_device structure
1188  *
1189  * This is the driver open routine.
1190  * Return: 0 on success and failure value on error
1191  */
1192 static int xcan_open(struct net_device *ndev)
1193 {
1194 	struct xcan_priv *priv = netdev_priv(ndev);
1195 	int ret;
1196 
1197 	ret = pm_runtime_get_sync(priv->dev);
1198 	if (ret < 0) {
1199 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1200 				__func__, ret);
1201 		return ret;
1202 	}
1203 
1204 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1205 			ndev->name, ndev);
1206 	if (ret < 0) {
1207 		netdev_err(ndev, "irq allocation for CAN failed\n");
1208 		goto err;
1209 	}
1210 
1211 	/* Set chip into reset mode */
1212 	ret = set_reset_mode(ndev);
1213 	if (ret < 0) {
1214 		netdev_err(ndev, "mode resetting failed!\n");
1215 		goto err_irq;
1216 	}
1217 
1218 	/* Common open */
1219 	ret = open_candev(ndev);
1220 	if (ret)
1221 		goto err_irq;
1222 
1223 	ret = xcan_chip_start(ndev);
1224 	if (ret < 0) {
1225 		netdev_err(ndev, "xcan_chip_start failed!\n");
1226 		goto err_candev;
1227 	}
1228 
1229 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1230 	napi_enable(&priv->napi);
1231 	netif_start_queue(ndev);
1232 
1233 	return 0;
1234 
1235 err_candev:
1236 	close_candev(ndev);
1237 err_irq:
1238 	free_irq(ndev->irq, ndev);
1239 err:
1240 	pm_runtime_put(priv->dev);
1241 
1242 	return ret;
1243 }
1244 
1245 /**
1246  * xcan_close - Driver close routine
1247  * @ndev:	Pointer to net_device structure
1248  *
1249  * Return: 0 always
1250  */
1251 static int xcan_close(struct net_device *ndev)
1252 {
1253 	struct xcan_priv *priv = netdev_priv(ndev);
1254 
1255 	netif_stop_queue(ndev);
1256 	napi_disable(&priv->napi);
1257 	xcan_chip_stop(ndev);
1258 	free_irq(ndev->irq, ndev);
1259 	close_candev(ndev);
1260 
1261 	can_led_event(ndev, CAN_LED_EVENT_STOP);
1262 	pm_runtime_put(priv->dev);
1263 
1264 	return 0;
1265 }
1266 
1267 /**
1268  * xcan_get_berr_counter - error counter routine
1269  * @ndev:	Pointer to net_device structure
1270  * @bec:	Pointer to can_berr_counter structure
1271  *
1272  * This is the driver error counter routine.
1273  * Return: 0 on success and failure value on error
1274  */
1275 static int xcan_get_berr_counter(const struct net_device *ndev,
1276 					struct can_berr_counter *bec)
1277 {
1278 	struct xcan_priv *priv = netdev_priv(ndev);
1279 	int ret;
1280 
1281 	ret = pm_runtime_get_sync(priv->dev);
1282 	if (ret < 0) {
1283 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1284 				__func__, ret);
1285 		return ret;
1286 	}
1287 
1288 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1289 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1290 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1291 
1292 	pm_runtime_put(priv->dev);
1293 
1294 	return 0;
1295 }
1296 
1297 
1298 static const struct net_device_ops xcan_netdev_ops = {
1299 	.ndo_open	= xcan_open,
1300 	.ndo_stop	= xcan_close,
1301 	.ndo_start_xmit	= xcan_start_xmit,
1302 	.ndo_change_mtu	= can_change_mtu,
1303 };
1304 
1305 /**
1306  * xcan_suspend - Suspend method for the driver
1307  * @dev:	Address of the device structure
1308  *
1309  * Put the driver into low power mode.
1310  * Return: 0 on success and failure value on error
1311  */
1312 static int __maybe_unused xcan_suspend(struct device *dev)
1313 {
1314 	struct net_device *ndev = dev_get_drvdata(dev);
1315 
1316 	if (netif_running(ndev)) {
1317 		netif_stop_queue(ndev);
1318 		netif_device_detach(ndev);
1319 		xcan_chip_stop(ndev);
1320 	}
1321 
1322 	return pm_runtime_force_suspend(dev);
1323 }
1324 
1325 /**
1326  * xcan_resume - Resume from suspend
1327  * @dev:	Address of the device structure
1328  *
1329  * Resume operation after suspend.
1330  * Return: 0 on success and failure value on error
1331  */
1332 static int __maybe_unused xcan_resume(struct device *dev)
1333 {
1334 	struct net_device *ndev = dev_get_drvdata(dev);
1335 	int ret;
1336 
1337 	ret = pm_runtime_force_resume(dev);
1338 	if (ret) {
1339 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1340 		return ret;
1341 	}
1342 
1343 	if (netif_running(ndev)) {
1344 		ret = xcan_chip_start(ndev);
1345 		if (ret) {
1346 			dev_err(dev, "xcan_chip_start failed on resume\n");
1347 			return ret;
1348 		}
1349 
1350 		netif_device_attach(ndev);
1351 		netif_start_queue(ndev);
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 /**
1358  * xcan_runtime_suspend - Runtime suspend method for the driver
1359  * @dev:	Address of the device structure
1360  *
1361  * Put the driver into low power mode.
1362  * Return: 0 always
1363  */
1364 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1365 {
1366 	struct net_device *ndev = dev_get_drvdata(dev);
1367 	struct xcan_priv *priv = netdev_priv(ndev);
1368 
1369 	clk_disable_unprepare(priv->bus_clk);
1370 	clk_disable_unprepare(priv->can_clk);
1371 
1372 	return 0;
1373 }
1374 
1375 /**
1376  * xcan_runtime_resume - Runtime resume from suspend
1377  * @dev:	Address of the device structure
1378  *
1379  * Resume operation after suspend.
1380  * Return: 0 on success and failure value on error
1381  */
1382 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1383 {
1384 	struct net_device *ndev = dev_get_drvdata(dev);
1385 	struct xcan_priv *priv = netdev_priv(ndev);
1386 	int ret;
1387 
1388 	ret = clk_prepare_enable(priv->bus_clk);
1389 	if (ret) {
1390 		dev_err(dev, "Cannot enable clock.\n");
1391 		return ret;
1392 	}
1393 	ret = clk_prepare_enable(priv->can_clk);
1394 	if (ret) {
1395 		dev_err(dev, "Cannot enable clock.\n");
1396 		clk_disable_unprepare(priv->bus_clk);
1397 		return ret;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static const struct dev_pm_ops xcan_dev_pm_ops = {
1404 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1405 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1406 };
1407 
1408 static const struct xcan_devtype_data xcan_zynq_data = {
1409 	.bittiming_const = &xcan_bittiming_const,
1410 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1411 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1412 	.bus_clk_name = "pclk",
1413 };
1414 
1415 static const struct xcan_devtype_data xcan_axi_data = {
1416 	.bittiming_const = &xcan_bittiming_const,
1417 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1418 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1419 	.bus_clk_name = "s_axi_aclk",
1420 };
1421 
1422 static const struct xcan_devtype_data xcan_canfd_data = {
1423 	.flags = XCAN_FLAG_EXT_FILTERS |
1424 		 XCAN_FLAG_RXMNF |
1425 		 XCAN_FLAG_TX_MAILBOXES |
1426 		 XCAN_FLAG_RX_FIFO_MULTI,
1427 	.bittiming_const = &xcan_bittiming_const,
1428 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1429 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1430 	.bus_clk_name = "s_axi_aclk",
1431 };
1432 
1433 /* Match table for OF platform binding */
1434 static const struct of_device_id xcan_of_match[] = {
1435 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1436 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1437 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1438 	{ /* end of list */ },
1439 };
1440 MODULE_DEVICE_TABLE(of, xcan_of_match);
1441 
1442 /**
1443  * xcan_probe - Platform registration call
1444  * @pdev:	Handle to the platform device structure
1445  *
1446  * This function does all the memory allocation and registration for the CAN
1447  * device.
1448  *
1449  * Return: 0 on success and failure value on error
1450  */
1451 static int xcan_probe(struct platform_device *pdev)
1452 {
1453 	struct resource *res; /* IO mem resources */
1454 	struct net_device *ndev;
1455 	struct xcan_priv *priv;
1456 	const struct of_device_id *of_id;
1457 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1458 	void __iomem *addr;
1459 	int ret;
1460 	int rx_max, tx_max;
1461 	int hw_tx_max, hw_rx_max;
1462 	const char *hw_tx_max_property;
1463 
1464 	/* Get the virtual base address for the device */
1465 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1466 	addr = devm_ioremap_resource(&pdev->dev, res);
1467 	if (IS_ERR(addr)) {
1468 		ret = PTR_ERR(addr);
1469 		goto err;
1470 	}
1471 
1472 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1473 	if (of_id && of_id->data)
1474 		devtype = of_id->data;
1475 
1476 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1477 			     "tx-mailbox-count" : "tx-fifo-depth";
1478 
1479 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1480 				   &hw_tx_max);
1481 	if (ret < 0) {
1482 		dev_err(&pdev->dev, "missing %s property\n",
1483 			hw_tx_max_property);
1484 		goto err;
1485 	}
1486 
1487 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1488 				   &hw_rx_max);
1489 	if (ret < 0) {
1490 		dev_err(&pdev->dev,
1491 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1492 		goto err;
1493 	}
1494 
1495 	/* With TX FIFO:
1496 	 *
1497 	 * There is no way to directly figure out how many frames have been
1498 	 * sent when the TXOK interrupt is processed. If TXFEMP
1499 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1500 	 * to determine if 1 or 2 frames have been sent.
1501 	 * Theoretically we should be able to use TXFWMEMP to determine up
1502 	 * to 3 frames, but it seems that after putting a second frame in the
1503 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1504 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1505 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1506 	 * completely synchronized with the rest of the bits?
1507 	 *
1508 	 * With TX mailboxes:
1509 	 *
1510 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1511 	 * we submit frames one at a time.
1512 	 */
1513 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1514 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1515 		tx_max = min(hw_tx_max, 2);
1516 	else
1517 		tx_max = 1;
1518 
1519 	rx_max = hw_rx_max;
1520 
1521 	/* Create a CAN device instance */
1522 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1523 	if (!ndev)
1524 		return -ENOMEM;
1525 
1526 	priv = netdev_priv(ndev);
1527 	priv->dev = &pdev->dev;
1528 	priv->can.bittiming_const = devtype->bittiming_const;
1529 	priv->can.do_set_mode = xcan_do_set_mode;
1530 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1531 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1532 					CAN_CTRLMODE_BERR_REPORTING;
1533 	priv->reg_base = addr;
1534 	priv->tx_max = tx_max;
1535 	priv->devtype = *devtype;
1536 	spin_lock_init(&priv->tx_lock);
1537 
1538 	/* Get IRQ for the device */
1539 	ndev->irq = platform_get_irq(pdev, 0);
1540 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1541 
1542 	platform_set_drvdata(pdev, ndev);
1543 	SET_NETDEV_DEV(ndev, &pdev->dev);
1544 	ndev->netdev_ops = &xcan_netdev_ops;
1545 
1546 	/* Getting the CAN can_clk info */
1547 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1548 	if (IS_ERR(priv->can_clk)) {
1549 		dev_err(&pdev->dev, "Device clock not found.\n");
1550 		ret = PTR_ERR(priv->can_clk);
1551 		goto err_free;
1552 	}
1553 
1554 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1555 	if (IS_ERR(priv->bus_clk)) {
1556 		dev_err(&pdev->dev, "bus clock not found\n");
1557 		ret = PTR_ERR(priv->bus_clk);
1558 		goto err_free;
1559 	}
1560 
1561 	priv->write_reg = xcan_write_reg_le;
1562 	priv->read_reg = xcan_read_reg_le;
1563 
1564 	pm_runtime_enable(&pdev->dev);
1565 	ret = pm_runtime_get_sync(&pdev->dev);
1566 	if (ret < 0) {
1567 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1568 			__func__, ret);
1569 		goto err_pmdisable;
1570 	}
1571 
1572 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1573 		priv->write_reg = xcan_write_reg_be;
1574 		priv->read_reg = xcan_read_reg_be;
1575 	}
1576 
1577 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1578 
1579 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1580 
1581 	ret = register_candev(ndev);
1582 	if (ret) {
1583 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1584 		goto err_disableclks;
1585 	}
1586 
1587 	devm_can_led_init(ndev);
1588 
1589 	pm_runtime_put(&pdev->dev);
1590 
1591 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1592 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1593 		   hw_tx_max, priv->tx_max);
1594 
1595 	return 0;
1596 
1597 err_disableclks:
1598 	pm_runtime_put(priv->dev);
1599 err_pmdisable:
1600 	pm_runtime_disable(&pdev->dev);
1601 err_free:
1602 	free_candev(ndev);
1603 err:
1604 	return ret;
1605 }
1606 
1607 /**
1608  * xcan_remove - Unregister the device after releasing the resources
1609  * @pdev:	Handle to the platform device structure
1610  *
1611  * This function frees all the resources allocated to the device.
1612  * Return: 0 always
1613  */
1614 static int xcan_remove(struct platform_device *pdev)
1615 {
1616 	struct net_device *ndev = platform_get_drvdata(pdev);
1617 	struct xcan_priv *priv = netdev_priv(ndev);
1618 
1619 	unregister_candev(ndev);
1620 	pm_runtime_disable(&pdev->dev);
1621 	netif_napi_del(&priv->napi);
1622 	free_candev(ndev);
1623 
1624 	return 0;
1625 }
1626 
1627 static struct platform_driver xcan_driver = {
1628 	.probe = xcan_probe,
1629 	.remove	= xcan_remove,
1630 	.driver	= {
1631 		.name = DRIVER_NAME,
1632 		.pm = &xcan_dev_pm_ops,
1633 		.of_match_table	= xcan_of_match,
1634 	},
1635 };
1636 
1637 module_platform_driver(xcan_driver);
1638 
1639 MODULE_LICENSE("GPL");
1640 MODULE_AUTHOR("Xilinx Inc");
1641 MODULE_DESCRIPTION("Xilinx CAN interface");
1642