1 // SPDX-License-Identifier: GPL-2.0-only 2 /* CAN driver for Geschwister Schneider USB/CAN devices 3 * and bytewerk.org candleLight USB CAN interfaces. 4 * 5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-, 6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt). 7 * Copyright (C) 2016 Hubert Denkmair 8 * 9 * Many thanks to all socketcan devs! 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/clocksource.h> 14 #include <linux/ethtool.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/netdevice.h> 18 #include <linux/signal.h> 19 #include <linux/timecounter.h> 20 #include <linux/units.h> 21 #include <linux/usb.h> 22 #include <linux/workqueue.h> 23 24 #include <linux/can.h> 25 #include <linux/can/dev.h> 26 #include <linux/can/error.h> 27 28 /* Device specific constants */ 29 #define USB_GS_USB_1_VENDOR_ID 0x1d50 30 #define USB_GS_USB_1_PRODUCT_ID 0x606f 31 32 #define USB_CANDLELIGHT_VENDOR_ID 0x1209 33 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323 34 35 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2 36 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f 37 38 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0 39 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8 40 41 #define GS_USB_ENDPOINT_IN 1 42 #define GS_USB_ENDPOINT_OUT 2 43 44 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts 45 * for timer overflow (will be after ~71 minutes) 46 */ 47 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ) 48 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800 49 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC < 50 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2); 51 52 /* Device specific constants */ 53 enum gs_usb_breq { 54 GS_USB_BREQ_HOST_FORMAT = 0, 55 GS_USB_BREQ_BITTIMING, 56 GS_USB_BREQ_MODE, 57 GS_USB_BREQ_BERR, 58 GS_USB_BREQ_BT_CONST, 59 GS_USB_BREQ_DEVICE_CONFIG, 60 GS_USB_BREQ_TIMESTAMP, 61 GS_USB_BREQ_IDENTIFY, 62 GS_USB_BREQ_GET_USER_ID, 63 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID, 64 GS_USB_BREQ_SET_USER_ID, 65 GS_USB_BREQ_DATA_BITTIMING, 66 GS_USB_BREQ_BT_CONST_EXT, 67 GS_USB_BREQ_SET_TERMINATION, 68 GS_USB_BREQ_GET_TERMINATION, 69 GS_USB_BREQ_GET_STATE, 70 }; 71 72 enum gs_can_mode { 73 /* reset a channel. turns it off */ 74 GS_CAN_MODE_RESET = 0, 75 /* starts a channel */ 76 GS_CAN_MODE_START 77 }; 78 79 enum gs_can_state { 80 GS_CAN_STATE_ERROR_ACTIVE = 0, 81 GS_CAN_STATE_ERROR_WARNING, 82 GS_CAN_STATE_ERROR_PASSIVE, 83 GS_CAN_STATE_BUS_OFF, 84 GS_CAN_STATE_STOPPED, 85 GS_CAN_STATE_SLEEPING 86 }; 87 88 enum gs_can_identify_mode { 89 GS_CAN_IDENTIFY_OFF = 0, 90 GS_CAN_IDENTIFY_ON 91 }; 92 93 enum gs_can_termination_state { 94 GS_CAN_TERMINATION_STATE_OFF = 0, 95 GS_CAN_TERMINATION_STATE_ON 96 }; 97 98 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED 99 #define GS_USB_TERMINATION_ENABLED 120 100 101 /* data types passed between host and device */ 102 103 /* The firmware on the original USB2CAN by Geschwister Schneider 104 * Technologie Entwicklungs- und Vertriebs UG exchanges all data 105 * between the host and the device in host byte order. This is done 106 * with the struct gs_host_config::byte_order member, which is sent 107 * first to indicate the desired byte order. 108 * 109 * The widely used open source firmware candleLight doesn't support 110 * this feature and exchanges the data in little endian byte order. 111 */ 112 struct gs_host_config { 113 __le32 byte_order; 114 } __packed; 115 116 struct gs_device_config { 117 u8 reserved1; 118 u8 reserved2; 119 u8 reserved3; 120 u8 icount; 121 __le32 sw_version; 122 __le32 hw_version; 123 } __packed; 124 125 #define GS_CAN_MODE_NORMAL 0 126 #define GS_CAN_MODE_LISTEN_ONLY BIT(0) 127 #define GS_CAN_MODE_LOOP_BACK BIT(1) 128 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2) 129 #define GS_CAN_MODE_ONE_SHOT BIT(3) 130 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4) 131 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */ 132 /* GS_CAN_FEATURE_USER_ID BIT(6) */ 133 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) 134 #define GS_CAN_MODE_FD BIT(8) 135 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */ 136 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */ 137 /* GS_CAN_FEATURE_TERMINATION BIT(11) */ 138 #define GS_CAN_MODE_BERR_REPORTING BIT(12) 139 /* GS_CAN_FEATURE_GET_STATE BIT(13) */ 140 141 struct gs_device_mode { 142 __le32 mode; 143 __le32 flags; 144 } __packed; 145 146 struct gs_device_state { 147 __le32 state; 148 __le32 rxerr; 149 __le32 txerr; 150 } __packed; 151 152 struct gs_device_bittiming { 153 __le32 prop_seg; 154 __le32 phase_seg1; 155 __le32 phase_seg2; 156 __le32 sjw; 157 __le32 brp; 158 } __packed; 159 160 struct gs_identify_mode { 161 __le32 mode; 162 } __packed; 163 164 struct gs_device_termination_state { 165 __le32 state; 166 } __packed; 167 168 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0) 169 #define GS_CAN_FEATURE_LOOP_BACK BIT(1) 170 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2) 171 #define GS_CAN_FEATURE_ONE_SHOT BIT(3) 172 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4) 173 #define GS_CAN_FEATURE_IDENTIFY BIT(5) 174 #define GS_CAN_FEATURE_USER_ID BIT(6) 175 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) 176 #define GS_CAN_FEATURE_FD BIT(8) 177 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) 178 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10) 179 #define GS_CAN_FEATURE_TERMINATION BIT(11) 180 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12) 181 #define GS_CAN_FEATURE_GET_STATE BIT(13) 182 #define GS_CAN_FEATURE_MASK GENMASK(13, 0) 183 184 /* internal quirks - keep in GS_CAN_FEATURE space for now */ 185 186 /* CANtact Pro original firmware: 187 * BREQ DATA_BITTIMING overlaps with GET_USER_ID 188 */ 189 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31) 190 191 struct gs_device_bt_const { 192 __le32 feature; 193 __le32 fclk_can; 194 __le32 tseg1_min; 195 __le32 tseg1_max; 196 __le32 tseg2_min; 197 __le32 tseg2_max; 198 __le32 sjw_max; 199 __le32 brp_min; 200 __le32 brp_max; 201 __le32 brp_inc; 202 } __packed; 203 204 struct gs_device_bt_const_extended { 205 __le32 feature; 206 __le32 fclk_can; 207 __le32 tseg1_min; 208 __le32 tseg1_max; 209 __le32 tseg2_min; 210 __le32 tseg2_max; 211 __le32 sjw_max; 212 __le32 brp_min; 213 __le32 brp_max; 214 __le32 brp_inc; 215 216 __le32 dtseg1_min; 217 __le32 dtseg1_max; 218 __le32 dtseg2_min; 219 __le32 dtseg2_max; 220 __le32 dsjw_max; 221 __le32 dbrp_min; 222 __le32 dbrp_max; 223 __le32 dbrp_inc; 224 } __packed; 225 226 #define GS_CAN_FLAG_OVERFLOW BIT(0) 227 #define GS_CAN_FLAG_FD BIT(1) 228 #define GS_CAN_FLAG_BRS BIT(2) 229 #define GS_CAN_FLAG_ESI BIT(3) 230 231 struct classic_can { 232 u8 data[8]; 233 } __packed; 234 235 struct classic_can_ts { 236 u8 data[8]; 237 __le32 timestamp_us; 238 } __packed; 239 240 struct classic_can_quirk { 241 u8 data[8]; 242 u8 quirk; 243 } __packed; 244 245 struct canfd { 246 u8 data[64]; 247 } __packed; 248 249 struct canfd_ts { 250 u8 data[64]; 251 __le32 timestamp_us; 252 } __packed; 253 254 struct canfd_quirk { 255 u8 data[64]; 256 u8 quirk; 257 } __packed; 258 259 struct gs_host_frame { 260 u32 echo_id; 261 __le32 can_id; 262 263 u8 can_dlc; 264 u8 channel; 265 u8 flags; 266 u8 reserved; 267 268 union { 269 DECLARE_FLEX_ARRAY(struct classic_can, classic_can); 270 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts); 271 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk); 272 DECLARE_FLEX_ARRAY(struct canfd, canfd); 273 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts); 274 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk); 275 }; 276 } __packed; 277 /* The GS USB devices make use of the same flags and masks as in 278 * linux/can.h and linux/can/error.h, and no additional mapping is necessary. 279 */ 280 281 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */ 282 #define GS_MAX_TX_URBS 10 283 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */ 284 #define GS_MAX_RX_URBS 30 285 /* Maximum number of interfaces the driver supports per device. 286 * Current hardware only supports 3 interfaces. The future may vary. 287 */ 288 #define GS_MAX_INTF 3 289 290 struct gs_tx_context { 291 struct gs_can *dev; 292 unsigned int echo_id; 293 }; 294 295 struct gs_can { 296 struct can_priv can; /* must be the first member */ 297 298 struct gs_usb *parent; 299 300 struct net_device *netdev; 301 struct usb_device *udev; 302 struct usb_interface *iface; 303 304 struct can_bittiming_const bt_const, data_bt_const; 305 unsigned int channel; /* channel number */ 306 307 /* time counter for hardware timestamps */ 308 struct cyclecounter cc; 309 struct timecounter tc; 310 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */ 311 struct delayed_work timestamp; 312 313 u32 feature; 314 unsigned int hf_size_tx; 315 316 /* This lock prevents a race condition between xmit and receive. */ 317 spinlock_t tx_ctx_lock; 318 struct gs_tx_context tx_context[GS_MAX_TX_URBS]; 319 320 struct usb_anchor tx_submitted; 321 atomic_t active_tx_urbs; 322 }; 323 324 /* usb interface struct */ 325 struct gs_usb { 326 struct gs_can *canch[GS_MAX_INTF]; 327 struct usb_anchor rx_submitted; 328 struct usb_device *udev; 329 unsigned int hf_size_rx; 330 u8 active_channels; 331 }; 332 333 /* 'allocate' a tx context. 334 * returns a valid tx context or NULL if there is no space. 335 */ 336 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev) 337 { 338 int i = 0; 339 unsigned long flags; 340 341 spin_lock_irqsave(&dev->tx_ctx_lock, flags); 342 343 for (; i < GS_MAX_TX_URBS; i++) { 344 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) { 345 dev->tx_context[i].echo_id = i; 346 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 347 return &dev->tx_context[i]; 348 } 349 } 350 351 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 352 return NULL; 353 } 354 355 /* releases a tx context 356 */ 357 static void gs_free_tx_context(struct gs_tx_context *txc) 358 { 359 txc->echo_id = GS_MAX_TX_URBS; 360 } 361 362 /* Get a tx context by id. 363 */ 364 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev, 365 unsigned int id) 366 { 367 unsigned long flags; 368 369 if (id < GS_MAX_TX_URBS) { 370 spin_lock_irqsave(&dev->tx_ctx_lock, flags); 371 if (dev->tx_context[id].echo_id == id) { 372 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 373 return &dev->tx_context[id]; 374 } 375 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 376 } 377 return NULL; 378 } 379 380 static int gs_cmd_reset(struct gs_can *dev) 381 { 382 struct gs_device_mode dm = { 383 .mode = GS_CAN_MODE_RESET, 384 }; 385 386 return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, 387 GS_USB_BREQ_MODE, 388 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 389 dev->channel, 0, &dm, sizeof(dm), 1000, 390 GFP_KERNEL); 391 } 392 393 static inline int gs_usb_get_timestamp(const struct gs_can *dev, 394 u32 *timestamp_p) 395 { 396 __le32 timestamp; 397 int rc; 398 399 rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, 400 GS_USB_BREQ_TIMESTAMP, 401 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 402 dev->channel, 0, 403 ×tamp, sizeof(timestamp), 404 USB_CTRL_GET_TIMEOUT, 405 GFP_KERNEL); 406 if (rc) 407 return rc; 408 409 *timestamp_p = le32_to_cpu(timestamp); 410 411 return 0; 412 } 413 414 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock) 415 { 416 struct gs_can *dev = container_of(cc, struct gs_can, cc); 417 u32 timestamp = 0; 418 int err; 419 420 lockdep_assert_held(&dev->tc_lock); 421 422 /* drop lock for synchronous USB transfer */ 423 spin_unlock_bh(&dev->tc_lock); 424 err = gs_usb_get_timestamp(dev, ×tamp); 425 spin_lock_bh(&dev->tc_lock); 426 if (err) 427 netdev_err(dev->netdev, 428 "Error %d while reading timestamp. HW timestamps may be inaccurate.", 429 err); 430 431 return timestamp; 432 } 433 434 static void gs_usb_timestamp_work(struct work_struct *work) 435 { 436 struct delayed_work *delayed_work = to_delayed_work(work); 437 struct gs_can *dev; 438 439 dev = container_of(delayed_work, struct gs_can, timestamp); 440 spin_lock_bh(&dev->tc_lock); 441 timecounter_read(&dev->tc); 442 spin_unlock_bh(&dev->tc_lock); 443 444 schedule_delayed_work(&dev->timestamp, 445 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); 446 } 447 448 static void gs_usb_skb_set_timestamp(struct gs_can *dev, 449 struct sk_buff *skb, u32 timestamp) 450 { 451 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 452 u64 ns; 453 454 spin_lock_bh(&dev->tc_lock); 455 ns = timecounter_cyc2time(&dev->tc, timestamp); 456 spin_unlock_bh(&dev->tc_lock); 457 458 hwtstamps->hwtstamp = ns_to_ktime(ns); 459 } 460 461 static void gs_usb_timestamp_init(struct gs_can *dev) 462 { 463 struct cyclecounter *cc = &dev->cc; 464 465 cc->read = gs_usb_timestamp_read; 466 cc->mask = CYCLECOUNTER_MASK(32); 467 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ); 468 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift); 469 470 spin_lock_init(&dev->tc_lock); 471 spin_lock_bh(&dev->tc_lock); 472 timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns()); 473 spin_unlock_bh(&dev->tc_lock); 474 475 INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work); 476 schedule_delayed_work(&dev->timestamp, 477 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); 478 } 479 480 static void gs_usb_timestamp_stop(struct gs_can *dev) 481 { 482 cancel_delayed_work_sync(&dev->timestamp); 483 } 484 485 static void gs_update_state(struct gs_can *dev, struct can_frame *cf) 486 { 487 struct can_device_stats *can_stats = &dev->can.can_stats; 488 489 if (cf->can_id & CAN_ERR_RESTARTED) { 490 dev->can.state = CAN_STATE_ERROR_ACTIVE; 491 can_stats->restarts++; 492 } else if (cf->can_id & CAN_ERR_BUSOFF) { 493 dev->can.state = CAN_STATE_BUS_OFF; 494 can_stats->bus_off++; 495 } else if (cf->can_id & CAN_ERR_CRTL) { 496 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) || 497 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) { 498 dev->can.state = CAN_STATE_ERROR_WARNING; 499 can_stats->error_warning++; 500 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) || 501 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) { 502 dev->can.state = CAN_STATE_ERROR_PASSIVE; 503 can_stats->error_passive++; 504 } else { 505 dev->can.state = CAN_STATE_ERROR_ACTIVE; 506 } 507 } 508 } 509 510 static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, 511 const struct gs_host_frame *hf) 512 { 513 u32 timestamp; 514 515 if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)) 516 return; 517 518 if (hf->flags & GS_CAN_FLAG_FD) 519 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us); 520 else 521 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us); 522 523 gs_usb_skb_set_timestamp(dev, skb, timestamp); 524 525 return; 526 } 527 528 static void gs_usb_receive_bulk_callback(struct urb *urb) 529 { 530 struct gs_usb *usbcan = urb->context; 531 struct gs_can *dev; 532 struct net_device *netdev; 533 int rc; 534 struct net_device_stats *stats; 535 struct gs_host_frame *hf = urb->transfer_buffer; 536 struct gs_tx_context *txc; 537 struct can_frame *cf; 538 struct canfd_frame *cfd; 539 struct sk_buff *skb; 540 541 BUG_ON(!usbcan); 542 543 switch (urb->status) { 544 case 0: /* success */ 545 break; 546 case -ENOENT: 547 case -ESHUTDOWN: 548 return; 549 default: 550 /* do not resubmit aborted urbs. eg: when device goes down */ 551 return; 552 } 553 554 /* device reports out of range channel id */ 555 if (hf->channel >= GS_MAX_INTF) 556 goto device_detach; 557 558 dev = usbcan->canch[hf->channel]; 559 560 netdev = dev->netdev; 561 stats = &netdev->stats; 562 563 if (!netif_device_present(netdev)) 564 return; 565 566 if (hf->echo_id == -1) { /* normal rx */ 567 if (hf->flags & GS_CAN_FLAG_FD) { 568 skb = alloc_canfd_skb(dev->netdev, &cfd); 569 if (!skb) 570 return; 571 572 cfd->can_id = le32_to_cpu(hf->can_id); 573 cfd->len = can_fd_dlc2len(hf->can_dlc); 574 if (hf->flags & GS_CAN_FLAG_BRS) 575 cfd->flags |= CANFD_BRS; 576 if (hf->flags & GS_CAN_FLAG_ESI) 577 cfd->flags |= CANFD_ESI; 578 579 memcpy(cfd->data, hf->canfd->data, cfd->len); 580 } else { 581 skb = alloc_can_skb(dev->netdev, &cf); 582 if (!skb) 583 return; 584 585 cf->can_id = le32_to_cpu(hf->can_id); 586 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode); 587 588 memcpy(cf->data, hf->classic_can->data, 8); 589 590 /* ERROR frames tell us information about the controller */ 591 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG) 592 gs_update_state(dev, cf); 593 } 594 595 gs_usb_set_timestamp(dev, skb, hf); 596 597 netdev->stats.rx_packets++; 598 netdev->stats.rx_bytes += hf->can_dlc; 599 600 netif_rx(skb); 601 } else { /* echo_id == hf->echo_id */ 602 if (hf->echo_id >= GS_MAX_TX_URBS) { 603 netdev_err(netdev, 604 "Unexpected out of range echo id %u\n", 605 hf->echo_id); 606 goto resubmit_urb; 607 } 608 609 txc = gs_get_tx_context(dev, hf->echo_id); 610 611 /* bad devices send bad echo_ids. */ 612 if (!txc) { 613 netdev_err(netdev, 614 "Unexpected unused echo id %u\n", 615 hf->echo_id); 616 goto resubmit_urb; 617 } 618 619 skb = dev->can.echo_skb[hf->echo_id]; 620 gs_usb_set_timestamp(dev, skb, hf); 621 622 netdev->stats.tx_packets++; 623 netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id, 624 NULL); 625 626 gs_free_tx_context(txc); 627 628 atomic_dec(&dev->active_tx_urbs); 629 630 netif_wake_queue(netdev); 631 } 632 633 if (hf->flags & GS_CAN_FLAG_OVERFLOW) { 634 skb = alloc_can_err_skb(netdev, &cf); 635 if (!skb) 636 goto resubmit_urb; 637 638 cf->can_id |= CAN_ERR_CRTL; 639 cf->len = CAN_ERR_DLC; 640 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 641 stats->rx_over_errors++; 642 stats->rx_errors++; 643 netif_rx(skb); 644 } 645 646 resubmit_urb: 647 usb_fill_bulk_urb(urb, usbcan->udev, 648 usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN), 649 hf, dev->parent->hf_size_rx, 650 gs_usb_receive_bulk_callback, usbcan); 651 652 rc = usb_submit_urb(urb, GFP_ATOMIC); 653 654 /* USB failure take down all interfaces */ 655 if (rc == -ENODEV) { 656 device_detach: 657 for (rc = 0; rc < GS_MAX_INTF; rc++) { 658 if (usbcan->canch[rc]) 659 netif_device_detach(usbcan->canch[rc]->netdev); 660 } 661 } 662 } 663 664 static int gs_usb_set_bittiming(struct net_device *netdev) 665 { 666 struct gs_can *dev = netdev_priv(netdev); 667 struct can_bittiming *bt = &dev->can.bittiming; 668 struct gs_device_bittiming dbt = { 669 .prop_seg = cpu_to_le32(bt->prop_seg), 670 .phase_seg1 = cpu_to_le32(bt->phase_seg1), 671 .phase_seg2 = cpu_to_le32(bt->phase_seg2), 672 .sjw = cpu_to_le32(bt->sjw), 673 .brp = cpu_to_le32(bt->brp), 674 }; 675 676 /* request bit timings */ 677 return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, 678 GS_USB_BREQ_BITTIMING, 679 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 680 dev->channel, 0, &dbt, sizeof(dbt), 1000, 681 GFP_KERNEL); 682 } 683 684 static int gs_usb_set_data_bittiming(struct net_device *netdev) 685 { 686 struct gs_can *dev = netdev_priv(netdev); 687 struct can_bittiming *bt = &dev->can.data_bittiming; 688 struct gs_device_bittiming dbt = { 689 .prop_seg = cpu_to_le32(bt->prop_seg), 690 .phase_seg1 = cpu_to_le32(bt->phase_seg1), 691 .phase_seg2 = cpu_to_le32(bt->phase_seg2), 692 .sjw = cpu_to_le32(bt->sjw), 693 .brp = cpu_to_le32(bt->brp), 694 }; 695 u8 request = GS_USB_BREQ_DATA_BITTIMING; 696 697 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO) 698 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING; 699 700 /* request data bit timings */ 701 return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, 702 request, 703 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 704 dev->channel, 0, &dbt, sizeof(dbt), 1000, 705 GFP_KERNEL); 706 } 707 708 static void gs_usb_xmit_callback(struct urb *urb) 709 { 710 struct gs_tx_context *txc = urb->context; 711 struct gs_can *dev = txc->dev; 712 struct net_device *netdev = dev->netdev; 713 714 if (urb->status) 715 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id); 716 } 717 718 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb, 719 struct net_device *netdev) 720 { 721 struct gs_can *dev = netdev_priv(netdev); 722 struct net_device_stats *stats = &dev->netdev->stats; 723 struct urb *urb; 724 struct gs_host_frame *hf; 725 struct can_frame *cf; 726 struct canfd_frame *cfd; 727 int rc; 728 unsigned int idx; 729 struct gs_tx_context *txc; 730 731 if (can_dev_dropped_skb(netdev, skb)) 732 return NETDEV_TX_OK; 733 734 /* find an empty context to keep track of transmission */ 735 txc = gs_alloc_tx_context(dev); 736 if (!txc) 737 return NETDEV_TX_BUSY; 738 739 /* create a URB, and a buffer for it */ 740 urb = usb_alloc_urb(0, GFP_ATOMIC); 741 if (!urb) 742 goto nomem_urb; 743 744 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC); 745 if (!hf) { 746 netdev_err(netdev, "No memory left for USB buffer\n"); 747 goto nomem_hf; 748 } 749 750 idx = txc->echo_id; 751 752 if (idx >= GS_MAX_TX_URBS) { 753 netdev_err(netdev, "Invalid tx context %u\n", idx); 754 goto badidx; 755 } 756 757 hf->echo_id = idx; 758 hf->channel = dev->channel; 759 hf->flags = 0; 760 hf->reserved = 0; 761 762 if (can_is_canfd_skb(skb)) { 763 cfd = (struct canfd_frame *)skb->data; 764 765 hf->can_id = cpu_to_le32(cfd->can_id); 766 hf->can_dlc = can_fd_len2dlc(cfd->len); 767 hf->flags |= GS_CAN_FLAG_FD; 768 if (cfd->flags & CANFD_BRS) 769 hf->flags |= GS_CAN_FLAG_BRS; 770 if (cfd->flags & CANFD_ESI) 771 hf->flags |= GS_CAN_FLAG_ESI; 772 773 memcpy(hf->canfd->data, cfd->data, cfd->len); 774 } else { 775 cf = (struct can_frame *)skb->data; 776 777 hf->can_id = cpu_to_le32(cf->can_id); 778 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode); 779 780 memcpy(hf->classic_can->data, cf->data, cf->len); 781 } 782 783 usb_fill_bulk_urb(urb, dev->udev, 784 usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT), 785 hf, dev->hf_size_tx, 786 gs_usb_xmit_callback, txc); 787 788 urb->transfer_flags |= URB_FREE_BUFFER; 789 usb_anchor_urb(urb, &dev->tx_submitted); 790 791 can_put_echo_skb(skb, netdev, idx, 0); 792 793 atomic_inc(&dev->active_tx_urbs); 794 795 rc = usb_submit_urb(urb, GFP_ATOMIC); 796 if (unlikely(rc)) { /* usb send failed */ 797 atomic_dec(&dev->active_tx_urbs); 798 799 can_free_echo_skb(netdev, idx, NULL); 800 gs_free_tx_context(txc); 801 802 usb_unanchor_urb(urb); 803 804 if (rc == -ENODEV) { 805 netif_device_detach(netdev); 806 } else { 807 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); 808 stats->tx_dropped++; 809 } 810 } else { 811 /* Slow down tx path */ 812 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS) 813 netif_stop_queue(netdev); 814 } 815 816 /* let usb core take care of this urb */ 817 usb_free_urb(urb); 818 819 return NETDEV_TX_OK; 820 821 badidx: 822 kfree(hf); 823 nomem_hf: 824 usb_free_urb(urb); 825 826 nomem_urb: 827 gs_free_tx_context(txc); 828 dev_kfree_skb(skb); 829 stats->tx_dropped++; 830 return NETDEV_TX_OK; 831 } 832 833 static int gs_can_open(struct net_device *netdev) 834 { 835 struct gs_can *dev = netdev_priv(netdev); 836 struct gs_usb *parent = dev->parent; 837 struct gs_device_mode dm = { 838 .mode = cpu_to_le32(GS_CAN_MODE_START), 839 }; 840 struct gs_host_frame *hf; 841 u32 ctrlmode; 842 u32 flags = 0; 843 int rc, i; 844 845 rc = open_candev(netdev); 846 if (rc) 847 return rc; 848 849 ctrlmode = dev->can.ctrlmode; 850 if (ctrlmode & CAN_CTRLMODE_FD) { 851 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) 852 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1); 853 else 854 dev->hf_size_tx = struct_size(hf, canfd, 1); 855 } else { 856 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) 857 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1); 858 else 859 dev->hf_size_tx = struct_size(hf, classic_can, 1); 860 } 861 862 if (!parent->active_channels) { 863 for (i = 0; i < GS_MAX_RX_URBS; i++) { 864 struct urb *urb; 865 u8 *buf; 866 867 /* alloc rx urb */ 868 urb = usb_alloc_urb(0, GFP_KERNEL); 869 if (!urb) 870 return -ENOMEM; 871 872 /* alloc rx buffer */ 873 buf = kmalloc(dev->parent->hf_size_rx, 874 GFP_KERNEL); 875 if (!buf) { 876 netdev_err(netdev, 877 "No memory left for USB buffer\n"); 878 usb_free_urb(urb); 879 return -ENOMEM; 880 } 881 882 /* fill, anchor, and submit rx urb */ 883 usb_fill_bulk_urb(urb, 884 dev->udev, 885 usb_rcvbulkpipe(dev->udev, 886 GS_USB_ENDPOINT_IN), 887 buf, 888 dev->parent->hf_size_rx, 889 gs_usb_receive_bulk_callback, parent); 890 urb->transfer_flags |= URB_FREE_BUFFER; 891 892 usb_anchor_urb(urb, &parent->rx_submitted); 893 894 rc = usb_submit_urb(urb, GFP_KERNEL); 895 if (rc) { 896 if (rc == -ENODEV) 897 netif_device_detach(dev->netdev); 898 899 netdev_err(netdev, 900 "usb_submit failed (err=%d)\n", rc); 901 902 usb_unanchor_urb(urb); 903 usb_free_urb(urb); 904 break; 905 } 906 907 /* Drop reference, 908 * USB core will take care of freeing it 909 */ 910 usb_free_urb(urb); 911 } 912 } 913 914 /* flags */ 915 if (ctrlmode & CAN_CTRLMODE_LOOPBACK) 916 flags |= GS_CAN_MODE_LOOP_BACK; 917 918 if (ctrlmode & CAN_CTRLMODE_LISTENONLY) 919 flags |= GS_CAN_MODE_LISTEN_ONLY; 920 921 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES) 922 flags |= GS_CAN_MODE_TRIPLE_SAMPLE; 923 924 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT) 925 flags |= GS_CAN_MODE_ONE_SHOT; 926 927 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING) 928 flags |= GS_CAN_MODE_BERR_REPORTING; 929 930 if (ctrlmode & CAN_CTRLMODE_FD) 931 flags |= GS_CAN_MODE_FD; 932 933 /* if hardware supports timestamps, enable it */ 934 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) { 935 flags |= GS_CAN_MODE_HW_TIMESTAMP; 936 937 /* start polling timestamp */ 938 gs_usb_timestamp_init(dev); 939 } 940 941 /* finally start device */ 942 dev->can.state = CAN_STATE_ERROR_ACTIVE; 943 dm.flags = cpu_to_le32(flags); 944 rc = usb_control_msg_send(interface_to_usbdev(dev->iface), 0, 945 GS_USB_BREQ_MODE, 946 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 947 dev->channel, 0, &dm, sizeof(dm), 1000, 948 GFP_KERNEL); 949 if (rc) { 950 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc); 951 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 952 gs_usb_timestamp_stop(dev); 953 dev->can.state = CAN_STATE_STOPPED; 954 return rc; 955 } 956 957 parent->active_channels++; 958 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 959 netif_start_queue(netdev); 960 961 return 0; 962 } 963 964 static int gs_usb_get_state(const struct net_device *netdev, 965 struct can_berr_counter *bec, 966 enum can_state *state) 967 { 968 struct gs_can *dev = netdev_priv(netdev); 969 struct gs_device_state ds; 970 int rc; 971 972 rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, 973 GS_USB_BREQ_GET_STATE, 974 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 975 dev->channel, 0, 976 &ds, sizeof(ds), 977 USB_CTRL_GET_TIMEOUT, 978 GFP_KERNEL); 979 if (rc) 980 return rc; 981 982 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX) 983 return -EOPNOTSUPP; 984 985 *state = le32_to_cpu(ds.state); 986 bec->txerr = le32_to_cpu(ds.txerr); 987 bec->rxerr = le32_to_cpu(ds.rxerr); 988 989 return 0; 990 } 991 992 static int gs_usb_can_get_berr_counter(const struct net_device *netdev, 993 struct can_berr_counter *bec) 994 { 995 enum can_state state; 996 997 return gs_usb_get_state(netdev, bec, &state); 998 } 999 1000 static int gs_can_close(struct net_device *netdev) 1001 { 1002 int rc; 1003 struct gs_can *dev = netdev_priv(netdev); 1004 struct gs_usb *parent = dev->parent; 1005 1006 netif_stop_queue(netdev); 1007 1008 /* stop polling timestamp */ 1009 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1010 gs_usb_timestamp_stop(dev); 1011 1012 /* Stop polling */ 1013 parent->active_channels--; 1014 if (!parent->active_channels) { 1015 usb_kill_anchored_urbs(&parent->rx_submitted); 1016 } 1017 1018 /* Stop sending URBs */ 1019 usb_kill_anchored_urbs(&dev->tx_submitted); 1020 atomic_set(&dev->active_tx_urbs, 0); 1021 1022 /* reset the device */ 1023 rc = gs_cmd_reset(dev); 1024 if (rc < 0) 1025 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc); 1026 1027 /* reset tx contexts */ 1028 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { 1029 dev->tx_context[rc].dev = dev; 1030 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; 1031 } 1032 1033 /* close the netdev */ 1034 close_candev(netdev); 1035 1036 return 0; 1037 } 1038 1039 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1040 { 1041 const struct gs_can *dev = netdev_priv(netdev); 1042 1043 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1044 return can_eth_ioctl_hwts(netdev, ifr, cmd); 1045 1046 return -EOPNOTSUPP; 1047 } 1048 1049 static const struct net_device_ops gs_usb_netdev_ops = { 1050 .ndo_open = gs_can_open, 1051 .ndo_stop = gs_can_close, 1052 .ndo_start_xmit = gs_can_start_xmit, 1053 .ndo_change_mtu = can_change_mtu, 1054 .ndo_eth_ioctl = gs_can_eth_ioctl, 1055 }; 1056 1057 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify) 1058 { 1059 struct gs_can *dev = netdev_priv(netdev); 1060 struct gs_identify_mode imode; 1061 1062 if (do_identify) 1063 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON); 1064 else 1065 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF); 1066 1067 return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, 1068 GS_USB_BREQ_IDENTIFY, 1069 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1070 dev->channel, 0, &imode, sizeof(imode), 100, 1071 GFP_KERNEL); 1072 } 1073 1074 /* blink LED's for finding the this interface */ 1075 static int gs_usb_set_phys_id(struct net_device *netdev, 1076 enum ethtool_phys_id_state state) 1077 { 1078 const struct gs_can *dev = netdev_priv(netdev); 1079 int rc = 0; 1080 1081 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY)) 1082 return -EOPNOTSUPP; 1083 1084 switch (state) { 1085 case ETHTOOL_ID_ACTIVE: 1086 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON); 1087 break; 1088 case ETHTOOL_ID_INACTIVE: 1089 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF); 1090 break; 1091 default: 1092 break; 1093 } 1094 1095 return rc; 1096 } 1097 1098 static int gs_usb_get_ts_info(struct net_device *netdev, 1099 struct ethtool_ts_info *info) 1100 { 1101 struct gs_can *dev = netdev_priv(netdev); 1102 1103 /* report if device supports HW timestamps */ 1104 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1105 return can_ethtool_op_get_ts_info_hwts(netdev, info); 1106 1107 return ethtool_op_get_ts_info(netdev, info); 1108 } 1109 1110 static const struct ethtool_ops gs_usb_ethtool_ops = { 1111 .set_phys_id = gs_usb_set_phys_id, 1112 .get_ts_info = gs_usb_get_ts_info, 1113 }; 1114 1115 static int gs_usb_get_termination(struct net_device *netdev, u16 *term) 1116 { 1117 struct gs_can *dev = netdev_priv(netdev); 1118 struct gs_device_termination_state term_state; 1119 int rc; 1120 1121 rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, 1122 GS_USB_BREQ_GET_TERMINATION, 1123 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1124 dev->channel, 0, 1125 &term_state, sizeof(term_state), 1000, 1126 GFP_KERNEL); 1127 if (rc) 1128 return rc; 1129 1130 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON)) 1131 *term = GS_USB_TERMINATION_ENABLED; 1132 else 1133 *term = GS_USB_TERMINATION_DISABLED; 1134 1135 return 0; 1136 } 1137 1138 static int gs_usb_set_termination(struct net_device *netdev, u16 term) 1139 { 1140 struct gs_can *dev = netdev_priv(netdev); 1141 struct gs_device_termination_state term_state; 1142 1143 if (term == GS_USB_TERMINATION_ENABLED) 1144 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON); 1145 else 1146 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF); 1147 1148 return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, 1149 GS_USB_BREQ_SET_TERMINATION, 1150 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1151 dev->channel, 0, 1152 &term_state, sizeof(term_state), 1000, 1153 GFP_KERNEL); 1154 } 1155 1156 static const u16 gs_usb_termination_const[] = { 1157 GS_USB_TERMINATION_DISABLED, 1158 GS_USB_TERMINATION_ENABLED 1159 }; 1160 1161 static struct gs_can *gs_make_candev(unsigned int channel, 1162 struct usb_interface *intf, 1163 struct gs_device_config *dconf) 1164 { 1165 struct gs_can *dev; 1166 struct net_device *netdev; 1167 int rc; 1168 struct gs_device_bt_const_extended bt_const_extended; 1169 struct gs_device_bt_const bt_const; 1170 u32 feature; 1171 1172 /* fetch bit timing constants */ 1173 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, 1174 GS_USB_BREQ_BT_CONST, 1175 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1176 channel, 0, &bt_const, sizeof(bt_const), 1000, 1177 GFP_KERNEL); 1178 1179 if (rc) { 1180 dev_err(&intf->dev, 1181 "Couldn't get bit timing const for channel %d (%pe)\n", 1182 channel, ERR_PTR(rc)); 1183 return ERR_PTR(rc); 1184 } 1185 1186 /* create netdev */ 1187 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS); 1188 if (!netdev) { 1189 dev_err(&intf->dev, "Couldn't allocate candev\n"); 1190 return ERR_PTR(-ENOMEM); 1191 } 1192 1193 dev = netdev_priv(netdev); 1194 1195 netdev->netdev_ops = &gs_usb_netdev_ops; 1196 netdev->ethtool_ops = &gs_usb_ethtool_ops; 1197 1198 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */ 1199 netdev->dev_id = channel; 1200 1201 /* dev setup */ 1202 strcpy(dev->bt_const.name, KBUILD_MODNAME); 1203 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min); 1204 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max); 1205 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min); 1206 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max); 1207 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max); 1208 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min); 1209 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max); 1210 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc); 1211 1212 dev->udev = interface_to_usbdev(intf); 1213 dev->iface = intf; 1214 dev->netdev = netdev; 1215 dev->channel = channel; 1216 1217 init_usb_anchor(&dev->tx_submitted); 1218 atomic_set(&dev->active_tx_urbs, 0); 1219 spin_lock_init(&dev->tx_ctx_lock); 1220 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { 1221 dev->tx_context[rc].dev = dev; 1222 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; 1223 } 1224 1225 /* can setup */ 1226 dev->can.state = CAN_STATE_STOPPED; 1227 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can); 1228 dev->can.bittiming_const = &dev->bt_const; 1229 dev->can.do_set_bittiming = gs_usb_set_bittiming; 1230 1231 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC; 1232 1233 feature = le32_to_cpu(bt_const.feature); 1234 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature); 1235 if (feature & GS_CAN_FEATURE_LISTEN_ONLY) 1236 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; 1237 1238 if (feature & GS_CAN_FEATURE_LOOP_BACK) 1239 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK; 1240 1241 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE) 1242 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; 1243 1244 if (feature & GS_CAN_FEATURE_ONE_SHOT) 1245 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; 1246 1247 if (feature & GS_CAN_FEATURE_FD) { 1248 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD; 1249 /* The data bit timing will be overwritten, if 1250 * GS_CAN_FEATURE_BT_CONST_EXT is set. 1251 */ 1252 dev->can.data_bittiming_const = &dev->bt_const; 1253 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming; 1254 } 1255 1256 if (feature & GS_CAN_FEATURE_TERMINATION) { 1257 rc = gs_usb_get_termination(netdev, &dev->can.termination); 1258 if (rc) { 1259 dev->feature &= ~GS_CAN_FEATURE_TERMINATION; 1260 1261 dev_info(&intf->dev, 1262 "Disabling termination support for channel %d (%pe)\n", 1263 channel, ERR_PTR(rc)); 1264 } else { 1265 dev->can.termination_const = gs_usb_termination_const; 1266 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const); 1267 dev->can.do_set_termination = gs_usb_set_termination; 1268 } 1269 } 1270 1271 if (feature & GS_CAN_FEATURE_BERR_REPORTING) 1272 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING; 1273 1274 if (feature & GS_CAN_FEATURE_GET_STATE) 1275 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter; 1276 1277 /* The CANtact Pro from LinkLayer Labs is based on the 1278 * LPC54616 µC, which is affected by the NXP LPC USB transfer 1279 * erratum. However, the current firmware (version 2) doesn't 1280 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the 1281 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround 1282 * this issue. 1283 * 1284 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the 1285 * CANtact Pro firmware uses a request value, which is already 1286 * used by the candleLight firmware for a different purpose 1287 * (GS_USB_BREQ_GET_USER_ID). Set the feature 1288 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this 1289 * issue. 1290 */ 1291 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) && 1292 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) && 1293 dev->udev->manufacturer && dev->udev->product && 1294 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") && 1295 !strcmp(dev->udev->product, "CANtact Pro") && 1296 (le32_to_cpu(dconf->sw_version) <= 2)) 1297 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX | 1298 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO; 1299 1300 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */ 1301 if (!(le32_to_cpu(dconf->sw_version) > 1 && 1302 feature & GS_CAN_FEATURE_IDENTIFY)) 1303 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY; 1304 1305 /* fetch extended bit timing constants if device has feature 1306 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT 1307 */ 1308 if (feature & GS_CAN_FEATURE_FD && 1309 feature & GS_CAN_FEATURE_BT_CONST_EXT) { 1310 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, 1311 GS_USB_BREQ_BT_CONST_EXT, 1312 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1313 channel, 0, &bt_const_extended, 1314 sizeof(bt_const_extended), 1315 1000, GFP_KERNEL); 1316 if (rc) { 1317 dev_err(&intf->dev, 1318 "Couldn't get extended bit timing const for channel %d (%pe)\n", 1319 channel, ERR_PTR(rc)); 1320 goto out_free_candev; 1321 } 1322 1323 strcpy(dev->data_bt_const.name, KBUILD_MODNAME); 1324 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min); 1325 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max); 1326 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min); 1327 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max); 1328 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max); 1329 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min); 1330 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max); 1331 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc); 1332 1333 dev->can.data_bittiming_const = &dev->data_bt_const; 1334 } 1335 1336 SET_NETDEV_DEV(netdev, &intf->dev); 1337 1338 rc = register_candev(dev->netdev); 1339 if (rc) { 1340 dev_err(&intf->dev, 1341 "Couldn't register candev for channel %d (%pe)\n", 1342 channel, ERR_PTR(rc)); 1343 goto out_free_candev; 1344 } 1345 1346 return dev; 1347 1348 out_free_candev: 1349 free_candev(dev->netdev); 1350 return ERR_PTR(rc); 1351 } 1352 1353 static void gs_destroy_candev(struct gs_can *dev) 1354 { 1355 unregister_candev(dev->netdev); 1356 usb_kill_anchored_urbs(&dev->tx_submitted); 1357 free_candev(dev->netdev); 1358 } 1359 1360 static int gs_usb_probe(struct usb_interface *intf, 1361 const struct usb_device_id *id) 1362 { 1363 struct usb_device *udev = interface_to_usbdev(intf); 1364 struct gs_host_frame *hf; 1365 struct gs_usb *dev; 1366 struct gs_host_config hconf = { 1367 .byte_order = cpu_to_le32(0x0000beef), 1368 }; 1369 struct gs_device_config dconf; 1370 unsigned int icount, i; 1371 int rc; 1372 1373 /* send host config */ 1374 rc = usb_control_msg_send(udev, 0, 1375 GS_USB_BREQ_HOST_FORMAT, 1376 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1377 1, intf->cur_altsetting->desc.bInterfaceNumber, 1378 &hconf, sizeof(hconf), 1000, 1379 GFP_KERNEL); 1380 if (rc) { 1381 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc); 1382 return rc; 1383 } 1384 1385 /* read device config */ 1386 rc = usb_control_msg_recv(udev, 0, 1387 GS_USB_BREQ_DEVICE_CONFIG, 1388 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1389 1, intf->cur_altsetting->desc.bInterfaceNumber, 1390 &dconf, sizeof(dconf), 1000, 1391 GFP_KERNEL); 1392 if (rc) { 1393 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n", 1394 rc); 1395 return rc; 1396 } 1397 1398 icount = dconf.icount + 1; 1399 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount); 1400 1401 if (icount > GS_MAX_INTF) { 1402 dev_err(&intf->dev, 1403 "Driver cannot handle more that %u CAN interfaces\n", 1404 GS_MAX_INTF); 1405 return -EINVAL; 1406 } 1407 1408 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1409 if (!dev) 1410 return -ENOMEM; 1411 1412 init_usb_anchor(&dev->rx_submitted); 1413 1414 usb_set_intfdata(intf, dev); 1415 dev->udev = udev; 1416 1417 for (i = 0; i < icount; i++) { 1418 unsigned int hf_size_rx = 0; 1419 1420 dev->canch[i] = gs_make_candev(i, intf, &dconf); 1421 if (IS_ERR_OR_NULL(dev->canch[i])) { 1422 /* save error code to return later */ 1423 rc = PTR_ERR(dev->canch[i]); 1424 1425 /* on failure destroy previously created candevs */ 1426 icount = i; 1427 for (i = 0; i < icount; i++) 1428 gs_destroy_candev(dev->canch[i]); 1429 1430 usb_kill_anchored_urbs(&dev->rx_submitted); 1431 kfree(dev); 1432 return rc; 1433 } 1434 dev->canch[i]->parent = dev; 1435 1436 /* set RX packet size based on FD and if hardware 1437 * timestamps are supported. 1438 */ 1439 if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) { 1440 if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1441 hf_size_rx = struct_size(hf, canfd_ts, 1); 1442 else 1443 hf_size_rx = struct_size(hf, canfd, 1); 1444 } else { 1445 if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1446 hf_size_rx = struct_size(hf, classic_can_ts, 1); 1447 else 1448 hf_size_rx = struct_size(hf, classic_can, 1); 1449 } 1450 dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx); 1451 } 1452 1453 return 0; 1454 } 1455 1456 static void gs_usb_disconnect(struct usb_interface *intf) 1457 { 1458 struct gs_usb *dev = usb_get_intfdata(intf); 1459 unsigned int i; 1460 1461 usb_set_intfdata(intf, NULL); 1462 1463 if (!dev) { 1464 dev_err(&intf->dev, "Disconnect (nodata)\n"); 1465 return; 1466 } 1467 1468 for (i = 0; i < GS_MAX_INTF; i++) 1469 if (dev->canch[i]) 1470 gs_destroy_candev(dev->canch[i]); 1471 1472 usb_kill_anchored_urbs(&dev->rx_submitted); 1473 kfree(dev); 1474 } 1475 1476 static const struct usb_device_id gs_usb_table[] = { 1477 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID, 1478 USB_GS_USB_1_PRODUCT_ID, 0) }, 1479 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID, 1480 USB_CANDLELIGHT_PRODUCT_ID, 0) }, 1481 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID, 1482 USB_CES_CANEXT_FD_PRODUCT_ID, 0) }, 1483 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID, 1484 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) }, 1485 {} /* Terminating entry */ 1486 }; 1487 1488 MODULE_DEVICE_TABLE(usb, gs_usb_table); 1489 1490 static struct usb_driver gs_usb_driver = { 1491 .name = KBUILD_MODNAME, 1492 .probe = gs_usb_probe, 1493 .disconnect = gs_usb_disconnect, 1494 .id_table = gs_usb_table, 1495 }; 1496 1497 module_usb_driver(gs_usb_driver); 1498 1499 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>"); 1500 MODULE_DESCRIPTION( 1501 "Socket CAN device driver for Geschwister Schneider Technologie-, " 1502 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n" 1503 "and bytewerk.org candleLight USB CAN interfaces."); 1504 MODULE_LICENSE("GPL v2"); 1505