xref: /openbmc/linux/drivers/net/can/usb/gs_usb.c (revision 837e8ac8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3  * and bytewerk.org candleLight USB CAN interfaces.
4  *
5  * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6  * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7  * Copyright (C) 2016 Hubert Denkmair
8  *
9  * Many thanks to all socketcan devs!
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clocksource.h>
14 #include <linux/ethtool.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/signal.h>
19 #include <linux/timecounter.h>
20 #include <linux/units.h>
21 #include <linux/usb.h>
22 #include <linux/workqueue.h>
23 
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/error.h>
27 
28 /* Device specific constants */
29 #define USB_GS_USB_1_VENDOR_ID 0x1d50
30 #define USB_GS_USB_1_PRODUCT_ID 0x606f
31 
32 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
33 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
34 
35 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
36 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
37 
38 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
39 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
40 
41 #define GS_USB_ENDPOINT_IN 1
42 #define GS_USB_ENDPOINT_OUT 2
43 
44 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
45  * for timer overflow (will be after ~71 minutes)
46  */
47 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
48 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
49 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
50 	      CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
51 
52 /* Device specific constants */
53 enum gs_usb_breq {
54 	GS_USB_BREQ_HOST_FORMAT = 0,
55 	GS_USB_BREQ_BITTIMING,
56 	GS_USB_BREQ_MODE,
57 	GS_USB_BREQ_BERR,
58 	GS_USB_BREQ_BT_CONST,
59 	GS_USB_BREQ_DEVICE_CONFIG,
60 	GS_USB_BREQ_TIMESTAMP,
61 	GS_USB_BREQ_IDENTIFY,
62 	GS_USB_BREQ_GET_USER_ID,
63 	GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
64 	GS_USB_BREQ_SET_USER_ID,
65 	GS_USB_BREQ_DATA_BITTIMING,
66 	GS_USB_BREQ_BT_CONST_EXT,
67 	GS_USB_BREQ_SET_TERMINATION,
68 	GS_USB_BREQ_GET_TERMINATION,
69 	GS_USB_BREQ_GET_STATE,
70 };
71 
72 enum gs_can_mode {
73 	/* reset a channel. turns it off */
74 	GS_CAN_MODE_RESET = 0,
75 	/* starts a channel */
76 	GS_CAN_MODE_START
77 };
78 
79 enum gs_can_state {
80 	GS_CAN_STATE_ERROR_ACTIVE = 0,
81 	GS_CAN_STATE_ERROR_WARNING,
82 	GS_CAN_STATE_ERROR_PASSIVE,
83 	GS_CAN_STATE_BUS_OFF,
84 	GS_CAN_STATE_STOPPED,
85 	GS_CAN_STATE_SLEEPING
86 };
87 
88 enum gs_can_identify_mode {
89 	GS_CAN_IDENTIFY_OFF = 0,
90 	GS_CAN_IDENTIFY_ON
91 };
92 
93 enum gs_can_termination_state {
94 	GS_CAN_TERMINATION_STATE_OFF = 0,
95 	GS_CAN_TERMINATION_STATE_ON
96 };
97 
98 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
99 #define GS_USB_TERMINATION_ENABLED 120
100 
101 /* data types passed between host and device */
102 
103 /* The firmware on the original USB2CAN by Geschwister Schneider
104  * Technologie Entwicklungs- und Vertriebs UG exchanges all data
105  * between the host and the device in host byte order. This is done
106  * with the struct gs_host_config::byte_order member, which is sent
107  * first to indicate the desired byte order.
108  *
109  * The widely used open source firmware candleLight doesn't support
110  * this feature and exchanges the data in little endian byte order.
111  */
112 struct gs_host_config {
113 	__le32 byte_order;
114 } __packed;
115 
116 struct gs_device_config {
117 	u8 reserved1;
118 	u8 reserved2;
119 	u8 reserved3;
120 	u8 icount;
121 	__le32 sw_version;
122 	__le32 hw_version;
123 } __packed;
124 
125 #define GS_CAN_MODE_NORMAL 0
126 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
127 #define GS_CAN_MODE_LOOP_BACK BIT(1)
128 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
129 #define GS_CAN_MODE_ONE_SHOT BIT(3)
130 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
131 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
132 /* GS_CAN_FEATURE_USER_ID BIT(6) */
133 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
134 #define GS_CAN_MODE_FD BIT(8)
135 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
136 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
137 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
138 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
139 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
140 
141 struct gs_device_mode {
142 	__le32 mode;
143 	__le32 flags;
144 } __packed;
145 
146 struct gs_device_state {
147 	__le32 state;
148 	__le32 rxerr;
149 	__le32 txerr;
150 } __packed;
151 
152 struct gs_device_bittiming {
153 	__le32 prop_seg;
154 	__le32 phase_seg1;
155 	__le32 phase_seg2;
156 	__le32 sjw;
157 	__le32 brp;
158 } __packed;
159 
160 struct gs_identify_mode {
161 	__le32 mode;
162 } __packed;
163 
164 struct gs_device_termination_state {
165 	__le32 state;
166 } __packed;
167 
168 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
169 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
170 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
171 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
172 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
173 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
174 #define GS_CAN_FEATURE_USER_ID BIT(6)
175 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
176 #define GS_CAN_FEATURE_FD BIT(8)
177 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
178 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
179 #define GS_CAN_FEATURE_TERMINATION BIT(11)
180 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
181 #define GS_CAN_FEATURE_GET_STATE BIT(13)
182 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
183 
184 /* internal quirks - keep in GS_CAN_FEATURE space for now */
185 
186 /* CANtact Pro original firmware:
187  * BREQ DATA_BITTIMING overlaps with GET_USER_ID
188  */
189 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
190 
191 struct gs_device_bt_const {
192 	__le32 feature;
193 	__le32 fclk_can;
194 	__le32 tseg1_min;
195 	__le32 tseg1_max;
196 	__le32 tseg2_min;
197 	__le32 tseg2_max;
198 	__le32 sjw_max;
199 	__le32 brp_min;
200 	__le32 brp_max;
201 	__le32 brp_inc;
202 } __packed;
203 
204 struct gs_device_bt_const_extended {
205 	__le32 feature;
206 	__le32 fclk_can;
207 	__le32 tseg1_min;
208 	__le32 tseg1_max;
209 	__le32 tseg2_min;
210 	__le32 tseg2_max;
211 	__le32 sjw_max;
212 	__le32 brp_min;
213 	__le32 brp_max;
214 	__le32 brp_inc;
215 
216 	__le32 dtseg1_min;
217 	__le32 dtseg1_max;
218 	__le32 dtseg2_min;
219 	__le32 dtseg2_max;
220 	__le32 dsjw_max;
221 	__le32 dbrp_min;
222 	__le32 dbrp_max;
223 	__le32 dbrp_inc;
224 } __packed;
225 
226 #define GS_CAN_FLAG_OVERFLOW BIT(0)
227 #define GS_CAN_FLAG_FD BIT(1)
228 #define GS_CAN_FLAG_BRS BIT(2)
229 #define GS_CAN_FLAG_ESI BIT(3)
230 
231 struct classic_can {
232 	u8 data[8];
233 } __packed;
234 
235 struct classic_can_ts {
236 	u8 data[8];
237 	__le32 timestamp_us;
238 } __packed;
239 
240 struct classic_can_quirk {
241 	u8 data[8];
242 	u8 quirk;
243 } __packed;
244 
245 struct canfd {
246 	u8 data[64];
247 } __packed;
248 
249 struct canfd_ts {
250 	u8 data[64];
251 	__le32 timestamp_us;
252 } __packed;
253 
254 struct canfd_quirk {
255 	u8 data[64];
256 	u8 quirk;
257 } __packed;
258 
259 struct gs_host_frame {
260 	u32 echo_id;
261 	__le32 can_id;
262 
263 	u8 can_dlc;
264 	u8 channel;
265 	u8 flags;
266 	u8 reserved;
267 
268 	union {
269 		DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
270 		DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
271 		DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
272 		DECLARE_FLEX_ARRAY(struct canfd, canfd);
273 		DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
274 		DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
275 	};
276 } __packed;
277 /* The GS USB devices make use of the same flags and masks as in
278  * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
279  */
280 
281 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
282 #define GS_MAX_TX_URBS 10
283 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
284 #define GS_MAX_RX_URBS 30
285 /* Maximum number of interfaces the driver supports per device.
286  * Current hardware only supports 3 interfaces. The future may vary.
287  */
288 #define GS_MAX_INTF 3
289 
290 struct gs_tx_context {
291 	struct gs_can *dev;
292 	unsigned int echo_id;
293 };
294 
295 struct gs_can {
296 	struct can_priv can; /* must be the first member */
297 
298 	struct gs_usb *parent;
299 
300 	struct net_device *netdev;
301 	struct usb_device *udev;
302 	struct usb_interface *iface;
303 
304 	struct can_bittiming_const bt_const, data_bt_const;
305 	unsigned int channel;	/* channel number */
306 
307 	/* time counter for hardware timestamps */
308 	struct cyclecounter cc;
309 	struct timecounter tc;
310 	spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
311 	struct delayed_work timestamp;
312 
313 	u32 feature;
314 	unsigned int hf_size_tx;
315 
316 	/* This lock prevents a race condition between xmit and receive. */
317 	spinlock_t tx_ctx_lock;
318 	struct gs_tx_context tx_context[GS_MAX_TX_URBS];
319 
320 	struct usb_anchor tx_submitted;
321 	atomic_t active_tx_urbs;
322 };
323 
324 /* usb interface struct */
325 struct gs_usb {
326 	struct gs_can *canch[GS_MAX_INTF];
327 	struct usb_anchor rx_submitted;
328 	struct usb_device *udev;
329 	unsigned int hf_size_rx;
330 	u8 active_channels;
331 };
332 
333 /* 'allocate' a tx context.
334  * returns a valid tx context or NULL if there is no space.
335  */
336 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
337 {
338 	int i = 0;
339 	unsigned long flags;
340 
341 	spin_lock_irqsave(&dev->tx_ctx_lock, flags);
342 
343 	for (; i < GS_MAX_TX_URBS; i++) {
344 		if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
345 			dev->tx_context[i].echo_id = i;
346 			spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
347 			return &dev->tx_context[i];
348 		}
349 	}
350 
351 	spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
352 	return NULL;
353 }
354 
355 /* releases a tx context
356  */
357 static void gs_free_tx_context(struct gs_tx_context *txc)
358 {
359 	txc->echo_id = GS_MAX_TX_URBS;
360 }
361 
362 /* Get a tx context by id.
363  */
364 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
365 					       unsigned int id)
366 {
367 	unsigned long flags;
368 
369 	if (id < GS_MAX_TX_URBS) {
370 		spin_lock_irqsave(&dev->tx_ctx_lock, flags);
371 		if (dev->tx_context[id].echo_id == id) {
372 			spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
373 			return &dev->tx_context[id];
374 		}
375 		spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
376 	}
377 	return NULL;
378 }
379 
380 static int gs_cmd_reset(struct gs_can *dev)
381 {
382 	struct gs_device_mode dm = {
383 		.mode = GS_CAN_MODE_RESET,
384 	};
385 
386 	return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
387 				    GS_USB_BREQ_MODE,
388 				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
389 				    dev->channel, 0, &dm, sizeof(dm), 1000,
390 				    GFP_KERNEL);
391 }
392 
393 static inline int gs_usb_get_timestamp(const struct gs_can *dev,
394 				       u32 *timestamp_p)
395 {
396 	__le32 timestamp;
397 	int rc;
398 
399 	rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0,
400 				  GS_USB_BREQ_TIMESTAMP,
401 				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
402 				  dev->channel, 0,
403 				  &timestamp, sizeof(timestamp),
404 				  USB_CTRL_GET_TIMEOUT,
405 				  GFP_KERNEL);
406 	if (rc)
407 		return rc;
408 
409 	*timestamp_p = le32_to_cpu(timestamp);
410 
411 	return 0;
412 }
413 
414 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
415 {
416 	struct gs_can *dev = container_of(cc, struct gs_can, cc);
417 	u32 timestamp = 0;
418 	int err;
419 
420 	lockdep_assert_held(&dev->tc_lock);
421 
422 	/* drop lock for synchronous USB transfer */
423 	spin_unlock_bh(&dev->tc_lock);
424 	err = gs_usb_get_timestamp(dev, &timestamp);
425 	spin_lock_bh(&dev->tc_lock);
426 	if (err)
427 		netdev_err(dev->netdev,
428 			   "Error %d while reading timestamp. HW timestamps may be inaccurate.",
429 			   err);
430 
431 	return timestamp;
432 }
433 
434 static void gs_usb_timestamp_work(struct work_struct *work)
435 {
436 	struct delayed_work *delayed_work = to_delayed_work(work);
437 	struct gs_can *dev;
438 
439 	dev = container_of(delayed_work, struct gs_can, timestamp);
440 	spin_lock_bh(&dev->tc_lock);
441 	timecounter_read(&dev->tc);
442 	spin_unlock_bh(&dev->tc_lock);
443 
444 	schedule_delayed_work(&dev->timestamp,
445 			      GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
446 }
447 
448 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
449 				     struct sk_buff *skb, u32 timestamp)
450 {
451 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
452 	u64 ns;
453 
454 	spin_lock_bh(&dev->tc_lock);
455 	ns = timecounter_cyc2time(&dev->tc, timestamp);
456 	spin_unlock_bh(&dev->tc_lock);
457 
458 	hwtstamps->hwtstamp = ns_to_ktime(ns);
459 }
460 
461 static void gs_usb_timestamp_init(struct gs_can *dev)
462 {
463 	struct cyclecounter *cc = &dev->cc;
464 
465 	cc->read = gs_usb_timestamp_read;
466 	cc->mask = CYCLECOUNTER_MASK(32);
467 	cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
468 	cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
469 
470 	spin_lock_init(&dev->tc_lock);
471 	spin_lock_bh(&dev->tc_lock);
472 	timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
473 	spin_unlock_bh(&dev->tc_lock);
474 
475 	INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
476 	schedule_delayed_work(&dev->timestamp,
477 			      GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
478 }
479 
480 static void gs_usb_timestamp_stop(struct gs_can *dev)
481 {
482 	cancel_delayed_work_sync(&dev->timestamp);
483 }
484 
485 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
486 {
487 	struct can_device_stats *can_stats = &dev->can.can_stats;
488 
489 	if (cf->can_id & CAN_ERR_RESTARTED) {
490 		dev->can.state = CAN_STATE_ERROR_ACTIVE;
491 		can_stats->restarts++;
492 	} else if (cf->can_id & CAN_ERR_BUSOFF) {
493 		dev->can.state = CAN_STATE_BUS_OFF;
494 		can_stats->bus_off++;
495 	} else if (cf->can_id & CAN_ERR_CRTL) {
496 		if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
497 		    (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
498 			dev->can.state = CAN_STATE_ERROR_WARNING;
499 			can_stats->error_warning++;
500 		} else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
501 			   (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
502 			dev->can.state = CAN_STATE_ERROR_PASSIVE;
503 			can_stats->error_passive++;
504 		} else {
505 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
506 		}
507 	}
508 }
509 
510 static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
511 				 const struct gs_host_frame *hf)
512 {
513 	u32 timestamp;
514 
515 	if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
516 		return;
517 
518 	if (hf->flags & GS_CAN_FLAG_FD)
519 		timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
520 	else
521 		timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
522 
523 	gs_usb_skb_set_timestamp(dev, skb, timestamp);
524 
525 	return;
526 }
527 
528 static void gs_usb_receive_bulk_callback(struct urb *urb)
529 {
530 	struct gs_usb *usbcan = urb->context;
531 	struct gs_can *dev;
532 	struct net_device *netdev;
533 	int rc;
534 	struct net_device_stats *stats;
535 	struct gs_host_frame *hf = urb->transfer_buffer;
536 	struct gs_tx_context *txc;
537 	struct can_frame *cf;
538 	struct canfd_frame *cfd;
539 	struct sk_buff *skb;
540 
541 	BUG_ON(!usbcan);
542 
543 	switch (urb->status) {
544 	case 0: /* success */
545 		break;
546 	case -ENOENT:
547 	case -ESHUTDOWN:
548 		return;
549 	default:
550 		/* do not resubmit aborted urbs. eg: when device goes down */
551 		return;
552 	}
553 
554 	/* device reports out of range channel id */
555 	if (hf->channel >= GS_MAX_INTF)
556 		goto device_detach;
557 
558 	dev = usbcan->canch[hf->channel];
559 
560 	netdev = dev->netdev;
561 	stats = &netdev->stats;
562 
563 	if (!netif_device_present(netdev))
564 		return;
565 
566 	if (hf->echo_id == -1) { /* normal rx */
567 		if (hf->flags & GS_CAN_FLAG_FD) {
568 			skb = alloc_canfd_skb(dev->netdev, &cfd);
569 			if (!skb)
570 				return;
571 
572 			cfd->can_id = le32_to_cpu(hf->can_id);
573 			cfd->len = can_fd_dlc2len(hf->can_dlc);
574 			if (hf->flags & GS_CAN_FLAG_BRS)
575 				cfd->flags |= CANFD_BRS;
576 			if (hf->flags & GS_CAN_FLAG_ESI)
577 				cfd->flags |= CANFD_ESI;
578 
579 			memcpy(cfd->data, hf->canfd->data, cfd->len);
580 		} else {
581 			skb = alloc_can_skb(dev->netdev, &cf);
582 			if (!skb)
583 				return;
584 
585 			cf->can_id = le32_to_cpu(hf->can_id);
586 			can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
587 
588 			memcpy(cf->data, hf->classic_can->data, 8);
589 
590 			/* ERROR frames tell us information about the controller */
591 			if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
592 				gs_update_state(dev, cf);
593 		}
594 
595 		gs_usb_set_timestamp(dev, skb, hf);
596 
597 		netdev->stats.rx_packets++;
598 		netdev->stats.rx_bytes += hf->can_dlc;
599 
600 		netif_rx(skb);
601 	} else { /* echo_id == hf->echo_id */
602 		if (hf->echo_id >= GS_MAX_TX_URBS) {
603 			netdev_err(netdev,
604 				   "Unexpected out of range echo id %u\n",
605 				   hf->echo_id);
606 			goto resubmit_urb;
607 		}
608 
609 		txc = gs_get_tx_context(dev, hf->echo_id);
610 
611 		/* bad devices send bad echo_ids. */
612 		if (!txc) {
613 			netdev_err(netdev,
614 				   "Unexpected unused echo id %u\n",
615 				   hf->echo_id);
616 			goto resubmit_urb;
617 		}
618 
619 		skb = dev->can.echo_skb[hf->echo_id];
620 		gs_usb_set_timestamp(dev, skb, hf);
621 
622 		netdev->stats.tx_packets++;
623 		netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
624 							   NULL);
625 
626 		gs_free_tx_context(txc);
627 
628 		atomic_dec(&dev->active_tx_urbs);
629 
630 		netif_wake_queue(netdev);
631 	}
632 
633 	if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
634 		skb = alloc_can_err_skb(netdev, &cf);
635 		if (!skb)
636 			goto resubmit_urb;
637 
638 		cf->can_id |= CAN_ERR_CRTL;
639 		cf->len = CAN_ERR_DLC;
640 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
641 		stats->rx_over_errors++;
642 		stats->rx_errors++;
643 		netif_rx(skb);
644 	}
645 
646  resubmit_urb:
647 	usb_fill_bulk_urb(urb, usbcan->udev,
648 			  usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
649 			  hf, dev->parent->hf_size_rx,
650 			  gs_usb_receive_bulk_callback, usbcan);
651 
652 	rc = usb_submit_urb(urb, GFP_ATOMIC);
653 
654 	/* USB failure take down all interfaces */
655 	if (rc == -ENODEV) {
656  device_detach:
657 		for (rc = 0; rc < GS_MAX_INTF; rc++) {
658 			if (usbcan->canch[rc])
659 				netif_device_detach(usbcan->canch[rc]->netdev);
660 		}
661 	}
662 }
663 
664 static int gs_usb_set_bittiming(struct net_device *netdev)
665 {
666 	struct gs_can *dev = netdev_priv(netdev);
667 	struct can_bittiming *bt = &dev->can.bittiming;
668 	struct gs_device_bittiming dbt = {
669 		.prop_seg = cpu_to_le32(bt->prop_seg),
670 		.phase_seg1 = cpu_to_le32(bt->phase_seg1),
671 		.phase_seg2 = cpu_to_le32(bt->phase_seg2),
672 		.sjw = cpu_to_le32(bt->sjw),
673 		.brp = cpu_to_le32(bt->brp),
674 	};
675 
676 	/* request bit timings */
677 	return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
678 				    GS_USB_BREQ_BITTIMING,
679 				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
680 				    dev->channel, 0, &dbt, sizeof(dbt), 1000,
681 				    GFP_KERNEL);
682 }
683 
684 static int gs_usb_set_data_bittiming(struct net_device *netdev)
685 {
686 	struct gs_can *dev = netdev_priv(netdev);
687 	struct can_bittiming *bt = &dev->can.data_bittiming;
688 	struct gs_device_bittiming dbt = {
689 		.prop_seg = cpu_to_le32(bt->prop_seg),
690 		.phase_seg1 = cpu_to_le32(bt->phase_seg1),
691 		.phase_seg2 = cpu_to_le32(bt->phase_seg2),
692 		.sjw = cpu_to_le32(bt->sjw),
693 		.brp = cpu_to_le32(bt->brp),
694 	};
695 	u8 request = GS_USB_BREQ_DATA_BITTIMING;
696 
697 	if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
698 		request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
699 
700 	/* request data bit timings */
701 	return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
702 				    request,
703 				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
704 				    dev->channel, 0, &dbt, sizeof(dbt), 1000,
705 				    GFP_KERNEL);
706 }
707 
708 static void gs_usb_xmit_callback(struct urb *urb)
709 {
710 	struct gs_tx_context *txc = urb->context;
711 	struct gs_can *dev = txc->dev;
712 	struct net_device *netdev = dev->netdev;
713 
714 	if (urb->status)
715 		netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
716 }
717 
718 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
719 				     struct net_device *netdev)
720 {
721 	struct gs_can *dev = netdev_priv(netdev);
722 	struct net_device_stats *stats = &dev->netdev->stats;
723 	struct urb *urb;
724 	struct gs_host_frame *hf;
725 	struct can_frame *cf;
726 	struct canfd_frame *cfd;
727 	int rc;
728 	unsigned int idx;
729 	struct gs_tx_context *txc;
730 
731 	if (can_dev_dropped_skb(netdev, skb))
732 		return NETDEV_TX_OK;
733 
734 	/* find an empty context to keep track of transmission */
735 	txc = gs_alloc_tx_context(dev);
736 	if (!txc)
737 		return NETDEV_TX_BUSY;
738 
739 	/* create a URB, and a buffer for it */
740 	urb = usb_alloc_urb(0, GFP_ATOMIC);
741 	if (!urb)
742 		goto nomem_urb;
743 
744 	hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
745 	if (!hf) {
746 		netdev_err(netdev, "No memory left for USB buffer\n");
747 		goto nomem_hf;
748 	}
749 
750 	idx = txc->echo_id;
751 
752 	if (idx >= GS_MAX_TX_URBS) {
753 		netdev_err(netdev, "Invalid tx context %u\n", idx);
754 		goto badidx;
755 	}
756 
757 	hf->echo_id = idx;
758 	hf->channel = dev->channel;
759 	hf->flags = 0;
760 	hf->reserved = 0;
761 
762 	if (can_is_canfd_skb(skb)) {
763 		cfd = (struct canfd_frame *)skb->data;
764 
765 		hf->can_id = cpu_to_le32(cfd->can_id);
766 		hf->can_dlc = can_fd_len2dlc(cfd->len);
767 		hf->flags |= GS_CAN_FLAG_FD;
768 		if (cfd->flags & CANFD_BRS)
769 			hf->flags |= GS_CAN_FLAG_BRS;
770 		if (cfd->flags & CANFD_ESI)
771 			hf->flags |= GS_CAN_FLAG_ESI;
772 
773 		memcpy(hf->canfd->data, cfd->data, cfd->len);
774 	} else {
775 		cf = (struct can_frame *)skb->data;
776 
777 		hf->can_id = cpu_to_le32(cf->can_id);
778 		hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
779 
780 		memcpy(hf->classic_can->data, cf->data, cf->len);
781 	}
782 
783 	usb_fill_bulk_urb(urb, dev->udev,
784 			  usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
785 			  hf, dev->hf_size_tx,
786 			  gs_usb_xmit_callback, txc);
787 
788 	urb->transfer_flags |= URB_FREE_BUFFER;
789 	usb_anchor_urb(urb, &dev->tx_submitted);
790 
791 	can_put_echo_skb(skb, netdev, idx, 0);
792 
793 	atomic_inc(&dev->active_tx_urbs);
794 
795 	rc = usb_submit_urb(urb, GFP_ATOMIC);
796 	if (unlikely(rc)) {			/* usb send failed */
797 		atomic_dec(&dev->active_tx_urbs);
798 
799 		can_free_echo_skb(netdev, idx, NULL);
800 		gs_free_tx_context(txc);
801 
802 		usb_unanchor_urb(urb);
803 
804 		if (rc == -ENODEV) {
805 			netif_device_detach(netdev);
806 		} else {
807 			netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
808 			stats->tx_dropped++;
809 		}
810 	} else {
811 		/* Slow down tx path */
812 		if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
813 			netif_stop_queue(netdev);
814 	}
815 
816 	/* let usb core take care of this urb */
817 	usb_free_urb(urb);
818 
819 	return NETDEV_TX_OK;
820 
821  badidx:
822 	kfree(hf);
823  nomem_hf:
824 	usb_free_urb(urb);
825 
826  nomem_urb:
827 	gs_free_tx_context(txc);
828 	dev_kfree_skb(skb);
829 	stats->tx_dropped++;
830 	return NETDEV_TX_OK;
831 }
832 
833 static int gs_can_open(struct net_device *netdev)
834 {
835 	struct gs_can *dev = netdev_priv(netdev);
836 	struct gs_usb *parent = dev->parent;
837 	struct gs_device_mode dm = {
838 		.mode = cpu_to_le32(GS_CAN_MODE_START),
839 	};
840 	struct gs_host_frame *hf;
841 	u32 ctrlmode;
842 	u32 flags = 0;
843 	int rc, i;
844 
845 	rc = open_candev(netdev);
846 	if (rc)
847 		return rc;
848 
849 	ctrlmode = dev->can.ctrlmode;
850 	if (ctrlmode & CAN_CTRLMODE_FD) {
851 		if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
852 			dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
853 		else
854 			dev->hf_size_tx = struct_size(hf, canfd, 1);
855 	} else {
856 		if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
857 			dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
858 		else
859 			dev->hf_size_tx = struct_size(hf, classic_can, 1);
860 	}
861 
862 	if (!parent->active_channels) {
863 		for (i = 0; i < GS_MAX_RX_URBS; i++) {
864 			struct urb *urb;
865 			u8 *buf;
866 
867 			/* alloc rx urb */
868 			urb = usb_alloc_urb(0, GFP_KERNEL);
869 			if (!urb)
870 				return -ENOMEM;
871 
872 			/* alloc rx buffer */
873 			buf = kmalloc(dev->parent->hf_size_rx,
874 				      GFP_KERNEL);
875 			if (!buf) {
876 				netdev_err(netdev,
877 					   "No memory left for USB buffer\n");
878 				usb_free_urb(urb);
879 				return -ENOMEM;
880 			}
881 
882 			/* fill, anchor, and submit rx urb */
883 			usb_fill_bulk_urb(urb,
884 					  dev->udev,
885 					  usb_rcvbulkpipe(dev->udev,
886 							  GS_USB_ENDPOINT_IN),
887 					  buf,
888 					  dev->parent->hf_size_rx,
889 					  gs_usb_receive_bulk_callback, parent);
890 			urb->transfer_flags |= URB_FREE_BUFFER;
891 
892 			usb_anchor_urb(urb, &parent->rx_submitted);
893 
894 			rc = usb_submit_urb(urb, GFP_KERNEL);
895 			if (rc) {
896 				if (rc == -ENODEV)
897 					netif_device_detach(dev->netdev);
898 
899 				netdev_err(netdev,
900 					   "usb_submit failed (err=%d)\n", rc);
901 
902 				usb_unanchor_urb(urb);
903 				usb_free_urb(urb);
904 				break;
905 			}
906 
907 			/* Drop reference,
908 			 * USB core will take care of freeing it
909 			 */
910 			usb_free_urb(urb);
911 		}
912 	}
913 
914 	/* flags */
915 	if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
916 		flags |= GS_CAN_MODE_LOOP_BACK;
917 
918 	if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
919 		flags |= GS_CAN_MODE_LISTEN_ONLY;
920 
921 	if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
922 		flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
923 
924 	if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
925 		flags |= GS_CAN_MODE_ONE_SHOT;
926 
927 	if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
928 		flags |= GS_CAN_MODE_BERR_REPORTING;
929 
930 	if (ctrlmode & CAN_CTRLMODE_FD)
931 		flags |= GS_CAN_MODE_FD;
932 
933 	/* if hardware supports timestamps, enable it */
934 	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
935 		flags |= GS_CAN_MODE_HW_TIMESTAMP;
936 
937 		/* start polling timestamp */
938 		gs_usb_timestamp_init(dev);
939 	}
940 
941 	/* finally start device */
942 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
943 	dm.flags = cpu_to_le32(flags);
944 	rc = usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
945 				  GS_USB_BREQ_MODE,
946 				  USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
947 				  dev->channel, 0, &dm, sizeof(dm), 1000,
948 				  GFP_KERNEL);
949 	if (rc) {
950 		netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
951 		if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
952 			gs_usb_timestamp_stop(dev);
953 		dev->can.state = CAN_STATE_STOPPED;
954 		return rc;
955 	}
956 
957 	parent->active_channels++;
958 	if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
959 		netif_start_queue(netdev);
960 
961 	return 0;
962 }
963 
964 static int gs_usb_get_state(const struct net_device *netdev,
965 			    struct can_berr_counter *bec,
966 			    enum can_state *state)
967 {
968 	struct gs_can *dev = netdev_priv(netdev);
969 	struct gs_device_state ds;
970 	int rc;
971 
972 	rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0,
973 				  GS_USB_BREQ_GET_STATE,
974 				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
975 				  dev->channel, 0,
976 				  &ds, sizeof(ds),
977 				  USB_CTRL_GET_TIMEOUT,
978 				  GFP_KERNEL);
979 	if (rc)
980 		return rc;
981 
982 	if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
983 		return -EOPNOTSUPP;
984 
985 	*state = le32_to_cpu(ds.state);
986 	bec->txerr = le32_to_cpu(ds.txerr);
987 	bec->rxerr = le32_to_cpu(ds.rxerr);
988 
989 	return 0;
990 }
991 
992 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
993 				       struct can_berr_counter *bec)
994 {
995 	enum can_state state;
996 
997 	return gs_usb_get_state(netdev, bec, &state);
998 }
999 
1000 static int gs_can_close(struct net_device *netdev)
1001 {
1002 	int rc;
1003 	struct gs_can *dev = netdev_priv(netdev);
1004 	struct gs_usb *parent = dev->parent;
1005 
1006 	netif_stop_queue(netdev);
1007 
1008 	/* stop polling timestamp */
1009 	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1010 		gs_usb_timestamp_stop(dev);
1011 
1012 	/* Stop polling */
1013 	parent->active_channels--;
1014 	if (!parent->active_channels) {
1015 		usb_kill_anchored_urbs(&parent->rx_submitted);
1016 	}
1017 
1018 	/* Stop sending URBs */
1019 	usb_kill_anchored_urbs(&dev->tx_submitted);
1020 	atomic_set(&dev->active_tx_urbs, 0);
1021 
1022 	/* reset the device */
1023 	rc = gs_cmd_reset(dev);
1024 	if (rc < 0)
1025 		netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1026 
1027 	/* reset tx contexts */
1028 	for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1029 		dev->tx_context[rc].dev = dev;
1030 		dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1031 	}
1032 
1033 	/* close the netdev */
1034 	close_candev(netdev);
1035 
1036 	return 0;
1037 }
1038 
1039 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1040 {
1041 	const struct gs_can *dev = netdev_priv(netdev);
1042 
1043 	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1044 		return can_eth_ioctl_hwts(netdev, ifr, cmd);
1045 
1046 	return -EOPNOTSUPP;
1047 }
1048 
1049 static const struct net_device_ops gs_usb_netdev_ops = {
1050 	.ndo_open = gs_can_open,
1051 	.ndo_stop = gs_can_close,
1052 	.ndo_start_xmit = gs_can_start_xmit,
1053 	.ndo_change_mtu = can_change_mtu,
1054 	.ndo_eth_ioctl = gs_can_eth_ioctl,
1055 };
1056 
1057 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1058 {
1059 	struct gs_can *dev = netdev_priv(netdev);
1060 	struct gs_identify_mode imode;
1061 
1062 	if (do_identify)
1063 		imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1064 	else
1065 		imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1066 
1067 	return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
1068 				    GS_USB_BREQ_IDENTIFY,
1069 				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1070 				    dev->channel, 0, &imode, sizeof(imode), 100,
1071 				    GFP_KERNEL);
1072 }
1073 
1074 /* blink LED's for finding the this interface */
1075 static int gs_usb_set_phys_id(struct net_device *netdev,
1076 			      enum ethtool_phys_id_state state)
1077 {
1078 	const struct gs_can *dev = netdev_priv(netdev);
1079 	int rc = 0;
1080 
1081 	if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1082 		return -EOPNOTSUPP;
1083 
1084 	switch (state) {
1085 	case ETHTOOL_ID_ACTIVE:
1086 		rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1087 		break;
1088 	case ETHTOOL_ID_INACTIVE:
1089 		rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1090 		break;
1091 	default:
1092 		break;
1093 	}
1094 
1095 	return rc;
1096 }
1097 
1098 static int gs_usb_get_ts_info(struct net_device *netdev,
1099 			      struct ethtool_ts_info *info)
1100 {
1101 	struct gs_can *dev = netdev_priv(netdev);
1102 
1103 	/* report if device supports HW timestamps */
1104 	if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1105 		return can_ethtool_op_get_ts_info_hwts(netdev, info);
1106 
1107 	return ethtool_op_get_ts_info(netdev, info);
1108 }
1109 
1110 static const struct ethtool_ops gs_usb_ethtool_ops = {
1111 	.set_phys_id = gs_usb_set_phys_id,
1112 	.get_ts_info = gs_usb_get_ts_info,
1113 };
1114 
1115 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1116 {
1117 	struct gs_can *dev = netdev_priv(netdev);
1118 	struct gs_device_termination_state term_state;
1119 	int rc;
1120 
1121 	rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0,
1122 				  GS_USB_BREQ_GET_TERMINATION,
1123 				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1124 				  dev->channel, 0,
1125 				  &term_state, sizeof(term_state), 1000,
1126 				  GFP_KERNEL);
1127 	if (rc)
1128 		return rc;
1129 
1130 	if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1131 		*term = GS_USB_TERMINATION_ENABLED;
1132 	else
1133 		*term = GS_USB_TERMINATION_DISABLED;
1134 
1135 	return 0;
1136 }
1137 
1138 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1139 {
1140 	struct gs_can *dev = netdev_priv(netdev);
1141 	struct gs_device_termination_state term_state;
1142 
1143 	if (term == GS_USB_TERMINATION_ENABLED)
1144 		term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1145 	else
1146 		term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1147 
1148 	return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
1149 				    GS_USB_BREQ_SET_TERMINATION,
1150 				    USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1151 				    dev->channel, 0,
1152 				    &term_state, sizeof(term_state), 1000,
1153 				    GFP_KERNEL);
1154 }
1155 
1156 static const u16 gs_usb_termination_const[] = {
1157 	GS_USB_TERMINATION_DISABLED,
1158 	GS_USB_TERMINATION_ENABLED
1159 };
1160 
1161 static struct gs_can *gs_make_candev(unsigned int channel,
1162 				     struct usb_interface *intf,
1163 				     struct gs_device_config *dconf)
1164 {
1165 	struct gs_can *dev;
1166 	struct net_device *netdev;
1167 	int rc;
1168 	struct gs_device_bt_const_extended bt_const_extended;
1169 	struct gs_device_bt_const bt_const;
1170 	u32 feature;
1171 
1172 	/* fetch bit timing constants */
1173 	rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1174 				  GS_USB_BREQ_BT_CONST,
1175 				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1176 				  channel, 0, &bt_const, sizeof(bt_const), 1000,
1177 				  GFP_KERNEL);
1178 
1179 	if (rc) {
1180 		dev_err(&intf->dev,
1181 			"Couldn't get bit timing const for channel %d (%pe)\n",
1182 			channel, ERR_PTR(rc));
1183 		return ERR_PTR(rc);
1184 	}
1185 
1186 	/* create netdev */
1187 	netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1188 	if (!netdev) {
1189 		dev_err(&intf->dev, "Couldn't allocate candev\n");
1190 		return ERR_PTR(-ENOMEM);
1191 	}
1192 
1193 	dev = netdev_priv(netdev);
1194 
1195 	netdev->netdev_ops = &gs_usb_netdev_ops;
1196 	netdev->ethtool_ops = &gs_usb_ethtool_ops;
1197 
1198 	netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1199 	netdev->dev_id = channel;
1200 
1201 	/* dev setup */
1202 	strcpy(dev->bt_const.name, KBUILD_MODNAME);
1203 	dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1204 	dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1205 	dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1206 	dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1207 	dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1208 	dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1209 	dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1210 	dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1211 
1212 	dev->udev = interface_to_usbdev(intf);
1213 	dev->iface = intf;
1214 	dev->netdev = netdev;
1215 	dev->channel = channel;
1216 
1217 	init_usb_anchor(&dev->tx_submitted);
1218 	atomic_set(&dev->active_tx_urbs, 0);
1219 	spin_lock_init(&dev->tx_ctx_lock);
1220 	for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1221 		dev->tx_context[rc].dev = dev;
1222 		dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1223 	}
1224 
1225 	/* can setup */
1226 	dev->can.state = CAN_STATE_STOPPED;
1227 	dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1228 	dev->can.bittiming_const = &dev->bt_const;
1229 	dev->can.do_set_bittiming = gs_usb_set_bittiming;
1230 
1231 	dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1232 
1233 	feature = le32_to_cpu(bt_const.feature);
1234 	dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1235 	if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1236 		dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1237 
1238 	if (feature & GS_CAN_FEATURE_LOOP_BACK)
1239 		dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1240 
1241 	if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1242 		dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1243 
1244 	if (feature & GS_CAN_FEATURE_ONE_SHOT)
1245 		dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1246 
1247 	if (feature & GS_CAN_FEATURE_FD) {
1248 		dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1249 		/* The data bit timing will be overwritten, if
1250 		 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1251 		 */
1252 		dev->can.data_bittiming_const = &dev->bt_const;
1253 		dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1254 	}
1255 
1256 	if (feature & GS_CAN_FEATURE_TERMINATION) {
1257 		rc = gs_usb_get_termination(netdev, &dev->can.termination);
1258 		if (rc) {
1259 			dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1260 
1261 			dev_info(&intf->dev,
1262 				 "Disabling termination support for channel %d (%pe)\n",
1263 				 channel, ERR_PTR(rc));
1264 		} else {
1265 			dev->can.termination_const = gs_usb_termination_const;
1266 			dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1267 			dev->can.do_set_termination = gs_usb_set_termination;
1268 		}
1269 	}
1270 
1271 	if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1272 		dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1273 
1274 	if (feature & GS_CAN_FEATURE_GET_STATE)
1275 		dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1276 
1277 	/* The CANtact Pro from LinkLayer Labs is based on the
1278 	 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1279 	 * erratum. However, the current firmware (version 2) doesn't
1280 	 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1281 	 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1282 	 * this issue.
1283 	 *
1284 	 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1285 	 * CANtact Pro firmware uses a request value, which is already
1286 	 * used by the candleLight firmware for a different purpose
1287 	 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1288 	 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1289 	 * issue.
1290 	 */
1291 	if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1292 	    dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1293 	    dev->udev->manufacturer && dev->udev->product &&
1294 	    !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1295 	    !strcmp(dev->udev->product, "CANtact Pro") &&
1296 	    (le32_to_cpu(dconf->sw_version) <= 2))
1297 		dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1298 			GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1299 
1300 	/* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1301 	if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1302 	      feature & GS_CAN_FEATURE_IDENTIFY))
1303 		dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1304 
1305 	/* fetch extended bit timing constants if device has feature
1306 	 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1307 	 */
1308 	if (feature & GS_CAN_FEATURE_FD &&
1309 	    feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1310 		rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1311 					  GS_USB_BREQ_BT_CONST_EXT,
1312 					  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1313 					  channel, 0, &bt_const_extended,
1314 					  sizeof(bt_const_extended),
1315 					  1000, GFP_KERNEL);
1316 		if (rc) {
1317 			dev_err(&intf->dev,
1318 				"Couldn't get extended bit timing const for channel %d (%pe)\n",
1319 				channel, ERR_PTR(rc));
1320 			goto out_free_candev;
1321 		}
1322 
1323 		strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1324 		dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1325 		dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1326 		dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1327 		dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1328 		dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1329 		dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1330 		dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1331 		dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1332 
1333 		dev->can.data_bittiming_const = &dev->data_bt_const;
1334 	}
1335 
1336 	SET_NETDEV_DEV(netdev, &intf->dev);
1337 
1338 	rc = register_candev(dev->netdev);
1339 	if (rc) {
1340 		dev_err(&intf->dev,
1341 			"Couldn't register candev for channel %d (%pe)\n",
1342 			channel, ERR_PTR(rc));
1343 		goto out_free_candev;
1344 	}
1345 
1346 	return dev;
1347 
1348  out_free_candev:
1349 	free_candev(dev->netdev);
1350 	return ERR_PTR(rc);
1351 }
1352 
1353 static void gs_destroy_candev(struct gs_can *dev)
1354 {
1355 	unregister_candev(dev->netdev);
1356 	usb_kill_anchored_urbs(&dev->tx_submitted);
1357 	free_candev(dev->netdev);
1358 }
1359 
1360 static int gs_usb_probe(struct usb_interface *intf,
1361 			const struct usb_device_id *id)
1362 {
1363 	struct usb_device *udev = interface_to_usbdev(intf);
1364 	struct gs_host_frame *hf;
1365 	struct gs_usb *dev;
1366 	struct gs_host_config hconf = {
1367 		.byte_order = cpu_to_le32(0x0000beef),
1368 	};
1369 	struct gs_device_config dconf;
1370 	unsigned int icount, i;
1371 	int rc;
1372 
1373 	/* send host config */
1374 	rc = usb_control_msg_send(udev, 0,
1375 				  GS_USB_BREQ_HOST_FORMAT,
1376 				  USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1377 				  1, intf->cur_altsetting->desc.bInterfaceNumber,
1378 				  &hconf, sizeof(hconf), 1000,
1379 				  GFP_KERNEL);
1380 	if (rc) {
1381 		dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1382 		return rc;
1383 	}
1384 
1385 	/* read device config */
1386 	rc = usb_control_msg_recv(udev, 0,
1387 				  GS_USB_BREQ_DEVICE_CONFIG,
1388 				  USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1389 				  1, intf->cur_altsetting->desc.bInterfaceNumber,
1390 				  &dconf, sizeof(dconf), 1000,
1391 				  GFP_KERNEL);
1392 	if (rc) {
1393 		dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1394 			rc);
1395 		return rc;
1396 	}
1397 
1398 	icount = dconf.icount + 1;
1399 	dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1400 
1401 	if (icount > GS_MAX_INTF) {
1402 		dev_err(&intf->dev,
1403 			"Driver cannot handle more that %u CAN interfaces\n",
1404 			GS_MAX_INTF);
1405 		return -EINVAL;
1406 	}
1407 
1408 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1409 	if (!dev)
1410 		return -ENOMEM;
1411 
1412 	init_usb_anchor(&dev->rx_submitted);
1413 
1414 	usb_set_intfdata(intf, dev);
1415 	dev->udev = udev;
1416 
1417 	for (i = 0; i < icount; i++) {
1418 		unsigned int hf_size_rx = 0;
1419 
1420 		dev->canch[i] = gs_make_candev(i, intf, &dconf);
1421 		if (IS_ERR_OR_NULL(dev->canch[i])) {
1422 			/* save error code to return later */
1423 			rc = PTR_ERR(dev->canch[i]);
1424 
1425 			/* on failure destroy previously created candevs */
1426 			icount = i;
1427 			for (i = 0; i < icount; i++)
1428 				gs_destroy_candev(dev->canch[i]);
1429 
1430 			usb_kill_anchored_urbs(&dev->rx_submitted);
1431 			kfree(dev);
1432 			return rc;
1433 		}
1434 		dev->canch[i]->parent = dev;
1435 
1436 		/* set RX packet size based on FD and if hardware
1437                 * timestamps are supported.
1438 		*/
1439 		if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1440 			if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1441 				hf_size_rx = struct_size(hf, canfd_ts, 1);
1442 			else
1443 				hf_size_rx = struct_size(hf, canfd, 1);
1444 		} else {
1445 			if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1446 				hf_size_rx = struct_size(hf, classic_can_ts, 1);
1447 			else
1448 				hf_size_rx = struct_size(hf, classic_can, 1);
1449 		}
1450 		dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static void gs_usb_disconnect(struct usb_interface *intf)
1457 {
1458 	struct gs_usb *dev = usb_get_intfdata(intf);
1459 	unsigned int i;
1460 
1461 	usb_set_intfdata(intf, NULL);
1462 
1463 	if (!dev) {
1464 		dev_err(&intf->dev, "Disconnect (nodata)\n");
1465 		return;
1466 	}
1467 
1468 	for (i = 0; i < GS_MAX_INTF; i++)
1469 		if (dev->canch[i])
1470 			gs_destroy_candev(dev->canch[i]);
1471 
1472 	usb_kill_anchored_urbs(&dev->rx_submitted);
1473 	kfree(dev);
1474 }
1475 
1476 static const struct usb_device_id gs_usb_table[] = {
1477 	{ USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1478 				      USB_GS_USB_1_PRODUCT_ID, 0) },
1479 	{ USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1480 				      USB_CANDLELIGHT_PRODUCT_ID, 0) },
1481 	{ USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1482 				      USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1483 	{ USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1484 				      USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1485 	{} /* Terminating entry */
1486 };
1487 
1488 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1489 
1490 static struct usb_driver gs_usb_driver = {
1491 	.name = KBUILD_MODNAME,
1492 	.probe = gs_usb_probe,
1493 	.disconnect = gs_usb_disconnect,
1494 	.id_table = gs_usb_table,
1495 };
1496 
1497 module_usb_driver(gs_usb_driver);
1498 
1499 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1500 MODULE_DESCRIPTION(
1501 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1502 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1503 "and bytewerk.org candleLight USB CAN interfaces.");
1504 MODULE_LICENSE("GPL v2");
1505