1 // SPDX-License-Identifier: GPL-2.0-only 2 /* CAN driver for Geschwister Schneider USB/CAN devices 3 * and bytewerk.org candleLight USB CAN interfaces. 4 * 5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-, 6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt). 7 * Copyright (C) 2016 Hubert Denkmair 8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de> 9 * 10 * Many thanks to all socketcan devs! 11 */ 12 13 #include <linux/bitfield.h> 14 #include <linux/clocksource.h> 15 #include <linux/ethtool.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/netdevice.h> 19 #include <linux/signal.h> 20 #include <linux/timecounter.h> 21 #include <linux/units.h> 22 #include <linux/usb.h> 23 #include <linux/workqueue.h> 24 25 #include <linux/can.h> 26 #include <linux/can/dev.h> 27 #include <linux/can/error.h> 28 #include <linux/can/rx-offload.h> 29 30 /* Device specific constants */ 31 #define USB_GS_USB_1_VENDOR_ID 0x1d50 32 #define USB_GS_USB_1_PRODUCT_ID 0x606f 33 34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209 35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323 36 37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2 38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f 39 40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0 41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8 42 43 #define USB_XYLANTA_SAINT3_VENDOR_ID 0x16d0 44 #define USB_XYLANTA_SAINT3_PRODUCT_ID 0x0f30 45 46 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts 47 * for timer overflow (will be after ~71 minutes) 48 */ 49 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ) 50 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800 51 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC < 52 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2); 53 54 /* Device specific constants */ 55 enum gs_usb_breq { 56 GS_USB_BREQ_HOST_FORMAT = 0, 57 GS_USB_BREQ_BITTIMING, 58 GS_USB_BREQ_MODE, 59 GS_USB_BREQ_BERR, 60 GS_USB_BREQ_BT_CONST, 61 GS_USB_BREQ_DEVICE_CONFIG, 62 GS_USB_BREQ_TIMESTAMP, 63 GS_USB_BREQ_IDENTIFY, 64 GS_USB_BREQ_GET_USER_ID, 65 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID, 66 GS_USB_BREQ_SET_USER_ID, 67 GS_USB_BREQ_DATA_BITTIMING, 68 GS_USB_BREQ_BT_CONST_EXT, 69 GS_USB_BREQ_SET_TERMINATION, 70 GS_USB_BREQ_GET_TERMINATION, 71 GS_USB_BREQ_GET_STATE, 72 }; 73 74 enum gs_can_mode { 75 /* reset a channel. turns it off */ 76 GS_CAN_MODE_RESET = 0, 77 /* starts a channel */ 78 GS_CAN_MODE_START 79 }; 80 81 enum gs_can_state { 82 GS_CAN_STATE_ERROR_ACTIVE = 0, 83 GS_CAN_STATE_ERROR_WARNING, 84 GS_CAN_STATE_ERROR_PASSIVE, 85 GS_CAN_STATE_BUS_OFF, 86 GS_CAN_STATE_STOPPED, 87 GS_CAN_STATE_SLEEPING 88 }; 89 90 enum gs_can_identify_mode { 91 GS_CAN_IDENTIFY_OFF = 0, 92 GS_CAN_IDENTIFY_ON 93 }; 94 95 enum gs_can_termination_state { 96 GS_CAN_TERMINATION_STATE_OFF = 0, 97 GS_CAN_TERMINATION_STATE_ON 98 }; 99 100 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED 101 #define GS_USB_TERMINATION_ENABLED 120 102 103 /* data types passed between host and device */ 104 105 /* The firmware on the original USB2CAN by Geschwister Schneider 106 * Technologie Entwicklungs- und Vertriebs UG exchanges all data 107 * between the host and the device in host byte order. This is done 108 * with the struct gs_host_config::byte_order member, which is sent 109 * first to indicate the desired byte order. 110 * 111 * The widely used open source firmware candleLight doesn't support 112 * this feature and exchanges the data in little endian byte order. 113 */ 114 struct gs_host_config { 115 __le32 byte_order; 116 } __packed; 117 118 struct gs_device_config { 119 u8 reserved1; 120 u8 reserved2; 121 u8 reserved3; 122 u8 icount; 123 __le32 sw_version; 124 __le32 hw_version; 125 } __packed; 126 127 #define GS_CAN_MODE_NORMAL 0 128 #define GS_CAN_MODE_LISTEN_ONLY BIT(0) 129 #define GS_CAN_MODE_LOOP_BACK BIT(1) 130 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2) 131 #define GS_CAN_MODE_ONE_SHOT BIT(3) 132 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4) 133 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */ 134 /* GS_CAN_FEATURE_USER_ID BIT(6) */ 135 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) 136 #define GS_CAN_MODE_FD BIT(8) 137 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */ 138 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */ 139 /* GS_CAN_FEATURE_TERMINATION BIT(11) */ 140 #define GS_CAN_MODE_BERR_REPORTING BIT(12) 141 /* GS_CAN_FEATURE_GET_STATE BIT(13) */ 142 143 struct gs_device_mode { 144 __le32 mode; 145 __le32 flags; 146 } __packed; 147 148 struct gs_device_state { 149 __le32 state; 150 __le32 rxerr; 151 __le32 txerr; 152 } __packed; 153 154 struct gs_device_bittiming { 155 __le32 prop_seg; 156 __le32 phase_seg1; 157 __le32 phase_seg2; 158 __le32 sjw; 159 __le32 brp; 160 } __packed; 161 162 struct gs_identify_mode { 163 __le32 mode; 164 } __packed; 165 166 struct gs_device_termination_state { 167 __le32 state; 168 } __packed; 169 170 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0) 171 #define GS_CAN_FEATURE_LOOP_BACK BIT(1) 172 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2) 173 #define GS_CAN_FEATURE_ONE_SHOT BIT(3) 174 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4) 175 #define GS_CAN_FEATURE_IDENTIFY BIT(5) 176 #define GS_CAN_FEATURE_USER_ID BIT(6) 177 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) 178 #define GS_CAN_FEATURE_FD BIT(8) 179 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) 180 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10) 181 #define GS_CAN_FEATURE_TERMINATION BIT(11) 182 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12) 183 #define GS_CAN_FEATURE_GET_STATE BIT(13) 184 #define GS_CAN_FEATURE_MASK GENMASK(13, 0) 185 186 /* internal quirks - keep in GS_CAN_FEATURE space for now */ 187 188 /* CANtact Pro original firmware: 189 * BREQ DATA_BITTIMING overlaps with GET_USER_ID 190 */ 191 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31) 192 193 struct gs_device_bt_const { 194 __le32 feature; 195 __le32 fclk_can; 196 __le32 tseg1_min; 197 __le32 tseg1_max; 198 __le32 tseg2_min; 199 __le32 tseg2_max; 200 __le32 sjw_max; 201 __le32 brp_min; 202 __le32 brp_max; 203 __le32 brp_inc; 204 } __packed; 205 206 struct gs_device_bt_const_extended { 207 __le32 feature; 208 __le32 fclk_can; 209 __le32 tseg1_min; 210 __le32 tseg1_max; 211 __le32 tseg2_min; 212 __le32 tseg2_max; 213 __le32 sjw_max; 214 __le32 brp_min; 215 __le32 brp_max; 216 __le32 brp_inc; 217 218 __le32 dtseg1_min; 219 __le32 dtseg1_max; 220 __le32 dtseg2_min; 221 __le32 dtseg2_max; 222 __le32 dsjw_max; 223 __le32 dbrp_min; 224 __le32 dbrp_max; 225 __le32 dbrp_inc; 226 } __packed; 227 228 #define GS_CAN_FLAG_OVERFLOW BIT(0) 229 #define GS_CAN_FLAG_FD BIT(1) 230 #define GS_CAN_FLAG_BRS BIT(2) 231 #define GS_CAN_FLAG_ESI BIT(3) 232 233 struct classic_can { 234 u8 data[8]; 235 } __packed; 236 237 struct classic_can_ts { 238 u8 data[8]; 239 __le32 timestamp_us; 240 } __packed; 241 242 struct classic_can_quirk { 243 u8 data[8]; 244 u8 quirk; 245 } __packed; 246 247 struct canfd { 248 u8 data[64]; 249 } __packed; 250 251 struct canfd_ts { 252 u8 data[64]; 253 __le32 timestamp_us; 254 } __packed; 255 256 struct canfd_quirk { 257 u8 data[64]; 258 u8 quirk; 259 } __packed; 260 261 struct gs_host_frame { 262 u32 echo_id; 263 __le32 can_id; 264 265 u8 can_dlc; 266 u8 channel; 267 u8 flags; 268 u8 reserved; 269 270 union { 271 DECLARE_FLEX_ARRAY(struct classic_can, classic_can); 272 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts); 273 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk); 274 DECLARE_FLEX_ARRAY(struct canfd, canfd); 275 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts); 276 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk); 277 }; 278 } __packed; 279 /* The GS USB devices make use of the same flags and masks as in 280 * linux/can.h and linux/can/error.h, and no additional mapping is necessary. 281 */ 282 283 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */ 284 #define GS_MAX_TX_URBS 10 285 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */ 286 #define GS_MAX_RX_URBS 30 287 #define GS_NAPI_WEIGHT 32 288 289 /* Maximum number of interfaces the driver supports per device. 290 * Current hardware only supports 3 interfaces. The future may vary. 291 */ 292 #define GS_MAX_INTF 3 293 294 struct gs_tx_context { 295 struct gs_can *dev; 296 unsigned int echo_id; 297 }; 298 299 struct gs_can { 300 struct can_priv can; /* must be the first member */ 301 302 struct can_rx_offload offload; 303 struct gs_usb *parent; 304 305 struct net_device *netdev; 306 struct usb_device *udev; 307 308 struct can_bittiming_const bt_const, data_bt_const; 309 unsigned int channel; /* channel number */ 310 311 u32 feature; 312 unsigned int hf_size_tx; 313 314 /* This lock prevents a race condition between xmit and receive. */ 315 spinlock_t tx_ctx_lock; 316 struct gs_tx_context tx_context[GS_MAX_TX_URBS]; 317 318 struct usb_anchor tx_submitted; 319 atomic_t active_tx_urbs; 320 }; 321 322 /* usb interface struct */ 323 struct gs_usb { 324 struct gs_can *canch[GS_MAX_INTF]; 325 struct usb_anchor rx_submitted; 326 struct usb_device *udev; 327 328 /* time counter for hardware timestamps */ 329 struct cyclecounter cc; 330 struct timecounter tc; 331 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */ 332 struct delayed_work timestamp; 333 334 unsigned int hf_size_rx; 335 u8 active_channels; 336 337 unsigned int pipe_in; 338 unsigned int pipe_out; 339 }; 340 341 /* 'allocate' a tx context. 342 * returns a valid tx context or NULL if there is no space. 343 */ 344 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev) 345 { 346 int i = 0; 347 unsigned long flags; 348 349 spin_lock_irqsave(&dev->tx_ctx_lock, flags); 350 351 for (; i < GS_MAX_TX_URBS; i++) { 352 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) { 353 dev->tx_context[i].echo_id = i; 354 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 355 return &dev->tx_context[i]; 356 } 357 } 358 359 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 360 return NULL; 361 } 362 363 /* releases a tx context 364 */ 365 static void gs_free_tx_context(struct gs_tx_context *txc) 366 { 367 txc->echo_id = GS_MAX_TX_URBS; 368 } 369 370 /* Get a tx context by id. 371 */ 372 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev, 373 unsigned int id) 374 { 375 unsigned long flags; 376 377 if (id < GS_MAX_TX_URBS) { 378 spin_lock_irqsave(&dev->tx_ctx_lock, flags); 379 if (dev->tx_context[id].echo_id == id) { 380 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 381 return &dev->tx_context[id]; 382 } 383 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); 384 } 385 return NULL; 386 } 387 388 static int gs_cmd_reset(struct gs_can *dev) 389 { 390 struct gs_device_mode dm = { 391 .mode = GS_CAN_MODE_RESET, 392 }; 393 394 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE, 395 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 396 dev->channel, 0, &dm, sizeof(dm), 1000, 397 GFP_KERNEL); 398 } 399 400 static inline int gs_usb_get_timestamp(const struct gs_usb *parent, 401 u32 *timestamp_p) 402 { 403 __le32 timestamp; 404 int rc; 405 406 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP, 407 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 408 0, 0, 409 ×tamp, sizeof(timestamp), 410 USB_CTRL_GET_TIMEOUT, 411 GFP_KERNEL); 412 if (rc) 413 return rc; 414 415 *timestamp_p = le32_to_cpu(timestamp); 416 417 return 0; 418 } 419 420 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock) 421 { 422 struct gs_usb *parent = container_of(cc, struct gs_usb, cc); 423 u32 timestamp = 0; 424 int err; 425 426 lockdep_assert_held(&parent->tc_lock); 427 428 /* drop lock for synchronous USB transfer */ 429 spin_unlock_bh(&parent->tc_lock); 430 err = gs_usb_get_timestamp(parent, ×tamp); 431 spin_lock_bh(&parent->tc_lock); 432 if (err) 433 dev_err(&parent->udev->dev, 434 "Error %d while reading timestamp. HW timestamps may be inaccurate.", 435 err); 436 437 return timestamp; 438 } 439 440 static void gs_usb_timestamp_work(struct work_struct *work) 441 { 442 struct delayed_work *delayed_work = to_delayed_work(work); 443 struct gs_usb *parent; 444 445 parent = container_of(delayed_work, struct gs_usb, timestamp); 446 spin_lock_bh(&parent->tc_lock); 447 timecounter_read(&parent->tc); 448 spin_unlock_bh(&parent->tc_lock); 449 450 schedule_delayed_work(&parent->timestamp, 451 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); 452 } 453 454 static void gs_usb_skb_set_timestamp(struct gs_can *dev, 455 struct sk_buff *skb, u32 timestamp) 456 { 457 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 458 struct gs_usb *parent = dev->parent; 459 u64 ns; 460 461 spin_lock_bh(&parent->tc_lock); 462 ns = timecounter_cyc2time(&parent->tc, timestamp); 463 spin_unlock_bh(&parent->tc_lock); 464 465 hwtstamps->hwtstamp = ns_to_ktime(ns); 466 } 467 468 static void gs_usb_timestamp_init(struct gs_usb *parent) 469 { 470 struct cyclecounter *cc = &parent->cc; 471 472 cc->read = gs_usb_timestamp_read; 473 cc->mask = CYCLECOUNTER_MASK(32); 474 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ); 475 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift); 476 477 spin_lock_init(&parent->tc_lock); 478 spin_lock_bh(&parent->tc_lock); 479 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns()); 480 spin_unlock_bh(&parent->tc_lock); 481 482 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work); 483 schedule_delayed_work(&parent->timestamp, 484 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); 485 } 486 487 static void gs_usb_timestamp_stop(struct gs_usb *parent) 488 { 489 cancel_delayed_work_sync(&parent->timestamp); 490 } 491 492 static void gs_update_state(struct gs_can *dev, struct can_frame *cf) 493 { 494 struct can_device_stats *can_stats = &dev->can.can_stats; 495 496 if (cf->can_id & CAN_ERR_RESTARTED) { 497 dev->can.state = CAN_STATE_ERROR_ACTIVE; 498 can_stats->restarts++; 499 } else if (cf->can_id & CAN_ERR_BUSOFF) { 500 dev->can.state = CAN_STATE_BUS_OFF; 501 can_stats->bus_off++; 502 } else if (cf->can_id & CAN_ERR_CRTL) { 503 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) || 504 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) { 505 dev->can.state = CAN_STATE_ERROR_WARNING; 506 can_stats->error_warning++; 507 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) || 508 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) { 509 dev->can.state = CAN_STATE_ERROR_PASSIVE; 510 can_stats->error_passive++; 511 } else { 512 dev->can.state = CAN_STATE_ERROR_ACTIVE; 513 } 514 } 515 } 516 517 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, 518 const struct gs_host_frame *hf) 519 { 520 u32 timestamp; 521 522 if (hf->flags & GS_CAN_FLAG_FD) 523 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us); 524 else 525 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us); 526 527 if (skb) 528 gs_usb_skb_set_timestamp(dev, skb, timestamp); 529 530 return timestamp; 531 } 532 533 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb, 534 const struct gs_host_frame *hf) 535 { 536 struct can_rx_offload *offload = &dev->offload; 537 int rc; 538 539 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) { 540 const u32 ts = gs_usb_set_timestamp(dev, skb, hf); 541 542 rc = can_rx_offload_queue_timestamp(offload, skb, ts); 543 } else { 544 rc = can_rx_offload_queue_tail(offload, skb); 545 } 546 547 if (rc) 548 dev->netdev->stats.rx_fifo_errors++; 549 } 550 551 static unsigned int 552 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb, 553 const struct gs_host_frame *hf) 554 { 555 struct can_rx_offload *offload = &dev->offload; 556 const u32 echo_id = hf->echo_id; 557 unsigned int len; 558 559 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) { 560 const u32 ts = gs_usb_set_timestamp(dev, skb, hf); 561 562 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id, 563 ts, NULL); 564 } else { 565 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id, 566 NULL); 567 } 568 569 return len; 570 } 571 572 static void gs_usb_receive_bulk_callback(struct urb *urb) 573 { 574 struct gs_usb *parent = urb->context; 575 struct gs_can *dev; 576 struct net_device *netdev; 577 int rc; 578 struct net_device_stats *stats; 579 struct gs_host_frame *hf = urb->transfer_buffer; 580 struct gs_tx_context *txc; 581 struct can_frame *cf; 582 struct canfd_frame *cfd; 583 struct sk_buff *skb; 584 585 BUG_ON(!parent); 586 587 switch (urb->status) { 588 case 0: /* success */ 589 break; 590 case -ENOENT: 591 case -ESHUTDOWN: 592 return; 593 default: 594 /* do not resubmit aborted urbs. eg: when device goes down */ 595 return; 596 } 597 598 /* device reports out of range channel id */ 599 if (hf->channel >= GS_MAX_INTF) 600 goto device_detach; 601 602 dev = parent->canch[hf->channel]; 603 604 netdev = dev->netdev; 605 stats = &netdev->stats; 606 607 if (!netif_device_present(netdev)) 608 return; 609 610 if (!netif_running(netdev)) 611 goto resubmit_urb; 612 613 if (hf->echo_id == -1) { /* normal rx */ 614 if (hf->flags & GS_CAN_FLAG_FD) { 615 skb = alloc_canfd_skb(netdev, &cfd); 616 if (!skb) 617 return; 618 619 cfd->can_id = le32_to_cpu(hf->can_id); 620 cfd->len = can_fd_dlc2len(hf->can_dlc); 621 if (hf->flags & GS_CAN_FLAG_BRS) 622 cfd->flags |= CANFD_BRS; 623 if (hf->flags & GS_CAN_FLAG_ESI) 624 cfd->flags |= CANFD_ESI; 625 626 memcpy(cfd->data, hf->canfd->data, cfd->len); 627 } else { 628 skb = alloc_can_skb(netdev, &cf); 629 if (!skb) 630 return; 631 632 cf->can_id = le32_to_cpu(hf->can_id); 633 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode); 634 635 memcpy(cf->data, hf->classic_can->data, 8); 636 637 /* ERROR frames tell us information about the controller */ 638 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG) 639 gs_update_state(dev, cf); 640 } 641 642 gs_usb_rx_offload(dev, skb, hf); 643 } else { /* echo_id == hf->echo_id */ 644 if (hf->echo_id >= GS_MAX_TX_URBS) { 645 netdev_err(netdev, 646 "Unexpected out of range echo id %u\n", 647 hf->echo_id); 648 goto resubmit_urb; 649 } 650 651 txc = gs_get_tx_context(dev, hf->echo_id); 652 653 /* bad devices send bad echo_ids. */ 654 if (!txc) { 655 netdev_err(netdev, 656 "Unexpected unused echo id %u\n", 657 hf->echo_id); 658 goto resubmit_urb; 659 } 660 661 skb = dev->can.echo_skb[hf->echo_id]; 662 stats->tx_packets++; 663 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf); 664 gs_free_tx_context(txc); 665 666 atomic_dec(&dev->active_tx_urbs); 667 668 netif_wake_queue(netdev); 669 } 670 671 if (hf->flags & GS_CAN_FLAG_OVERFLOW) { 672 stats->rx_over_errors++; 673 stats->rx_errors++; 674 675 skb = alloc_can_err_skb(netdev, &cf); 676 if (!skb) 677 goto resubmit_urb; 678 679 cf->can_id |= CAN_ERR_CRTL; 680 cf->len = CAN_ERR_DLC; 681 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 682 683 gs_usb_rx_offload(dev, skb, hf); 684 } 685 686 can_rx_offload_irq_finish(&dev->offload); 687 688 resubmit_urb: 689 usb_fill_bulk_urb(urb, parent->udev, 690 parent->pipe_in, 691 hf, dev->parent->hf_size_rx, 692 gs_usb_receive_bulk_callback, parent); 693 694 rc = usb_submit_urb(urb, GFP_ATOMIC); 695 696 /* USB failure take down all interfaces */ 697 if (rc == -ENODEV) { 698 device_detach: 699 for (rc = 0; rc < GS_MAX_INTF; rc++) { 700 if (parent->canch[rc]) 701 netif_device_detach(parent->canch[rc]->netdev); 702 } 703 } 704 } 705 706 static int gs_usb_set_bittiming(struct net_device *netdev) 707 { 708 struct gs_can *dev = netdev_priv(netdev); 709 struct can_bittiming *bt = &dev->can.bittiming; 710 struct gs_device_bittiming dbt = { 711 .prop_seg = cpu_to_le32(bt->prop_seg), 712 .phase_seg1 = cpu_to_le32(bt->phase_seg1), 713 .phase_seg2 = cpu_to_le32(bt->phase_seg2), 714 .sjw = cpu_to_le32(bt->sjw), 715 .brp = cpu_to_le32(bt->brp), 716 }; 717 718 /* request bit timings */ 719 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING, 720 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 721 dev->channel, 0, &dbt, sizeof(dbt), 1000, 722 GFP_KERNEL); 723 } 724 725 static int gs_usb_set_data_bittiming(struct net_device *netdev) 726 { 727 struct gs_can *dev = netdev_priv(netdev); 728 struct can_bittiming *bt = &dev->can.data_bittiming; 729 struct gs_device_bittiming dbt = { 730 .prop_seg = cpu_to_le32(bt->prop_seg), 731 .phase_seg1 = cpu_to_le32(bt->phase_seg1), 732 .phase_seg2 = cpu_to_le32(bt->phase_seg2), 733 .sjw = cpu_to_le32(bt->sjw), 734 .brp = cpu_to_le32(bt->brp), 735 }; 736 u8 request = GS_USB_BREQ_DATA_BITTIMING; 737 738 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO) 739 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING; 740 741 /* request data bit timings */ 742 return usb_control_msg_send(dev->udev, 0, request, 743 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 744 dev->channel, 0, &dbt, sizeof(dbt), 1000, 745 GFP_KERNEL); 746 } 747 748 static void gs_usb_xmit_callback(struct urb *urb) 749 { 750 struct gs_tx_context *txc = urb->context; 751 struct gs_can *dev = txc->dev; 752 struct net_device *netdev = dev->netdev; 753 754 if (urb->status) 755 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id); 756 } 757 758 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb, 759 struct net_device *netdev) 760 { 761 struct gs_can *dev = netdev_priv(netdev); 762 struct net_device_stats *stats = &dev->netdev->stats; 763 struct urb *urb; 764 struct gs_host_frame *hf; 765 struct can_frame *cf; 766 struct canfd_frame *cfd; 767 int rc; 768 unsigned int idx; 769 struct gs_tx_context *txc; 770 771 if (can_dev_dropped_skb(netdev, skb)) 772 return NETDEV_TX_OK; 773 774 /* find an empty context to keep track of transmission */ 775 txc = gs_alloc_tx_context(dev); 776 if (!txc) 777 return NETDEV_TX_BUSY; 778 779 /* create a URB, and a buffer for it */ 780 urb = usb_alloc_urb(0, GFP_ATOMIC); 781 if (!urb) 782 goto nomem_urb; 783 784 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC); 785 if (!hf) 786 goto nomem_hf; 787 788 idx = txc->echo_id; 789 790 if (idx >= GS_MAX_TX_URBS) { 791 netdev_err(netdev, "Invalid tx context %u\n", idx); 792 goto badidx; 793 } 794 795 hf->echo_id = idx; 796 hf->channel = dev->channel; 797 hf->flags = 0; 798 hf->reserved = 0; 799 800 if (can_is_canfd_skb(skb)) { 801 cfd = (struct canfd_frame *)skb->data; 802 803 hf->can_id = cpu_to_le32(cfd->can_id); 804 hf->can_dlc = can_fd_len2dlc(cfd->len); 805 hf->flags |= GS_CAN_FLAG_FD; 806 if (cfd->flags & CANFD_BRS) 807 hf->flags |= GS_CAN_FLAG_BRS; 808 if (cfd->flags & CANFD_ESI) 809 hf->flags |= GS_CAN_FLAG_ESI; 810 811 memcpy(hf->canfd->data, cfd->data, cfd->len); 812 } else { 813 cf = (struct can_frame *)skb->data; 814 815 hf->can_id = cpu_to_le32(cf->can_id); 816 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode); 817 818 memcpy(hf->classic_can->data, cf->data, cf->len); 819 } 820 821 usb_fill_bulk_urb(urb, dev->udev, 822 dev->parent->pipe_out, 823 hf, dev->hf_size_tx, 824 gs_usb_xmit_callback, txc); 825 826 urb->transfer_flags |= URB_FREE_BUFFER; 827 usb_anchor_urb(urb, &dev->tx_submitted); 828 829 can_put_echo_skb(skb, netdev, idx, 0); 830 831 atomic_inc(&dev->active_tx_urbs); 832 833 rc = usb_submit_urb(urb, GFP_ATOMIC); 834 if (unlikely(rc)) { /* usb send failed */ 835 atomic_dec(&dev->active_tx_urbs); 836 837 can_free_echo_skb(netdev, idx, NULL); 838 gs_free_tx_context(txc); 839 840 usb_unanchor_urb(urb); 841 842 if (rc == -ENODEV) { 843 netif_device_detach(netdev); 844 } else { 845 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); 846 stats->tx_dropped++; 847 } 848 } else { 849 /* Slow down tx path */ 850 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS) 851 netif_stop_queue(netdev); 852 } 853 854 /* let usb core take care of this urb */ 855 usb_free_urb(urb); 856 857 return NETDEV_TX_OK; 858 859 badidx: 860 kfree(hf); 861 nomem_hf: 862 usb_free_urb(urb); 863 864 nomem_urb: 865 gs_free_tx_context(txc); 866 dev_kfree_skb(skb); 867 stats->tx_dropped++; 868 return NETDEV_TX_OK; 869 } 870 871 static int gs_can_open(struct net_device *netdev) 872 { 873 struct gs_can *dev = netdev_priv(netdev); 874 struct gs_usb *parent = dev->parent; 875 struct gs_device_mode dm = { 876 .mode = cpu_to_le32(GS_CAN_MODE_START), 877 }; 878 struct gs_host_frame *hf; 879 struct urb *urb = NULL; 880 u32 ctrlmode; 881 u32 flags = 0; 882 int rc, i; 883 884 rc = open_candev(netdev); 885 if (rc) 886 return rc; 887 888 ctrlmode = dev->can.ctrlmode; 889 if (ctrlmode & CAN_CTRLMODE_FD) { 890 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) 891 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1); 892 else 893 dev->hf_size_tx = struct_size(hf, canfd, 1); 894 } else { 895 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) 896 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1); 897 else 898 dev->hf_size_tx = struct_size(hf, classic_can, 1); 899 } 900 901 can_rx_offload_enable(&dev->offload); 902 903 if (!parent->active_channels) { 904 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 905 gs_usb_timestamp_init(parent); 906 907 for (i = 0; i < GS_MAX_RX_URBS; i++) { 908 u8 *buf; 909 910 /* alloc rx urb */ 911 urb = usb_alloc_urb(0, GFP_KERNEL); 912 if (!urb) { 913 rc = -ENOMEM; 914 goto out_usb_kill_anchored_urbs; 915 } 916 917 /* alloc rx buffer */ 918 buf = kmalloc(dev->parent->hf_size_rx, 919 GFP_KERNEL); 920 if (!buf) { 921 rc = -ENOMEM; 922 goto out_usb_free_urb; 923 } 924 925 /* fill, anchor, and submit rx urb */ 926 usb_fill_bulk_urb(urb, 927 dev->udev, 928 dev->parent->pipe_in, 929 buf, 930 dev->parent->hf_size_rx, 931 gs_usb_receive_bulk_callback, parent); 932 urb->transfer_flags |= URB_FREE_BUFFER; 933 934 usb_anchor_urb(urb, &parent->rx_submitted); 935 936 rc = usb_submit_urb(urb, GFP_KERNEL); 937 if (rc) { 938 if (rc == -ENODEV) 939 netif_device_detach(dev->netdev); 940 941 netdev_err(netdev, 942 "usb_submit_urb() failed, error %pe\n", 943 ERR_PTR(rc)); 944 945 goto out_usb_unanchor_urb; 946 } 947 948 /* Drop reference, 949 * USB core will take care of freeing it 950 */ 951 usb_free_urb(urb); 952 } 953 } 954 955 /* flags */ 956 if (ctrlmode & CAN_CTRLMODE_LOOPBACK) 957 flags |= GS_CAN_MODE_LOOP_BACK; 958 959 if (ctrlmode & CAN_CTRLMODE_LISTENONLY) 960 flags |= GS_CAN_MODE_LISTEN_ONLY; 961 962 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES) 963 flags |= GS_CAN_MODE_TRIPLE_SAMPLE; 964 965 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT) 966 flags |= GS_CAN_MODE_ONE_SHOT; 967 968 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING) 969 flags |= GS_CAN_MODE_BERR_REPORTING; 970 971 if (ctrlmode & CAN_CTRLMODE_FD) 972 flags |= GS_CAN_MODE_FD; 973 974 /* if hardware supports timestamps, enable it */ 975 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 976 flags |= GS_CAN_MODE_HW_TIMESTAMP; 977 978 /* finally start device */ 979 dev->can.state = CAN_STATE_ERROR_ACTIVE; 980 dm.flags = cpu_to_le32(flags); 981 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE, 982 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 983 dev->channel, 0, &dm, sizeof(dm), 1000, 984 GFP_KERNEL); 985 if (rc) { 986 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc); 987 dev->can.state = CAN_STATE_STOPPED; 988 989 goto out_usb_kill_anchored_urbs; 990 } 991 992 parent->active_channels++; 993 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) 994 netif_start_queue(netdev); 995 996 return 0; 997 998 out_usb_unanchor_urb: 999 usb_unanchor_urb(urb); 1000 out_usb_free_urb: 1001 usb_free_urb(urb); 1002 out_usb_kill_anchored_urbs: 1003 if (!parent->active_channels) { 1004 usb_kill_anchored_urbs(&dev->tx_submitted); 1005 1006 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1007 gs_usb_timestamp_stop(parent); 1008 } 1009 1010 can_rx_offload_disable(&dev->offload); 1011 close_candev(netdev); 1012 1013 return rc; 1014 } 1015 1016 static int gs_usb_get_state(const struct net_device *netdev, 1017 struct can_berr_counter *bec, 1018 enum can_state *state) 1019 { 1020 struct gs_can *dev = netdev_priv(netdev); 1021 struct gs_device_state ds; 1022 int rc; 1023 1024 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE, 1025 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1026 dev->channel, 0, 1027 &ds, sizeof(ds), 1028 USB_CTRL_GET_TIMEOUT, 1029 GFP_KERNEL); 1030 if (rc) 1031 return rc; 1032 1033 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX) 1034 return -EOPNOTSUPP; 1035 1036 *state = le32_to_cpu(ds.state); 1037 bec->txerr = le32_to_cpu(ds.txerr); 1038 bec->rxerr = le32_to_cpu(ds.rxerr); 1039 1040 return 0; 1041 } 1042 1043 static int gs_usb_can_get_berr_counter(const struct net_device *netdev, 1044 struct can_berr_counter *bec) 1045 { 1046 enum can_state state; 1047 1048 return gs_usb_get_state(netdev, bec, &state); 1049 } 1050 1051 static int gs_can_close(struct net_device *netdev) 1052 { 1053 int rc; 1054 struct gs_can *dev = netdev_priv(netdev); 1055 struct gs_usb *parent = dev->parent; 1056 1057 netif_stop_queue(netdev); 1058 1059 /* Stop polling */ 1060 parent->active_channels--; 1061 if (!parent->active_channels) { 1062 usb_kill_anchored_urbs(&parent->rx_submitted); 1063 1064 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1065 gs_usb_timestamp_stop(parent); 1066 } 1067 1068 /* Stop sending URBs */ 1069 usb_kill_anchored_urbs(&dev->tx_submitted); 1070 atomic_set(&dev->active_tx_urbs, 0); 1071 1072 dev->can.state = CAN_STATE_STOPPED; 1073 1074 /* reset the device */ 1075 gs_cmd_reset(dev); 1076 1077 /* reset tx contexts */ 1078 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { 1079 dev->tx_context[rc].dev = dev; 1080 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; 1081 } 1082 1083 can_rx_offload_disable(&dev->offload); 1084 1085 /* close the netdev */ 1086 close_candev(netdev); 1087 1088 return 0; 1089 } 1090 1091 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1092 { 1093 const struct gs_can *dev = netdev_priv(netdev); 1094 1095 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1096 return can_eth_ioctl_hwts(netdev, ifr, cmd); 1097 1098 return -EOPNOTSUPP; 1099 } 1100 1101 static const struct net_device_ops gs_usb_netdev_ops = { 1102 .ndo_open = gs_can_open, 1103 .ndo_stop = gs_can_close, 1104 .ndo_start_xmit = gs_can_start_xmit, 1105 .ndo_change_mtu = can_change_mtu, 1106 .ndo_eth_ioctl = gs_can_eth_ioctl, 1107 }; 1108 1109 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify) 1110 { 1111 struct gs_can *dev = netdev_priv(netdev); 1112 struct gs_identify_mode imode; 1113 1114 if (do_identify) 1115 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON); 1116 else 1117 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF); 1118 1119 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY, 1120 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1121 dev->channel, 0, &imode, sizeof(imode), 100, 1122 GFP_KERNEL); 1123 } 1124 1125 /* blink LED's for finding the this interface */ 1126 static int gs_usb_set_phys_id(struct net_device *netdev, 1127 enum ethtool_phys_id_state state) 1128 { 1129 const struct gs_can *dev = netdev_priv(netdev); 1130 int rc = 0; 1131 1132 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY)) 1133 return -EOPNOTSUPP; 1134 1135 switch (state) { 1136 case ETHTOOL_ID_ACTIVE: 1137 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON); 1138 break; 1139 case ETHTOOL_ID_INACTIVE: 1140 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF); 1141 break; 1142 default: 1143 break; 1144 } 1145 1146 return rc; 1147 } 1148 1149 static int gs_usb_get_ts_info(struct net_device *netdev, 1150 struct ethtool_ts_info *info) 1151 { 1152 struct gs_can *dev = netdev_priv(netdev); 1153 1154 /* report if device supports HW timestamps */ 1155 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1156 return can_ethtool_op_get_ts_info_hwts(netdev, info); 1157 1158 return ethtool_op_get_ts_info(netdev, info); 1159 } 1160 1161 static const struct ethtool_ops gs_usb_ethtool_ops = { 1162 .set_phys_id = gs_usb_set_phys_id, 1163 .get_ts_info = gs_usb_get_ts_info, 1164 }; 1165 1166 static int gs_usb_get_termination(struct net_device *netdev, u16 *term) 1167 { 1168 struct gs_can *dev = netdev_priv(netdev); 1169 struct gs_device_termination_state term_state; 1170 int rc; 1171 1172 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION, 1173 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1174 dev->channel, 0, 1175 &term_state, sizeof(term_state), 1000, 1176 GFP_KERNEL); 1177 if (rc) 1178 return rc; 1179 1180 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON)) 1181 *term = GS_USB_TERMINATION_ENABLED; 1182 else 1183 *term = GS_USB_TERMINATION_DISABLED; 1184 1185 return 0; 1186 } 1187 1188 static int gs_usb_set_termination(struct net_device *netdev, u16 term) 1189 { 1190 struct gs_can *dev = netdev_priv(netdev); 1191 struct gs_device_termination_state term_state; 1192 1193 if (term == GS_USB_TERMINATION_ENABLED) 1194 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON); 1195 else 1196 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF); 1197 1198 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION, 1199 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1200 dev->channel, 0, 1201 &term_state, sizeof(term_state), 1000, 1202 GFP_KERNEL); 1203 } 1204 1205 static const u16 gs_usb_termination_const[] = { 1206 GS_USB_TERMINATION_DISABLED, 1207 GS_USB_TERMINATION_ENABLED 1208 }; 1209 1210 static struct gs_can *gs_make_candev(unsigned int channel, 1211 struct usb_interface *intf, 1212 struct gs_device_config *dconf) 1213 { 1214 struct gs_can *dev; 1215 struct net_device *netdev; 1216 int rc; 1217 struct gs_device_bt_const_extended bt_const_extended; 1218 struct gs_device_bt_const bt_const; 1219 u32 feature; 1220 1221 /* fetch bit timing constants */ 1222 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, 1223 GS_USB_BREQ_BT_CONST, 1224 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1225 channel, 0, &bt_const, sizeof(bt_const), 1000, 1226 GFP_KERNEL); 1227 1228 if (rc) { 1229 dev_err(&intf->dev, 1230 "Couldn't get bit timing const for channel %d (%pe)\n", 1231 channel, ERR_PTR(rc)); 1232 return ERR_PTR(rc); 1233 } 1234 1235 /* create netdev */ 1236 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS); 1237 if (!netdev) { 1238 dev_err(&intf->dev, "Couldn't allocate candev\n"); 1239 return ERR_PTR(-ENOMEM); 1240 } 1241 1242 dev = netdev_priv(netdev); 1243 1244 netdev->netdev_ops = &gs_usb_netdev_ops; 1245 netdev->ethtool_ops = &gs_usb_ethtool_ops; 1246 1247 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */ 1248 netdev->dev_id = channel; 1249 1250 /* dev setup */ 1251 strcpy(dev->bt_const.name, KBUILD_MODNAME); 1252 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min); 1253 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max); 1254 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min); 1255 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max); 1256 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max); 1257 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min); 1258 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max); 1259 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc); 1260 1261 dev->udev = interface_to_usbdev(intf); 1262 dev->netdev = netdev; 1263 dev->channel = channel; 1264 1265 init_usb_anchor(&dev->tx_submitted); 1266 atomic_set(&dev->active_tx_urbs, 0); 1267 spin_lock_init(&dev->tx_ctx_lock); 1268 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { 1269 dev->tx_context[rc].dev = dev; 1270 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; 1271 } 1272 1273 /* can setup */ 1274 dev->can.state = CAN_STATE_STOPPED; 1275 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can); 1276 dev->can.bittiming_const = &dev->bt_const; 1277 dev->can.do_set_bittiming = gs_usb_set_bittiming; 1278 1279 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC; 1280 1281 feature = le32_to_cpu(bt_const.feature); 1282 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature); 1283 if (feature & GS_CAN_FEATURE_LISTEN_ONLY) 1284 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; 1285 1286 if (feature & GS_CAN_FEATURE_LOOP_BACK) 1287 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK; 1288 1289 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE) 1290 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; 1291 1292 if (feature & GS_CAN_FEATURE_ONE_SHOT) 1293 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; 1294 1295 if (feature & GS_CAN_FEATURE_FD) { 1296 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD; 1297 /* The data bit timing will be overwritten, if 1298 * GS_CAN_FEATURE_BT_CONST_EXT is set. 1299 */ 1300 dev->can.data_bittiming_const = &dev->bt_const; 1301 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming; 1302 } 1303 1304 if (feature & GS_CAN_FEATURE_TERMINATION) { 1305 rc = gs_usb_get_termination(netdev, &dev->can.termination); 1306 if (rc) { 1307 dev->feature &= ~GS_CAN_FEATURE_TERMINATION; 1308 1309 dev_info(&intf->dev, 1310 "Disabling termination support for channel %d (%pe)\n", 1311 channel, ERR_PTR(rc)); 1312 } else { 1313 dev->can.termination_const = gs_usb_termination_const; 1314 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const); 1315 dev->can.do_set_termination = gs_usb_set_termination; 1316 } 1317 } 1318 1319 if (feature & GS_CAN_FEATURE_BERR_REPORTING) 1320 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING; 1321 1322 if (feature & GS_CAN_FEATURE_GET_STATE) 1323 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter; 1324 1325 /* The CANtact Pro from LinkLayer Labs is based on the 1326 * LPC54616 µC, which is affected by the NXP LPC USB transfer 1327 * erratum. However, the current firmware (version 2) doesn't 1328 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the 1329 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround 1330 * this issue. 1331 * 1332 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the 1333 * CANtact Pro firmware uses a request value, which is already 1334 * used by the candleLight firmware for a different purpose 1335 * (GS_USB_BREQ_GET_USER_ID). Set the feature 1336 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this 1337 * issue. 1338 */ 1339 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) && 1340 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) && 1341 dev->udev->manufacturer && dev->udev->product && 1342 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") && 1343 !strcmp(dev->udev->product, "CANtact Pro") && 1344 (le32_to_cpu(dconf->sw_version) <= 2)) 1345 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX | 1346 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO; 1347 1348 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */ 1349 if (!(le32_to_cpu(dconf->sw_version) > 1 && 1350 feature & GS_CAN_FEATURE_IDENTIFY)) 1351 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY; 1352 1353 /* fetch extended bit timing constants if device has feature 1354 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT 1355 */ 1356 if (feature & GS_CAN_FEATURE_FD && 1357 feature & GS_CAN_FEATURE_BT_CONST_EXT) { 1358 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, 1359 GS_USB_BREQ_BT_CONST_EXT, 1360 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1361 channel, 0, &bt_const_extended, 1362 sizeof(bt_const_extended), 1363 1000, GFP_KERNEL); 1364 if (rc) { 1365 dev_err(&intf->dev, 1366 "Couldn't get extended bit timing const for channel %d (%pe)\n", 1367 channel, ERR_PTR(rc)); 1368 goto out_free_candev; 1369 } 1370 1371 strcpy(dev->data_bt_const.name, KBUILD_MODNAME); 1372 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min); 1373 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max); 1374 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min); 1375 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max); 1376 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max); 1377 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min); 1378 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max); 1379 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc); 1380 1381 dev->can.data_bittiming_const = &dev->data_bt_const; 1382 } 1383 1384 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT); 1385 SET_NETDEV_DEV(netdev, &intf->dev); 1386 1387 rc = register_candev(dev->netdev); 1388 if (rc) { 1389 dev_err(&intf->dev, 1390 "Couldn't register candev for channel %d (%pe)\n", 1391 channel, ERR_PTR(rc)); 1392 goto out_can_rx_offload_del; 1393 } 1394 1395 return dev; 1396 1397 out_can_rx_offload_del: 1398 can_rx_offload_del(&dev->offload); 1399 out_free_candev: 1400 free_candev(dev->netdev); 1401 return ERR_PTR(rc); 1402 } 1403 1404 static void gs_destroy_candev(struct gs_can *dev) 1405 { 1406 unregister_candev(dev->netdev); 1407 can_rx_offload_del(&dev->offload); 1408 free_candev(dev->netdev); 1409 } 1410 1411 static int gs_usb_probe(struct usb_interface *intf, 1412 const struct usb_device_id *id) 1413 { 1414 struct usb_device *udev = interface_to_usbdev(intf); 1415 struct usb_endpoint_descriptor *ep_in, *ep_out; 1416 struct gs_host_frame *hf; 1417 struct gs_usb *parent; 1418 struct gs_host_config hconf = { 1419 .byte_order = cpu_to_le32(0x0000beef), 1420 }; 1421 struct gs_device_config dconf; 1422 unsigned int icount, i; 1423 int rc; 1424 1425 rc = usb_find_common_endpoints(intf->cur_altsetting, 1426 &ep_in, &ep_out, NULL, NULL); 1427 if (rc) { 1428 dev_err(&intf->dev, "Required endpoints not found\n"); 1429 return rc; 1430 } 1431 1432 /* send host config */ 1433 rc = usb_control_msg_send(udev, 0, 1434 GS_USB_BREQ_HOST_FORMAT, 1435 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1436 1, intf->cur_altsetting->desc.bInterfaceNumber, 1437 &hconf, sizeof(hconf), 1000, 1438 GFP_KERNEL); 1439 if (rc) { 1440 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc); 1441 return rc; 1442 } 1443 1444 /* read device config */ 1445 rc = usb_control_msg_recv(udev, 0, 1446 GS_USB_BREQ_DEVICE_CONFIG, 1447 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1448 1, intf->cur_altsetting->desc.bInterfaceNumber, 1449 &dconf, sizeof(dconf), 1000, 1450 GFP_KERNEL); 1451 if (rc) { 1452 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n", 1453 rc); 1454 return rc; 1455 } 1456 1457 icount = dconf.icount + 1; 1458 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount); 1459 1460 if (icount > GS_MAX_INTF) { 1461 dev_err(&intf->dev, 1462 "Driver cannot handle more that %u CAN interfaces\n", 1463 GS_MAX_INTF); 1464 return -EINVAL; 1465 } 1466 1467 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 1468 if (!parent) 1469 return -ENOMEM; 1470 1471 init_usb_anchor(&parent->rx_submitted); 1472 1473 usb_set_intfdata(intf, parent); 1474 parent->udev = udev; 1475 1476 /* store the detected endpoints */ 1477 parent->pipe_in = usb_rcvbulkpipe(parent->udev, ep_in->bEndpointAddress); 1478 parent->pipe_out = usb_sndbulkpipe(parent->udev, ep_out->bEndpointAddress); 1479 1480 for (i = 0; i < icount; i++) { 1481 unsigned int hf_size_rx = 0; 1482 1483 parent->canch[i] = gs_make_candev(i, intf, &dconf); 1484 if (IS_ERR_OR_NULL(parent->canch[i])) { 1485 /* save error code to return later */ 1486 rc = PTR_ERR(parent->canch[i]); 1487 1488 /* on failure destroy previously created candevs */ 1489 icount = i; 1490 for (i = 0; i < icount; i++) 1491 gs_destroy_candev(parent->canch[i]); 1492 1493 usb_kill_anchored_urbs(&parent->rx_submitted); 1494 kfree(parent); 1495 return rc; 1496 } 1497 parent->canch[i]->parent = parent; 1498 1499 /* set RX packet size based on FD and if hardware 1500 * timestamps are supported. 1501 */ 1502 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) { 1503 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1504 hf_size_rx = struct_size(hf, canfd_ts, 1); 1505 else 1506 hf_size_rx = struct_size(hf, canfd, 1); 1507 } else { 1508 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) 1509 hf_size_rx = struct_size(hf, classic_can_ts, 1); 1510 else 1511 hf_size_rx = struct_size(hf, classic_can, 1); 1512 } 1513 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx); 1514 } 1515 1516 return 0; 1517 } 1518 1519 static void gs_usb_disconnect(struct usb_interface *intf) 1520 { 1521 struct gs_usb *parent = usb_get_intfdata(intf); 1522 unsigned int i; 1523 1524 usb_set_intfdata(intf, NULL); 1525 1526 if (!parent) { 1527 dev_err(&intf->dev, "Disconnect (nodata)\n"); 1528 return; 1529 } 1530 1531 for (i = 0; i < GS_MAX_INTF; i++) 1532 if (parent->canch[i]) 1533 gs_destroy_candev(parent->canch[i]); 1534 1535 kfree(parent); 1536 } 1537 1538 static const struct usb_device_id gs_usb_table[] = { 1539 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID, 1540 USB_GS_USB_1_PRODUCT_ID, 0) }, 1541 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID, 1542 USB_CANDLELIGHT_PRODUCT_ID, 0) }, 1543 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID, 1544 USB_CES_CANEXT_FD_PRODUCT_ID, 0) }, 1545 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID, 1546 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) }, 1547 { USB_DEVICE_INTERFACE_NUMBER(USB_XYLANTA_SAINT3_VENDOR_ID, 1548 USB_XYLANTA_SAINT3_PRODUCT_ID, 0) }, 1549 {} /* Terminating entry */ 1550 }; 1551 1552 MODULE_DEVICE_TABLE(usb, gs_usb_table); 1553 1554 static struct usb_driver gs_usb_driver = { 1555 .name = KBUILD_MODNAME, 1556 .probe = gs_usb_probe, 1557 .disconnect = gs_usb_disconnect, 1558 .id_table = gs_usb_table, 1559 }; 1560 1561 module_usb_driver(gs_usb_driver); 1562 1563 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>"); 1564 MODULE_DESCRIPTION( 1565 "Socket CAN device driver for Geschwister Schneider Technologie-, " 1566 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n" 1567 "and bytewerk.org candleLight USB CAN interfaces."); 1568 MODULE_LICENSE("GPL v2"); 1569