1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Xilinx CAN device driver 3 * 4 * Copyright (C) 2012 - 2014 Xilinx, Inc. 5 * Copyright (C) 2009 PetaLogix. All rights reserved. 6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy 7 * 8 * Description: 9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller. 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/errno.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/netdevice.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/platform_device.h> 23 #include <linux/skbuff.h> 24 #include <linux/spinlock.h> 25 #include <linux/string.h> 26 #include <linux/types.h> 27 #include <linux/can/dev.h> 28 #include <linux/can/error.h> 29 #include <linux/can/led.h> 30 #include <linux/pm_runtime.h> 31 32 #define DRIVER_NAME "xilinx_can" 33 34 /* CAN registers set */ 35 enum xcan_reg { 36 XCAN_SRR_OFFSET = 0x00, /* Software reset */ 37 XCAN_MSR_OFFSET = 0x04, /* Mode select */ 38 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */ 39 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */ 40 XCAN_ECR_OFFSET = 0x10, /* Error counter */ 41 XCAN_ESR_OFFSET = 0x14, /* Error status */ 42 XCAN_SR_OFFSET = 0x18, /* Status */ 43 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */ 44 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */ 45 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */ 46 47 /* not on CAN FD cores */ 48 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */ 49 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */ 50 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */ 51 52 /* only on CAN FD cores */ 53 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate 54 * Prescalar 55 */ 56 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */ 57 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */ 58 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */ 59 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */ 60 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */ 61 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */ 62 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */ 63 }; 64 65 #define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00) 66 #define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04) 67 #define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08) 68 #define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C) 69 #define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08) 70 71 #define XCAN_CANFD_FRAME_SIZE 0x48 72 #define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \ 73 XCAN_CANFD_FRAME_SIZE * (n)) 74 #define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \ 75 XCAN_CANFD_FRAME_SIZE * (n)) 76 #define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \ 77 XCAN_CANFD_FRAME_SIZE * (n)) 78 79 /* the single TX mailbox used by this driver on CAN FD HW */ 80 #define XCAN_TX_MAILBOX_IDX 0 81 82 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */ 83 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */ 84 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */ 85 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */ 86 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */ 87 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */ 88 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */ 89 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */ 90 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */ 91 #define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */ 92 #define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */ 93 #define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */ 94 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */ 95 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */ 96 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */ 97 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */ 98 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */ 99 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */ 100 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */ 101 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */ 102 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */ 103 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */ 104 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */ 105 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */ 106 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */ 107 #define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */ 108 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */ 109 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */ 110 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */ 111 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */ 112 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */ 113 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */ 114 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */ 115 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */ 116 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */ 117 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */ 118 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */ 119 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */ 120 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */ 121 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */ 122 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */ 123 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */ 124 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */ 125 #define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */ 126 #define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */ 127 #define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */ 128 #define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */ 129 #define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */ 130 #define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */ 131 #define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */ 132 133 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */ 134 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */ 135 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */ 136 #define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */ 137 #define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */ 138 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */ 139 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */ 140 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */ 141 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */ 142 143 /* CAN frame length constants */ 144 #define XCAN_FRAME_MAX_DATA_LEN 8 145 #define XCANFD_DW_BYTES 4 146 #define XCAN_TIMEOUT (1 * HZ) 147 148 /* TX-FIFO-empty interrupt available */ 149 #define XCAN_FLAG_TXFEMP 0x0001 150 /* RX Match Not Finished interrupt available */ 151 #define XCAN_FLAG_RXMNF 0x0002 152 /* Extended acceptance filters with control at 0xE0 */ 153 #define XCAN_FLAG_EXT_FILTERS 0x0004 154 /* TX mailboxes instead of TX FIFO */ 155 #define XCAN_FLAG_TX_MAILBOXES 0x0008 156 /* RX FIFO with each buffer in separate registers at 0x1100 157 * instead of the regular FIFO at 0x50 158 */ 159 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010 160 #define XCAN_FLAG_CANFD_2 0x0020 161 162 enum xcan_ip_type { 163 XAXI_CAN = 0, 164 XZYNQ_CANPS, 165 XAXI_CANFD, 166 XAXI_CANFD_2_0, 167 }; 168 169 struct xcan_devtype_data { 170 enum xcan_ip_type cantype; 171 unsigned int flags; 172 const struct can_bittiming_const *bittiming_const; 173 const char *bus_clk_name; 174 unsigned int btr_ts2_shift; 175 unsigned int btr_sjw_shift; 176 }; 177 178 /** 179 * struct xcan_priv - This definition define CAN driver instance 180 * @can: CAN private data structure. 181 * @tx_lock: Lock for synchronizing TX interrupt handling 182 * @tx_head: Tx CAN packets ready to send on the queue 183 * @tx_tail: Tx CAN packets successfully sended on the queue 184 * @tx_max: Maximum number packets the driver can send 185 * @napi: NAPI structure 186 * @read_reg: For reading data from CAN registers 187 * @write_reg: For writing data to CAN registers 188 * @dev: Network device data structure 189 * @reg_base: Ioremapped address to registers 190 * @irq_flags: For request_irq() 191 * @bus_clk: Pointer to struct clk 192 * @can_clk: Pointer to struct clk 193 * @devtype: Device type specific constants 194 */ 195 struct xcan_priv { 196 struct can_priv can; 197 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */ 198 unsigned int tx_head; 199 unsigned int tx_tail; 200 unsigned int tx_max; 201 struct napi_struct napi; 202 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg); 203 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg, 204 u32 val); 205 struct device *dev; 206 void __iomem *reg_base; 207 unsigned long irq_flags; 208 struct clk *bus_clk; 209 struct clk *can_clk; 210 struct xcan_devtype_data devtype; 211 }; 212 213 /* CAN Bittiming constants as per Xilinx CAN specs */ 214 static const struct can_bittiming_const xcan_bittiming_const = { 215 .name = DRIVER_NAME, 216 .tseg1_min = 1, 217 .tseg1_max = 16, 218 .tseg2_min = 1, 219 .tseg2_max = 8, 220 .sjw_max = 4, 221 .brp_min = 1, 222 .brp_max = 256, 223 .brp_inc = 1, 224 }; 225 226 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */ 227 static const struct can_bittiming_const xcan_bittiming_const_canfd = { 228 .name = DRIVER_NAME, 229 .tseg1_min = 1, 230 .tseg1_max = 64, 231 .tseg2_min = 1, 232 .tseg2_max = 16, 233 .sjw_max = 16, 234 .brp_min = 1, 235 .brp_max = 256, 236 .brp_inc = 1, 237 }; 238 239 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */ 240 static struct can_bittiming_const xcan_data_bittiming_const_canfd = { 241 .name = DRIVER_NAME, 242 .tseg1_min = 1, 243 .tseg1_max = 16, 244 .tseg2_min = 1, 245 .tseg2_max = 8, 246 .sjw_max = 8, 247 .brp_min = 1, 248 .brp_max = 256, 249 .brp_inc = 1, 250 }; 251 252 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */ 253 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = { 254 .name = DRIVER_NAME, 255 .tseg1_min = 1, 256 .tseg1_max = 256, 257 .tseg2_min = 1, 258 .tseg2_max = 128, 259 .sjw_max = 128, 260 .brp_min = 1, 261 .brp_max = 256, 262 .brp_inc = 1, 263 }; 264 265 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */ 266 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = { 267 .name = DRIVER_NAME, 268 .tseg1_min = 1, 269 .tseg1_max = 32, 270 .tseg2_min = 1, 271 .tseg2_max = 16, 272 .sjw_max = 16, 273 .brp_min = 1, 274 .brp_max = 256, 275 .brp_inc = 1, 276 }; 277 278 /** 279 * xcan_write_reg_le - Write a value to the device register little endian 280 * @priv: Driver private data structure 281 * @reg: Register offset 282 * @val: Value to write at the Register offset 283 * 284 * Write data to the paricular CAN register 285 */ 286 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg, 287 u32 val) 288 { 289 iowrite32(val, priv->reg_base + reg); 290 } 291 292 /** 293 * xcan_read_reg_le - Read a value from the device register little endian 294 * @priv: Driver private data structure 295 * @reg: Register offset 296 * 297 * Read data from the particular CAN register 298 * Return: value read from the CAN register 299 */ 300 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg) 301 { 302 return ioread32(priv->reg_base + reg); 303 } 304 305 /** 306 * xcan_write_reg_be - Write a value to the device register big endian 307 * @priv: Driver private data structure 308 * @reg: Register offset 309 * @val: Value to write at the Register offset 310 * 311 * Write data to the paricular CAN register 312 */ 313 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg, 314 u32 val) 315 { 316 iowrite32be(val, priv->reg_base + reg); 317 } 318 319 /** 320 * xcan_read_reg_be - Read a value from the device register big endian 321 * @priv: Driver private data structure 322 * @reg: Register offset 323 * 324 * Read data from the particular CAN register 325 * Return: value read from the CAN register 326 */ 327 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg) 328 { 329 return ioread32be(priv->reg_base + reg); 330 } 331 332 /** 333 * xcan_rx_int_mask - Get the mask for the receive interrupt 334 * @priv: Driver private data structure 335 * 336 * Return: The receive interrupt mask used by the driver on this HW 337 */ 338 static u32 xcan_rx_int_mask(const struct xcan_priv *priv) 339 { 340 /* RXNEMP is better suited for our use case as it cannot be cleared 341 * while the FIFO is non-empty, but CAN FD HW does not have it 342 */ 343 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) 344 return XCAN_IXR_RXOK_MASK; 345 else 346 return XCAN_IXR_RXNEMP_MASK; 347 } 348 349 /** 350 * set_reset_mode - Resets the CAN device mode 351 * @ndev: Pointer to net_device structure 352 * 353 * This is the driver reset mode routine.The driver 354 * enters into configuration mode. 355 * 356 * Return: 0 on success and failure value on error 357 */ 358 static int set_reset_mode(struct net_device *ndev) 359 { 360 struct xcan_priv *priv = netdev_priv(ndev); 361 unsigned long timeout; 362 363 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); 364 365 timeout = jiffies + XCAN_TIMEOUT; 366 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) { 367 if (time_after(jiffies, timeout)) { 368 netdev_warn(ndev, "timed out for config mode\n"); 369 return -ETIMEDOUT; 370 } 371 usleep_range(500, 10000); 372 } 373 374 /* reset clears FIFOs */ 375 priv->tx_head = 0; 376 priv->tx_tail = 0; 377 378 return 0; 379 } 380 381 /** 382 * xcan_set_bittiming - CAN set bit timing routine 383 * @ndev: Pointer to net_device structure 384 * 385 * This is the driver set bittiming routine. 386 * Return: 0 on success and failure value on error 387 */ 388 static int xcan_set_bittiming(struct net_device *ndev) 389 { 390 struct xcan_priv *priv = netdev_priv(ndev); 391 struct can_bittiming *bt = &priv->can.bittiming; 392 struct can_bittiming *dbt = &priv->can.data_bittiming; 393 u32 btr0, btr1; 394 u32 is_config_mode; 395 396 /* Check whether Xilinx CAN is in configuration mode. 397 * It cannot set bit timing if Xilinx CAN is not in configuration mode. 398 */ 399 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) & 400 XCAN_SR_CONFIG_MASK; 401 if (!is_config_mode) { 402 netdev_alert(ndev, 403 "BUG! Cannot set bittiming - CAN is not in config mode\n"); 404 return -EPERM; 405 } 406 407 /* Setting Baud Rate prescalar value in BRPR Register */ 408 btr0 = (bt->brp - 1); 409 410 /* Setting Time Segment 1 in BTR Register */ 411 btr1 = (bt->prop_seg + bt->phase_seg1 - 1); 412 413 /* Setting Time Segment 2 in BTR Register */ 414 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift; 415 416 /* Setting Synchronous jump width in BTR Register */ 417 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift; 418 419 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0); 420 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1); 421 422 if (priv->devtype.cantype == XAXI_CANFD || 423 priv->devtype.cantype == XAXI_CANFD_2_0) { 424 /* Setting Baud Rate prescalar value in F_BRPR Register */ 425 btr0 = dbt->brp - 1; 426 427 /* Setting Time Segment 1 in BTR Register */ 428 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1; 429 430 /* Setting Time Segment 2 in BTR Register */ 431 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift; 432 433 /* Setting Synchronous jump width in BTR Register */ 434 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift; 435 436 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0); 437 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1); 438 } 439 440 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n", 441 priv->read_reg(priv, XCAN_BRPR_OFFSET), 442 priv->read_reg(priv, XCAN_BTR_OFFSET)); 443 444 return 0; 445 } 446 447 /** 448 * xcan_chip_start - This the drivers start routine 449 * @ndev: Pointer to net_device structure 450 * 451 * This is the drivers start routine. 452 * Based on the State of the CAN device it puts 453 * the CAN device into a proper mode. 454 * 455 * Return: 0 on success and failure value on error 456 */ 457 static int xcan_chip_start(struct net_device *ndev) 458 { 459 struct xcan_priv *priv = netdev_priv(ndev); 460 u32 reg_msr; 461 int err; 462 u32 ier; 463 464 /* Check if it is in reset mode */ 465 err = set_reset_mode(ndev); 466 if (err < 0) 467 return err; 468 469 err = xcan_set_bittiming(ndev); 470 if (err < 0) 471 return err; 472 473 /* Enable interrupts 474 * 475 * We enable the ERROR interrupt even with 476 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no 477 * dedicated interrupt for a state change to 478 * ERROR_WARNING/ERROR_PASSIVE. 479 */ 480 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK | 481 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | 482 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK | 483 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv); 484 485 if (priv->devtype.flags & XCAN_FLAG_RXMNF) 486 ier |= XCAN_IXR_RXMNF_MASK; 487 488 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 489 490 /* Check whether it is loopback mode or normal mode */ 491 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) 492 reg_msr = XCAN_MSR_LBACK_MASK; 493 else 494 reg_msr = 0x0; 495 496 /* enable the first extended filter, if any, as cores with extended 497 * filtering default to non-receipt if all filters are disabled 498 */ 499 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS) 500 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001); 501 502 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr); 503 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK); 504 505 netdev_dbg(ndev, "status:#x%08x\n", 506 priv->read_reg(priv, XCAN_SR_OFFSET)); 507 508 priv->can.state = CAN_STATE_ERROR_ACTIVE; 509 return 0; 510 } 511 512 /** 513 * xcan_do_set_mode - This sets the mode of the driver 514 * @ndev: Pointer to net_device structure 515 * @mode: Tells the mode of the driver 516 * 517 * This check the drivers state and calls the 518 * the corresponding modes to set. 519 * 520 * Return: 0 on success and failure value on error 521 */ 522 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode) 523 { 524 int ret; 525 526 switch (mode) { 527 case CAN_MODE_START: 528 ret = xcan_chip_start(ndev); 529 if (ret < 0) { 530 netdev_err(ndev, "xcan_chip_start failed!\n"); 531 return ret; 532 } 533 netif_wake_queue(ndev); 534 break; 535 default: 536 ret = -EOPNOTSUPP; 537 break; 538 } 539 540 return ret; 541 } 542 543 /** 544 * xcan_write_frame - Write a frame to HW 545 * @ndev: Pointer to net_device structure 546 * @skb: sk_buff pointer that contains data to be Txed 547 * @frame_offset: Register offset to write the frame to 548 */ 549 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb, 550 int frame_offset) 551 { 552 u32 id, dlc, data[2] = {0, 0}; 553 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 554 u32 ramoff, dwindex = 0, i; 555 struct xcan_priv *priv = netdev_priv(ndev); 556 557 /* Watch carefully on the bit sequence */ 558 if (cf->can_id & CAN_EFF_FLAG) { 559 /* Extended CAN ID format */ 560 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) & 561 XCAN_IDR_ID2_MASK; 562 id |= (((cf->can_id & CAN_EFF_MASK) >> 563 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) << 564 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK; 565 566 /* The substibute remote TX request bit should be "1" 567 * for extended frames as in the Xilinx CAN datasheet 568 */ 569 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK; 570 571 if (cf->can_id & CAN_RTR_FLAG) 572 /* Extended frames remote TX request */ 573 id |= XCAN_IDR_RTR_MASK; 574 } else { 575 /* Standard CAN ID format */ 576 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) & 577 XCAN_IDR_ID1_MASK; 578 579 if (cf->can_id & CAN_RTR_FLAG) 580 /* Standard frames remote TX request */ 581 id |= XCAN_IDR_SRR_MASK; 582 } 583 584 dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT; 585 if (can_is_canfd_skb(skb)) { 586 if (cf->flags & CANFD_BRS) 587 dlc |= XCAN_DLCR_BRS_MASK; 588 dlc |= XCAN_DLCR_EDL_MASK; 589 } 590 591 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) && 592 (priv->devtype.flags & XCAN_FLAG_TXFEMP)) 593 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max); 594 else 595 can_put_echo_skb(skb, ndev, 0); 596 597 priv->tx_head++; 598 599 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id); 600 /* If the CAN frame is RTR frame this write triggers transmission 601 * (not on CAN FD) 602 */ 603 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc); 604 if (priv->devtype.cantype == XAXI_CANFD || 605 priv->devtype.cantype == XAXI_CANFD_2_0) { 606 for (i = 0; i < cf->len; i += 4) { 607 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) + 608 (dwindex * XCANFD_DW_BYTES); 609 priv->write_reg(priv, ramoff, 610 be32_to_cpup((__be32 *)(cf->data + i))); 611 dwindex++; 612 } 613 } else { 614 if (cf->len > 0) 615 data[0] = be32_to_cpup((__be32 *)(cf->data + 0)); 616 if (cf->len > 4) 617 data[1] = be32_to_cpup((__be32 *)(cf->data + 4)); 618 619 if (!(cf->can_id & CAN_RTR_FLAG)) { 620 priv->write_reg(priv, 621 XCAN_FRAME_DW1_OFFSET(frame_offset), 622 data[0]); 623 /* If the CAN frame is Standard/Extended frame this 624 * write triggers transmission (not on CAN FD) 625 */ 626 priv->write_reg(priv, 627 XCAN_FRAME_DW2_OFFSET(frame_offset), 628 data[1]); 629 } 630 } 631 } 632 633 /** 634 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode) 635 * @skb: sk_buff pointer that contains data to be Txed 636 * @ndev: Pointer to net_device structure 637 * 638 * Return: 0 on success, -ENOSPC if FIFO is full. 639 */ 640 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev) 641 { 642 struct xcan_priv *priv = netdev_priv(ndev); 643 unsigned long flags; 644 645 /* Check if the TX buffer is full */ 646 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) & 647 XCAN_SR_TXFLL_MASK)) 648 return -ENOSPC; 649 650 spin_lock_irqsave(&priv->tx_lock, flags); 651 652 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET); 653 654 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */ 655 if (priv->tx_max > 1) 656 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK); 657 658 /* Check if the TX buffer is full */ 659 if ((priv->tx_head - priv->tx_tail) == priv->tx_max) 660 netif_stop_queue(ndev); 661 662 spin_unlock_irqrestore(&priv->tx_lock, flags); 663 664 return 0; 665 } 666 667 /** 668 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode) 669 * @skb: sk_buff pointer that contains data to be Txed 670 * @ndev: Pointer to net_device structure 671 * 672 * Return: 0 on success, -ENOSPC if there is no space 673 */ 674 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev) 675 { 676 struct xcan_priv *priv = netdev_priv(ndev); 677 unsigned long flags; 678 679 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) & 680 BIT(XCAN_TX_MAILBOX_IDX))) 681 return -ENOSPC; 682 683 spin_lock_irqsave(&priv->tx_lock, flags); 684 685 xcan_write_frame(ndev, skb, 686 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX)); 687 688 /* Mark buffer as ready for transmit */ 689 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX)); 690 691 netif_stop_queue(ndev); 692 693 spin_unlock_irqrestore(&priv->tx_lock, flags); 694 695 return 0; 696 } 697 698 /** 699 * xcan_start_xmit - Starts the transmission 700 * @skb: sk_buff pointer that contains data to be Txed 701 * @ndev: Pointer to net_device structure 702 * 703 * This function is invoked from upper layers to initiate transmission. 704 * 705 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full 706 */ 707 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev) 708 { 709 struct xcan_priv *priv = netdev_priv(ndev); 710 int ret; 711 712 if (can_dropped_invalid_skb(ndev, skb)) 713 return NETDEV_TX_OK; 714 715 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) 716 ret = xcan_start_xmit_mailbox(skb, ndev); 717 else 718 ret = xcan_start_xmit_fifo(skb, ndev); 719 720 if (ret < 0) { 721 netdev_err(ndev, "BUG!, TX full when queue awake!\n"); 722 netif_stop_queue(ndev); 723 return NETDEV_TX_BUSY; 724 } 725 726 return NETDEV_TX_OK; 727 } 728 729 /** 730 * xcan_rx - Is called from CAN isr to complete the received 731 * frame processing 732 * @ndev: Pointer to net_device structure 733 * @frame_base: Register offset to the frame to be read 734 * 735 * This function is invoked from the CAN isr(poll) to process the Rx frames. It 736 * does minimal processing and invokes "netif_receive_skb" to complete further 737 * processing. 738 * Return: 1 on success and 0 on failure. 739 */ 740 static int xcan_rx(struct net_device *ndev, int frame_base) 741 { 742 struct xcan_priv *priv = netdev_priv(ndev); 743 struct net_device_stats *stats = &ndev->stats; 744 struct can_frame *cf; 745 struct sk_buff *skb; 746 u32 id_xcan, dlc, data[2] = {0, 0}; 747 748 skb = alloc_can_skb(ndev, &cf); 749 if (unlikely(!skb)) { 750 stats->rx_dropped++; 751 return 0; 752 } 753 754 /* Read a frame from Xilinx zynq CANPS */ 755 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base)); 756 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >> 757 XCAN_DLCR_DLC_SHIFT; 758 759 /* Change Xilinx CAN data length format to socketCAN data format */ 760 cf->can_dlc = get_can_dlc(dlc); 761 762 /* Change Xilinx CAN ID format to socketCAN ID format */ 763 if (id_xcan & XCAN_IDR_IDE_MASK) { 764 /* The received frame is an Extended format frame */ 765 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3; 766 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >> 767 XCAN_IDR_ID2_SHIFT; 768 cf->can_id |= CAN_EFF_FLAG; 769 if (id_xcan & XCAN_IDR_RTR_MASK) 770 cf->can_id |= CAN_RTR_FLAG; 771 } else { 772 /* The received frame is a standard format frame */ 773 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 774 XCAN_IDR_ID1_SHIFT; 775 if (id_xcan & XCAN_IDR_SRR_MASK) 776 cf->can_id |= CAN_RTR_FLAG; 777 } 778 779 /* DW1/DW2 must always be read to remove message from RXFIFO */ 780 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base)); 781 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base)); 782 783 if (!(cf->can_id & CAN_RTR_FLAG)) { 784 /* Change Xilinx CAN data format to socketCAN data format */ 785 if (cf->can_dlc > 0) 786 *(__be32 *)(cf->data) = cpu_to_be32(data[0]); 787 if (cf->can_dlc > 4) 788 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]); 789 } 790 791 stats->rx_bytes += cf->can_dlc; 792 stats->rx_packets++; 793 netif_receive_skb(skb); 794 795 return 1; 796 } 797 798 /** 799 * xcanfd_rx - Is called from CAN isr to complete the received 800 * frame processing 801 * @ndev: Pointer to net_device structure 802 * @frame_base: Register offset to the frame to be read 803 * 804 * This function is invoked from the CAN isr(poll) to process the Rx frames. It 805 * does minimal processing and invokes "netif_receive_skb" to complete further 806 * processing. 807 * Return: 1 on success and 0 on failure. 808 */ 809 static int xcanfd_rx(struct net_device *ndev, int frame_base) 810 { 811 struct xcan_priv *priv = netdev_priv(ndev); 812 struct net_device_stats *stats = &ndev->stats; 813 struct canfd_frame *cf; 814 struct sk_buff *skb; 815 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset; 816 817 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base)); 818 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)); 819 if (dlc & XCAN_DLCR_EDL_MASK) 820 skb = alloc_canfd_skb(ndev, &cf); 821 else 822 skb = alloc_can_skb(ndev, (struct can_frame **)&cf); 823 824 if (unlikely(!skb)) { 825 stats->rx_dropped++; 826 return 0; 827 } 828 829 /* Change Xilinx CANFD data length format to socketCAN data 830 * format 831 */ 832 if (dlc & XCAN_DLCR_EDL_MASK) 833 cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >> 834 XCAN_DLCR_DLC_SHIFT); 835 else 836 cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >> 837 XCAN_DLCR_DLC_SHIFT); 838 839 /* Change Xilinx CAN ID format to socketCAN ID format */ 840 if (id_xcan & XCAN_IDR_IDE_MASK) { 841 /* The received frame is an Extended format frame */ 842 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3; 843 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >> 844 XCAN_IDR_ID2_SHIFT; 845 cf->can_id |= CAN_EFF_FLAG; 846 if (id_xcan & XCAN_IDR_RTR_MASK) 847 cf->can_id |= CAN_RTR_FLAG; 848 } else { 849 /* The received frame is a standard format frame */ 850 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 851 XCAN_IDR_ID1_SHIFT; 852 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan & 853 XCAN_IDR_SRR_MASK)) 854 cf->can_id |= CAN_RTR_FLAG; 855 } 856 857 /* Check the frame received is FD or not*/ 858 if (dlc & XCAN_DLCR_EDL_MASK) { 859 for (i = 0; i < cf->len; i += 4) { 860 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) + 861 (dwindex * XCANFD_DW_BYTES); 862 data[0] = priv->read_reg(priv, dw_offset); 863 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]); 864 dwindex++; 865 } 866 } else { 867 for (i = 0; i < cf->len; i += 4) { 868 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base); 869 data[0] = priv->read_reg(priv, dw_offset + i); 870 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]); 871 } 872 } 873 stats->rx_bytes += cf->len; 874 stats->rx_packets++; 875 netif_receive_skb(skb); 876 877 return 1; 878 } 879 880 /** 881 * xcan_current_error_state - Get current error state from HW 882 * @ndev: Pointer to net_device structure 883 * 884 * Checks the current CAN error state from the HW. Note that this 885 * only checks for ERROR_PASSIVE and ERROR_WARNING. 886 * 887 * Return: 888 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE 889 * otherwise. 890 */ 891 static enum can_state xcan_current_error_state(struct net_device *ndev) 892 { 893 struct xcan_priv *priv = netdev_priv(ndev); 894 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET); 895 896 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) 897 return CAN_STATE_ERROR_PASSIVE; 898 else if (status & XCAN_SR_ERRWRN_MASK) 899 return CAN_STATE_ERROR_WARNING; 900 else 901 return CAN_STATE_ERROR_ACTIVE; 902 } 903 904 /** 905 * xcan_set_error_state - Set new CAN error state 906 * @ndev: Pointer to net_device structure 907 * @new_state: The new CAN state to be set 908 * @cf: Error frame to be populated or NULL 909 * 910 * Set new CAN error state for the device, updating statistics and 911 * populating the error frame if given. 912 */ 913 static void xcan_set_error_state(struct net_device *ndev, 914 enum can_state new_state, 915 struct can_frame *cf) 916 { 917 struct xcan_priv *priv = netdev_priv(ndev); 918 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET); 919 u32 txerr = ecr & XCAN_ECR_TEC_MASK; 920 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT; 921 enum can_state tx_state = txerr >= rxerr ? new_state : 0; 922 enum can_state rx_state = txerr <= rxerr ? new_state : 0; 923 924 /* non-ERROR states are handled elsewhere */ 925 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE)) 926 return; 927 928 can_change_state(ndev, cf, tx_state, rx_state); 929 930 if (cf) { 931 cf->data[6] = txerr; 932 cf->data[7] = rxerr; 933 } 934 } 935 936 /** 937 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX 938 * @ndev: Pointer to net_device structure 939 * 940 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if 941 * the performed RX/TX has caused it to drop to a lesser state and set 942 * the interface state accordingly. 943 */ 944 static void xcan_update_error_state_after_rxtx(struct net_device *ndev) 945 { 946 struct xcan_priv *priv = netdev_priv(ndev); 947 enum can_state old_state = priv->can.state; 948 enum can_state new_state; 949 950 /* changing error state due to successful frame RX/TX can only 951 * occur from these states 952 */ 953 if (old_state != CAN_STATE_ERROR_WARNING && 954 old_state != CAN_STATE_ERROR_PASSIVE) 955 return; 956 957 new_state = xcan_current_error_state(ndev); 958 959 if (new_state != old_state) { 960 struct sk_buff *skb; 961 struct can_frame *cf; 962 963 skb = alloc_can_err_skb(ndev, &cf); 964 965 xcan_set_error_state(ndev, new_state, skb ? cf : NULL); 966 967 if (skb) { 968 struct net_device_stats *stats = &ndev->stats; 969 970 stats->rx_packets++; 971 stats->rx_bytes += cf->can_dlc; 972 netif_rx(skb); 973 } 974 } 975 } 976 977 /** 978 * xcan_err_interrupt - error frame Isr 979 * @ndev: net_device pointer 980 * @isr: interrupt status register value 981 * 982 * This is the CAN error interrupt and it will 983 * check the the type of error and forward the error 984 * frame to upper layers. 985 */ 986 static void xcan_err_interrupt(struct net_device *ndev, u32 isr) 987 { 988 struct xcan_priv *priv = netdev_priv(ndev); 989 struct net_device_stats *stats = &ndev->stats; 990 struct can_frame cf = { }; 991 u32 err_status; 992 993 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET); 994 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status); 995 996 if (isr & XCAN_IXR_BSOFF_MASK) { 997 priv->can.state = CAN_STATE_BUS_OFF; 998 priv->can.can_stats.bus_off++; 999 /* Leave device in Config Mode in bus-off state */ 1000 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); 1001 can_bus_off(ndev); 1002 cf.can_id |= CAN_ERR_BUSOFF; 1003 } else { 1004 enum can_state new_state = xcan_current_error_state(ndev); 1005 1006 if (new_state != priv->can.state) 1007 xcan_set_error_state(ndev, new_state, &cf); 1008 } 1009 1010 /* Check for Arbitration lost interrupt */ 1011 if (isr & XCAN_IXR_ARBLST_MASK) { 1012 priv->can.can_stats.arbitration_lost++; 1013 cf.can_id |= CAN_ERR_LOSTARB; 1014 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC; 1015 } 1016 1017 /* Check for RX FIFO Overflow interrupt */ 1018 if (isr & XCAN_IXR_RXOFLW_MASK) { 1019 stats->rx_over_errors++; 1020 stats->rx_errors++; 1021 cf.can_id |= CAN_ERR_CRTL; 1022 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; 1023 } 1024 1025 /* Check for RX Match Not Finished interrupt */ 1026 if (isr & XCAN_IXR_RXMNF_MASK) { 1027 stats->rx_dropped++; 1028 stats->rx_errors++; 1029 netdev_err(ndev, "RX match not finished, frame discarded\n"); 1030 cf.can_id |= CAN_ERR_CRTL; 1031 cf.data[1] |= CAN_ERR_CRTL_UNSPEC; 1032 } 1033 1034 /* Check for error interrupt */ 1035 if (isr & XCAN_IXR_ERROR_MASK) { 1036 bool berr_reporting = false; 1037 1038 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 1039 berr_reporting = true; 1040 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 1041 } 1042 1043 /* Check for Ack error interrupt */ 1044 if (err_status & XCAN_ESR_ACKER_MASK) { 1045 stats->tx_errors++; 1046 if (berr_reporting) { 1047 cf.can_id |= CAN_ERR_ACK; 1048 cf.data[3] = CAN_ERR_PROT_LOC_ACK; 1049 } 1050 } 1051 1052 /* Check for Bit error interrupt */ 1053 if (err_status & XCAN_ESR_BERR_MASK) { 1054 stats->tx_errors++; 1055 if (berr_reporting) { 1056 cf.can_id |= CAN_ERR_PROT; 1057 cf.data[2] = CAN_ERR_PROT_BIT; 1058 } 1059 } 1060 1061 /* Check for Stuff error interrupt */ 1062 if (err_status & XCAN_ESR_STER_MASK) { 1063 stats->rx_errors++; 1064 if (berr_reporting) { 1065 cf.can_id |= CAN_ERR_PROT; 1066 cf.data[2] = CAN_ERR_PROT_STUFF; 1067 } 1068 } 1069 1070 /* Check for Form error interrupt */ 1071 if (err_status & XCAN_ESR_FMER_MASK) { 1072 stats->rx_errors++; 1073 if (berr_reporting) { 1074 cf.can_id |= CAN_ERR_PROT; 1075 cf.data[2] = CAN_ERR_PROT_FORM; 1076 } 1077 } 1078 1079 /* Check for CRC error interrupt */ 1080 if (err_status & XCAN_ESR_CRCER_MASK) { 1081 stats->rx_errors++; 1082 if (berr_reporting) { 1083 cf.can_id |= CAN_ERR_PROT; 1084 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 1085 } 1086 } 1087 priv->can.can_stats.bus_error++; 1088 } 1089 1090 if (cf.can_id) { 1091 struct can_frame *skb_cf; 1092 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf); 1093 1094 if (skb) { 1095 skb_cf->can_id |= cf.can_id; 1096 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC); 1097 stats->rx_packets++; 1098 stats->rx_bytes += CAN_ERR_DLC; 1099 netif_rx(skb); 1100 } 1101 } 1102 1103 netdev_dbg(ndev, "%s: error status register:0x%x\n", 1104 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET)); 1105 } 1106 1107 /** 1108 * xcan_state_interrupt - It will check the state of the CAN device 1109 * @ndev: net_device pointer 1110 * @isr: interrupt status register value 1111 * 1112 * This will checks the state of the CAN device 1113 * and puts the device into appropriate state. 1114 */ 1115 static void xcan_state_interrupt(struct net_device *ndev, u32 isr) 1116 { 1117 struct xcan_priv *priv = netdev_priv(ndev); 1118 1119 /* Check for Sleep interrupt if set put CAN device in sleep state */ 1120 if (isr & XCAN_IXR_SLP_MASK) 1121 priv->can.state = CAN_STATE_SLEEPING; 1122 1123 /* Check for Wake up interrupt if set put CAN device in Active state */ 1124 if (isr & XCAN_IXR_WKUP_MASK) 1125 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1126 } 1127 1128 /** 1129 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame 1130 * @priv: Driver private data structure 1131 * 1132 * Return: Register offset of the next frame in RX FIFO. 1133 */ 1134 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv) 1135 { 1136 int offset; 1137 1138 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) { 1139 u32 fsr, mask; 1140 1141 /* clear RXOK before the is-empty check so that any newly 1142 * received frame will reassert it without a race 1143 */ 1144 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK); 1145 1146 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET); 1147 1148 /* check if RX FIFO is empty */ 1149 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) 1150 mask = XCAN_2_FSR_FL_MASK; 1151 else 1152 mask = XCAN_FSR_FL_MASK; 1153 1154 if (!(fsr & mask)) 1155 return -ENOENT; 1156 1157 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) 1158 offset = 1159 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK); 1160 else 1161 offset = 1162 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK); 1163 1164 } else { 1165 /* check if RX FIFO is empty */ 1166 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) & 1167 XCAN_IXR_RXNEMP_MASK)) 1168 return -ENOENT; 1169 1170 /* frames are read from a static offset */ 1171 offset = XCAN_RXFIFO_OFFSET; 1172 } 1173 1174 return offset; 1175 } 1176 1177 /** 1178 * xcan_rx_poll - Poll routine for rx packets (NAPI) 1179 * @napi: napi structure pointer 1180 * @quota: Max number of rx packets to be processed. 1181 * 1182 * This is the poll routine for rx part. 1183 * It will process the packets maximux quota value. 1184 * 1185 * Return: number of packets received 1186 */ 1187 static int xcan_rx_poll(struct napi_struct *napi, int quota) 1188 { 1189 struct net_device *ndev = napi->dev; 1190 struct xcan_priv *priv = netdev_priv(ndev); 1191 u32 ier; 1192 int work_done = 0; 1193 int frame_offset; 1194 1195 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 && 1196 (work_done < quota)) { 1197 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK) 1198 work_done += xcanfd_rx(ndev, frame_offset); 1199 else 1200 work_done += xcan_rx(ndev, frame_offset); 1201 1202 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) 1203 /* increment read index */ 1204 priv->write_reg(priv, XCAN_FSR_OFFSET, 1205 XCAN_FSR_IRI_MASK); 1206 else 1207 /* clear rx-not-empty (will actually clear only if 1208 * empty) 1209 */ 1210 priv->write_reg(priv, XCAN_ICR_OFFSET, 1211 XCAN_IXR_RXNEMP_MASK); 1212 } 1213 1214 if (work_done) { 1215 can_led_event(ndev, CAN_LED_EVENT_RX); 1216 xcan_update_error_state_after_rxtx(ndev); 1217 } 1218 1219 if (work_done < quota) { 1220 napi_complete_done(napi, work_done); 1221 ier = priv->read_reg(priv, XCAN_IER_OFFSET); 1222 ier |= xcan_rx_int_mask(priv); 1223 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 1224 } 1225 return work_done; 1226 } 1227 1228 /** 1229 * xcan_tx_interrupt - Tx Done Isr 1230 * @ndev: net_device pointer 1231 * @isr: Interrupt status register value 1232 */ 1233 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr) 1234 { 1235 struct xcan_priv *priv = netdev_priv(ndev); 1236 struct net_device_stats *stats = &ndev->stats; 1237 unsigned int frames_in_fifo; 1238 int frames_sent = 1; /* TXOK => at least 1 frame was sent */ 1239 unsigned long flags; 1240 int retries = 0; 1241 1242 /* Synchronize with xmit as we need to know the exact number 1243 * of frames in the FIFO to stay in sync due to the TXFEMP 1244 * handling. 1245 * This also prevents a race between netif_wake_queue() and 1246 * netif_stop_queue(). 1247 */ 1248 spin_lock_irqsave(&priv->tx_lock, flags); 1249 1250 frames_in_fifo = priv->tx_head - priv->tx_tail; 1251 1252 if (WARN_ON_ONCE(frames_in_fifo == 0)) { 1253 /* clear TXOK anyway to avoid getting back here */ 1254 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 1255 spin_unlock_irqrestore(&priv->tx_lock, flags); 1256 return; 1257 } 1258 1259 /* Check if 2 frames were sent (TXOK only means that at least 1 1260 * frame was sent). 1261 */ 1262 if (frames_in_fifo > 1) { 1263 WARN_ON(frames_in_fifo > priv->tx_max); 1264 1265 /* Synchronize TXOK and isr so that after the loop: 1266 * (1) isr variable is up-to-date at least up to TXOK clear 1267 * time. This avoids us clearing a TXOK of a second frame 1268 * but not noticing that the FIFO is now empty and thus 1269 * marking only a single frame as sent. 1270 * (2) No TXOK is left. Having one could mean leaving a 1271 * stray TXOK as we might process the associated frame 1272 * via TXFEMP handling as we read TXFEMP *after* TXOK 1273 * clear to satisfy (1). 1274 */ 1275 while ((isr & XCAN_IXR_TXOK_MASK) && 1276 !WARN_ON(++retries == 100)) { 1277 priv->write_reg(priv, XCAN_ICR_OFFSET, 1278 XCAN_IXR_TXOK_MASK); 1279 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 1280 } 1281 1282 if (isr & XCAN_IXR_TXFEMP_MASK) { 1283 /* nothing in FIFO anymore */ 1284 frames_sent = frames_in_fifo; 1285 } 1286 } else { 1287 /* single frame in fifo, just clear TXOK */ 1288 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); 1289 } 1290 1291 while (frames_sent--) { 1292 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail % 1293 priv->tx_max); 1294 priv->tx_tail++; 1295 stats->tx_packets++; 1296 } 1297 1298 netif_wake_queue(ndev); 1299 1300 spin_unlock_irqrestore(&priv->tx_lock, flags); 1301 1302 can_led_event(ndev, CAN_LED_EVENT_TX); 1303 xcan_update_error_state_after_rxtx(ndev); 1304 } 1305 1306 /** 1307 * xcan_interrupt - CAN Isr 1308 * @irq: irq number 1309 * @dev_id: device id poniter 1310 * 1311 * This is the xilinx CAN Isr. It checks for the type of interrupt 1312 * and invokes the corresponding ISR. 1313 * 1314 * Return: 1315 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise 1316 */ 1317 static irqreturn_t xcan_interrupt(int irq, void *dev_id) 1318 { 1319 struct net_device *ndev = (struct net_device *)dev_id; 1320 struct xcan_priv *priv = netdev_priv(ndev); 1321 u32 isr, ier; 1322 u32 isr_errors; 1323 u32 rx_int_mask = xcan_rx_int_mask(priv); 1324 1325 /* Get the interrupt status from Xilinx CAN */ 1326 isr = priv->read_reg(priv, XCAN_ISR_OFFSET); 1327 if (!isr) 1328 return IRQ_NONE; 1329 1330 /* Check for the type of interrupt and Processing it */ 1331 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) { 1332 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK | 1333 XCAN_IXR_WKUP_MASK)); 1334 xcan_state_interrupt(ndev, isr); 1335 } 1336 1337 /* Check for Tx interrupt and Processing it */ 1338 if (isr & XCAN_IXR_TXOK_MASK) 1339 xcan_tx_interrupt(ndev, isr); 1340 1341 /* Check for the type of error interrupt and Processing it */ 1342 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK | 1343 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK | 1344 XCAN_IXR_RXMNF_MASK); 1345 if (isr_errors) { 1346 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors); 1347 xcan_err_interrupt(ndev, isr); 1348 } 1349 1350 /* Check for the type of receive interrupt and Processing it */ 1351 if (isr & rx_int_mask) { 1352 ier = priv->read_reg(priv, XCAN_IER_OFFSET); 1353 ier &= ~rx_int_mask; 1354 priv->write_reg(priv, XCAN_IER_OFFSET, ier); 1355 napi_schedule(&priv->napi); 1356 } 1357 return IRQ_HANDLED; 1358 } 1359 1360 /** 1361 * xcan_chip_stop - Driver stop routine 1362 * @ndev: Pointer to net_device structure 1363 * 1364 * This is the drivers stop routine. It will disable the 1365 * interrupts and put the device into configuration mode. 1366 */ 1367 static void xcan_chip_stop(struct net_device *ndev) 1368 { 1369 struct xcan_priv *priv = netdev_priv(ndev); 1370 1371 /* Disable interrupts and leave the can in configuration mode */ 1372 set_reset_mode(ndev); 1373 priv->can.state = CAN_STATE_STOPPED; 1374 } 1375 1376 /** 1377 * xcan_open - Driver open routine 1378 * @ndev: Pointer to net_device structure 1379 * 1380 * This is the driver open routine. 1381 * Return: 0 on success and failure value on error 1382 */ 1383 static int xcan_open(struct net_device *ndev) 1384 { 1385 struct xcan_priv *priv = netdev_priv(ndev); 1386 int ret; 1387 1388 ret = pm_runtime_get_sync(priv->dev); 1389 if (ret < 0) { 1390 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1391 __func__, ret); 1392 return ret; 1393 } 1394 1395 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags, 1396 ndev->name, ndev); 1397 if (ret < 0) { 1398 netdev_err(ndev, "irq allocation for CAN failed\n"); 1399 goto err; 1400 } 1401 1402 /* Set chip into reset mode */ 1403 ret = set_reset_mode(ndev); 1404 if (ret < 0) { 1405 netdev_err(ndev, "mode resetting failed!\n"); 1406 goto err_irq; 1407 } 1408 1409 /* Common open */ 1410 ret = open_candev(ndev); 1411 if (ret) 1412 goto err_irq; 1413 1414 ret = xcan_chip_start(ndev); 1415 if (ret < 0) { 1416 netdev_err(ndev, "xcan_chip_start failed!\n"); 1417 goto err_candev; 1418 } 1419 1420 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1421 napi_enable(&priv->napi); 1422 netif_start_queue(ndev); 1423 1424 return 0; 1425 1426 err_candev: 1427 close_candev(ndev); 1428 err_irq: 1429 free_irq(ndev->irq, ndev); 1430 err: 1431 pm_runtime_put(priv->dev); 1432 1433 return ret; 1434 } 1435 1436 /** 1437 * xcan_close - Driver close routine 1438 * @ndev: Pointer to net_device structure 1439 * 1440 * Return: 0 always 1441 */ 1442 static int xcan_close(struct net_device *ndev) 1443 { 1444 struct xcan_priv *priv = netdev_priv(ndev); 1445 1446 netif_stop_queue(ndev); 1447 napi_disable(&priv->napi); 1448 xcan_chip_stop(ndev); 1449 free_irq(ndev->irq, ndev); 1450 close_candev(ndev); 1451 1452 can_led_event(ndev, CAN_LED_EVENT_STOP); 1453 pm_runtime_put(priv->dev); 1454 1455 return 0; 1456 } 1457 1458 /** 1459 * xcan_get_berr_counter - error counter routine 1460 * @ndev: Pointer to net_device structure 1461 * @bec: Pointer to can_berr_counter structure 1462 * 1463 * This is the driver error counter routine. 1464 * Return: 0 on success and failure value on error 1465 */ 1466 static int xcan_get_berr_counter(const struct net_device *ndev, 1467 struct can_berr_counter *bec) 1468 { 1469 struct xcan_priv *priv = netdev_priv(ndev); 1470 int ret; 1471 1472 ret = pm_runtime_get_sync(priv->dev); 1473 if (ret < 0) { 1474 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1475 __func__, ret); 1476 return ret; 1477 } 1478 1479 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK; 1480 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) & 1481 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT); 1482 1483 pm_runtime_put(priv->dev); 1484 1485 return 0; 1486 } 1487 1488 static const struct net_device_ops xcan_netdev_ops = { 1489 .ndo_open = xcan_open, 1490 .ndo_stop = xcan_close, 1491 .ndo_start_xmit = xcan_start_xmit, 1492 .ndo_change_mtu = can_change_mtu, 1493 }; 1494 1495 /** 1496 * xcan_suspend - Suspend method for the driver 1497 * @dev: Address of the device structure 1498 * 1499 * Put the driver into low power mode. 1500 * Return: 0 on success and failure value on error 1501 */ 1502 static int __maybe_unused xcan_suspend(struct device *dev) 1503 { 1504 struct net_device *ndev = dev_get_drvdata(dev); 1505 1506 if (netif_running(ndev)) { 1507 netif_stop_queue(ndev); 1508 netif_device_detach(ndev); 1509 xcan_chip_stop(ndev); 1510 } 1511 1512 return pm_runtime_force_suspend(dev); 1513 } 1514 1515 /** 1516 * xcan_resume - Resume from suspend 1517 * @dev: Address of the device structure 1518 * 1519 * Resume operation after suspend. 1520 * Return: 0 on success and failure value on error 1521 */ 1522 static int __maybe_unused xcan_resume(struct device *dev) 1523 { 1524 struct net_device *ndev = dev_get_drvdata(dev); 1525 int ret; 1526 1527 ret = pm_runtime_force_resume(dev); 1528 if (ret) { 1529 dev_err(dev, "pm_runtime_force_resume failed on resume\n"); 1530 return ret; 1531 } 1532 1533 if (netif_running(ndev)) { 1534 ret = xcan_chip_start(ndev); 1535 if (ret) { 1536 dev_err(dev, "xcan_chip_start failed on resume\n"); 1537 return ret; 1538 } 1539 1540 netif_device_attach(ndev); 1541 netif_start_queue(ndev); 1542 } 1543 1544 return 0; 1545 } 1546 1547 /** 1548 * xcan_runtime_suspend - Runtime suspend method for the driver 1549 * @dev: Address of the device structure 1550 * 1551 * Put the driver into low power mode. 1552 * Return: 0 always 1553 */ 1554 static int __maybe_unused xcan_runtime_suspend(struct device *dev) 1555 { 1556 struct net_device *ndev = dev_get_drvdata(dev); 1557 struct xcan_priv *priv = netdev_priv(ndev); 1558 1559 clk_disable_unprepare(priv->bus_clk); 1560 clk_disable_unprepare(priv->can_clk); 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * xcan_runtime_resume - Runtime resume from suspend 1567 * @dev: Address of the device structure 1568 * 1569 * Resume operation after suspend. 1570 * Return: 0 on success and failure value on error 1571 */ 1572 static int __maybe_unused xcan_runtime_resume(struct device *dev) 1573 { 1574 struct net_device *ndev = dev_get_drvdata(dev); 1575 struct xcan_priv *priv = netdev_priv(ndev); 1576 int ret; 1577 1578 ret = clk_prepare_enable(priv->bus_clk); 1579 if (ret) { 1580 dev_err(dev, "Cannot enable clock.\n"); 1581 return ret; 1582 } 1583 ret = clk_prepare_enable(priv->can_clk); 1584 if (ret) { 1585 dev_err(dev, "Cannot enable clock.\n"); 1586 clk_disable_unprepare(priv->bus_clk); 1587 return ret; 1588 } 1589 1590 return 0; 1591 } 1592 1593 static const struct dev_pm_ops xcan_dev_pm_ops = { 1594 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume) 1595 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL) 1596 }; 1597 1598 static const struct xcan_devtype_data xcan_zynq_data = { 1599 .cantype = XZYNQ_CANPS, 1600 .flags = XCAN_FLAG_TXFEMP, 1601 .bittiming_const = &xcan_bittiming_const, 1602 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT, 1603 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT, 1604 .bus_clk_name = "pclk", 1605 }; 1606 1607 static const struct xcan_devtype_data xcan_axi_data = { 1608 .cantype = XAXI_CAN, 1609 .bittiming_const = &xcan_bittiming_const, 1610 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT, 1611 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT, 1612 .bus_clk_name = "s_axi_aclk", 1613 }; 1614 1615 static const struct xcan_devtype_data xcan_canfd_data = { 1616 .cantype = XAXI_CANFD, 1617 .flags = XCAN_FLAG_EXT_FILTERS | 1618 XCAN_FLAG_RXMNF | 1619 XCAN_FLAG_TX_MAILBOXES | 1620 XCAN_FLAG_RX_FIFO_MULTI, 1621 .bittiming_const = &xcan_bittiming_const_canfd, 1622 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD, 1623 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD, 1624 .bus_clk_name = "s_axi_aclk", 1625 }; 1626 1627 static const struct xcan_devtype_data xcan_canfd2_data = { 1628 .cantype = XAXI_CANFD_2_0, 1629 .flags = XCAN_FLAG_EXT_FILTERS | 1630 XCAN_FLAG_RXMNF | 1631 XCAN_FLAG_TX_MAILBOXES | 1632 XCAN_FLAG_CANFD_2 | 1633 XCAN_FLAG_RX_FIFO_MULTI, 1634 .bittiming_const = &xcan_bittiming_const_canfd2, 1635 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD, 1636 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD, 1637 .bus_clk_name = "s_axi_aclk", 1638 }; 1639 1640 /* Match table for OF platform binding */ 1641 static const struct of_device_id xcan_of_match[] = { 1642 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data }, 1643 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data }, 1644 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data }, 1645 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data }, 1646 { /* end of list */ }, 1647 }; 1648 MODULE_DEVICE_TABLE(of, xcan_of_match); 1649 1650 /** 1651 * xcan_probe - Platform registration call 1652 * @pdev: Handle to the platform device structure 1653 * 1654 * This function does all the memory allocation and registration for the CAN 1655 * device. 1656 * 1657 * Return: 0 on success and failure value on error 1658 */ 1659 static int xcan_probe(struct platform_device *pdev) 1660 { 1661 struct net_device *ndev; 1662 struct xcan_priv *priv; 1663 const struct of_device_id *of_id; 1664 const struct xcan_devtype_data *devtype = &xcan_axi_data; 1665 void __iomem *addr; 1666 int ret; 1667 int rx_max, tx_max; 1668 int hw_tx_max, hw_rx_max; 1669 const char *hw_tx_max_property; 1670 1671 /* Get the virtual base address for the device */ 1672 addr = devm_platform_ioremap_resource(pdev, 0); 1673 if (IS_ERR(addr)) { 1674 ret = PTR_ERR(addr); 1675 goto err; 1676 } 1677 1678 of_id = of_match_device(xcan_of_match, &pdev->dev); 1679 if (of_id && of_id->data) 1680 devtype = of_id->data; 1681 1682 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ? 1683 "tx-mailbox-count" : "tx-fifo-depth"; 1684 1685 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property, 1686 &hw_tx_max); 1687 if (ret < 0) { 1688 dev_err(&pdev->dev, "missing %s property\n", 1689 hw_tx_max_property); 1690 goto err; 1691 } 1692 1693 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1694 &hw_rx_max); 1695 if (ret < 0) { 1696 dev_err(&pdev->dev, 1697 "missing rx-fifo-depth property (mailbox mode is not supported)\n"); 1698 goto err; 1699 } 1700 1701 /* With TX FIFO: 1702 * 1703 * There is no way to directly figure out how many frames have been 1704 * sent when the TXOK interrupt is processed. If TXFEMP 1705 * is supported, we can have 2 frames in the FIFO and use TXFEMP 1706 * to determine if 1 or 2 frames have been sent. 1707 * Theoretically we should be able to use TXFWMEMP to determine up 1708 * to 3 frames, but it seems that after putting a second frame in the 1709 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less 1710 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was 1711 * sent), which is not a sensible state - possibly TXFWMEMP is not 1712 * completely synchronized with the rest of the bits? 1713 * 1714 * With TX mailboxes: 1715 * 1716 * HW sends frames in CAN ID priority order. To preserve FIFO ordering 1717 * we submit frames one at a time. 1718 */ 1719 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) && 1720 (devtype->flags & XCAN_FLAG_TXFEMP)) 1721 tx_max = min(hw_tx_max, 2); 1722 else 1723 tx_max = 1; 1724 1725 rx_max = hw_rx_max; 1726 1727 /* Create a CAN device instance */ 1728 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max); 1729 if (!ndev) 1730 return -ENOMEM; 1731 1732 priv = netdev_priv(ndev); 1733 priv->dev = &pdev->dev; 1734 priv->can.bittiming_const = devtype->bittiming_const; 1735 priv->can.do_set_mode = xcan_do_set_mode; 1736 priv->can.do_get_berr_counter = xcan_get_berr_counter; 1737 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1738 CAN_CTRLMODE_BERR_REPORTING; 1739 1740 if (devtype->cantype == XAXI_CANFD) 1741 priv->can.data_bittiming_const = 1742 &xcan_data_bittiming_const_canfd; 1743 1744 if (devtype->cantype == XAXI_CANFD_2_0) 1745 priv->can.data_bittiming_const = 1746 &xcan_data_bittiming_const_canfd2; 1747 1748 if (devtype->cantype == XAXI_CANFD || 1749 devtype->cantype == XAXI_CANFD_2_0) 1750 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD; 1751 1752 priv->reg_base = addr; 1753 priv->tx_max = tx_max; 1754 priv->devtype = *devtype; 1755 spin_lock_init(&priv->tx_lock); 1756 1757 /* Get IRQ for the device */ 1758 ndev->irq = platform_get_irq(pdev, 0); 1759 ndev->flags |= IFF_ECHO; /* We support local echo */ 1760 1761 platform_set_drvdata(pdev, ndev); 1762 SET_NETDEV_DEV(ndev, &pdev->dev); 1763 ndev->netdev_ops = &xcan_netdev_ops; 1764 1765 /* Getting the CAN can_clk info */ 1766 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1767 if (IS_ERR(priv->can_clk)) { 1768 if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER) 1769 dev_err(&pdev->dev, "Device clock not found.\n"); 1770 ret = PTR_ERR(priv->can_clk); 1771 goto err_free; 1772 } 1773 1774 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name); 1775 if (IS_ERR(priv->bus_clk)) { 1776 if (PTR_ERR(priv->bus_clk) != -EPROBE_DEFER) 1777 dev_err(&pdev->dev, "bus clock not found\n"); 1778 ret = PTR_ERR(priv->bus_clk); 1779 goto err_free; 1780 } 1781 1782 priv->write_reg = xcan_write_reg_le; 1783 priv->read_reg = xcan_read_reg_le; 1784 1785 pm_runtime_enable(&pdev->dev); 1786 ret = pm_runtime_get_sync(&pdev->dev); 1787 if (ret < 0) { 1788 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", 1789 __func__, ret); 1790 goto err_pmdisable; 1791 } 1792 1793 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) { 1794 priv->write_reg = xcan_write_reg_be; 1795 priv->read_reg = xcan_read_reg_be; 1796 } 1797 1798 priv->can.clock.freq = clk_get_rate(priv->can_clk); 1799 1800 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max); 1801 1802 ret = register_candev(ndev); 1803 if (ret) { 1804 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret); 1805 goto err_disableclks; 1806 } 1807 1808 devm_can_led_init(ndev); 1809 1810 pm_runtime_put(&pdev->dev); 1811 1812 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n", 1813 priv->reg_base, ndev->irq, priv->can.clock.freq, 1814 hw_tx_max, priv->tx_max); 1815 1816 return 0; 1817 1818 err_disableclks: 1819 pm_runtime_put(priv->dev); 1820 err_pmdisable: 1821 pm_runtime_disable(&pdev->dev); 1822 err_free: 1823 free_candev(ndev); 1824 err: 1825 return ret; 1826 } 1827 1828 /** 1829 * xcan_remove - Unregister the device after releasing the resources 1830 * @pdev: Handle to the platform device structure 1831 * 1832 * This function frees all the resources allocated to the device. 1833 * Return: 0 always 1834 */ 1835 static int xcan_remove(struct platform_device *pdev) 1836 { 1837 struct net_device *ndev = platform_get_drvdata(pdev); 1838 struct xcan_priv *priv = netdev_priv(ndev); 1839 1840 unregister_candev(ndev); 1841 pm_runtime_disable(&pdev->dev); 1842 netif_napi_del(&priv->napi); 1843 free_candev(ndev); 1844 1845 return 0; 1846 } 1847 1848 static struct platform_driver xcan_driver = { 1849 .probe = xcan_probe, 1850 .remove = xcan_remove, 1851 .driver = { 1852 .name = DRIVER_NAME, 1853 .pm = &xcan_dev_pm_ops, 1854 .of_match_table = xcan_of_match, 1855 }, 1856 }; 1857 1858 module_platform_driver(xcan_driver); 1859 1860 MODULE_LICENSE("GPL"); 1861 MODULE_AUTHOR("Xilinx Inc"); 1862 MODULE_DESCRIPTION("Xilinx CAN interface"); 1863