xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision f5005f78)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 /*
121  * CAN-Message representation in a CPC_MSG. Message object type is
122  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
123  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
124  */
125 struct cpc_can_msg {
126 	__le32 id;
127 	u8 length;
128 	u8 msg[8];
129 };
130 
131 /* Representation of the CAN parameters for the SJA1000 controller */
132 struct cpc_sja1000_params {
133 	u8 mode;
134 	u8 acc_code0;
135 	u8 acc_code1;
136 	u8 acc_code2;
137 	u8 acc_code3;
138 	u8 acc_mask0;
139 	u8 acc_mask1;
140 	u8 acc_mask2;
141 	u8 acc_mask3;
142 	u8 btr0;
143 	u8 btr1;
144 	u8 outp_contr;
145 };
146 
147 /* CAN params message representation */
148 struct cpc_can_params {
149 	u8 cc_type;
150 
151 	/* Will support M16C CAN controller in the future */
152 	union {
153 		struct cpc_sja1000_params sja1000;
154 	} cc_params;
155 };
156 
157 /* Structure for confirmed message handling */
158 struct cpc_confirm {
159 	u8 error; /* error code */
160 };
161 
162 /* Structure for overrun conditions */
163 struct cpc_overrun {
164 	u8 event;
165 	u8 count;
166 };
167 
168 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
169 struct cpc_sja1000_can_error {
170 	u8 ecc;
171 	u8 rxerr;
172 	u8 txerr;
173 };
174 
175 /* structure for CAN error conditions */
176 struct cpc_can_error {
177 	u8 ecode;
178 
179 	struct {
180 		u8 cc_type;
181 
182 		/* Other controllers may also provide error code capture regs */
183 		union {
184 			struct cpc_sja1000_can_error sja1000;
185 		} regs;
186 	} cc;
187 };
188 
189 /*
190  * Structure containing RX/TX error counter. This structure is used to request
191  * the values of the CAN controllers TX and RX error counter.
192  */
193 struct cpc_can_err_counter {
194 	u8 rx;
195 	u8 tx;
196 };
197 
198 /* Main message type used between library and application */
199 struct __packed ems_cpc_msg {
200 	u8 type;	/* type of message */
201 	u8 length;	/* length of data within union 'msg' */
202 	u8 msgid;	/* confirmation handle */
203 	__le32 ts_sec;	/* timestamp in seconds */
204 	__le32 ts_nsec;	/* timestamp in nano seconds */
205 
206 	union {
207 		u8 generic[64];
208 		struct cpc_can_msg can_msg;
209 		struct cpc_can_params can_params;
210 		struct cpc_confirm confirmation;
211 		struct cpc_overrun overrun;
212 		struct cpc_can_error error;
213 		struct cpc_can_err_counter err_counter;
214 		u8 can_state;
215 	} msg;
216 };
217 
218 /*
219  * Table of devices that work with this driver
220  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
221  */
222 static struct usb_device_id ems_usb_table[] = {
223 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
224 	{} /* Terminating entry */
225 };
226 
227 MODULE_DEVICE_TABLE(usb, ems_usb_table);
228 
229 #define RX_BUFFER_SIZE      64
230 #define CPC_HEADER_SIZE     4
231 #define INTR_IN_BUFFER_SIZE 4
232 
233 #define MAX_RX_URBS 10
234 #define MAX_TX_URBS 10
235 
236 struct ems_usb;
237 
238 struct ems_tx_urb_context {
239 	struct ems_usb *dev;
240 
241 	u32 echo_index;
242 	u8 dlc;
243 };
244 
245 struct ems_usb {
246 	struct can_priv can; /* must be the first member */
247 
248 	struct sk_buff *echo_skb[MAX_TX_URBS];
249 
250 	struct usb_device *udev;
251 	struct net_device *netdev;
252 
253 	atomic_t active_tx_urbs;
254 	struct usb_anchor tx_submitted;
255 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
256 
257 	struct usb_anchor rx_submitted;
258 
259 	struct urb *intr_urb;
260 
261 	u8 *tx_msg_buffer;
262 
263 	u8 *intr_in_buffer;
264 	unsigned int free_slots; /* remember number of available slots */
265 
266 	struct ems_cpc_msg active_params; /* active controller parameters */
267 };
268 
269 static void ems_usb_read_interrupt_callback(struct urb *urb)
270 {
271 	struct ems_usb *dev = urb->context;
272 	struct net_device *netdev = dev->netdev;
273 	int err;
274 
275 	if (!netif_device_present(netdev))
276 		return;
277 
278 	switch (urb->status) {
279 	case 0:
280 		dev->free_slots = dev->intr_in_buffer[1];
281 		break;
282 
283 	case -ECONNRESET: /* unlink */
284 	case -ENOENT:
285 	case -ESHUTDOWN:
286 		return;
287 
288 	default:
289 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
290 		break;
291 	}
292 
293 	err = usb_submit_urb(urb, GFP_ATOMIC);
294 
295 	if (err == -ENODEV)
296 		netif_device_detach(netdev);
297 	else if (err)
298 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
299 }
300 
301 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
302 {
303 	struct can_frame *cf;
304 	struct sk_buff *skb;
305 	int i;
306 	struct net_device_stats *stats = &dev->netdev->stats;
307 
308 	skb = alloc_can_skb(dev->netdev, &cf);
309 	if (skb == NULL)
310 		return;
311 
312 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
313 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
314 
315 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
316 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
317 		cf->can_id |= CAN_EFF_FLAG;
318 
319 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
320 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
321 		cf->can_id |= CAN_RTR_FLAG;
322 	} else {
323 		for (i = 0; i < cf->can_dlc; i++)
324 			cf->data[i] = msg->msg.can_msg.msg[i];
325 	}
326 
327 	stats->rx_packets++;
328 	stats->rx_bytes += cf->can_dlc;
329 	netif_rx(skb);
330 }
331 
332 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
333 {
334 	struct can_frame *cf;
335 	struct sk_buff *skb;
336 	struct net_device_stats *stats = &dev->netdev->stats;
337 
338 	skb = alloc_can_err_skb(dev->netdev, &cf);
339 	if (skb == NULL)
340 		return;
341 
342 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
343 		u8 state = msg->msg.can_state;
344 
345 		if (state & SJA1000_SR_BS) {
346 			dev->can.state = CAN_STATE_BUS_OFF;
347 			cf->can_id |= CAN_ERR_BUSOFF;
348 
349 			dev->can.can_stats.bus_off++;
350 			can_bus_off(dev->netdev);
351 		} else if (state & SJA1000_SR_ES) {
352 			dev->can.state = CAN_STATE_ERROR_WARNING;
353 			dev->can.can_stats.error_warning++;
354 		} else {
355 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
356 			dev->can.can_stats.error_passive++;
357 		}
358 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
359 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
360 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
361 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
362 
363 		/* bus error interrupt */
364 		dev->can.can_stats.bus_error++;
365 		stats->rx_errors++;
366 
367 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
368 
369 		switch (ecc & SJA1000_ECC_MASK) {
370 		case SJA1000_ECC_BIT:
371 			cf->data[2] |= CAN_ERR_PROT_BIT;
372 			break;
373 		case SJA1000_ECC_FORM:
374 			cf->data[2] |= CAN_ERR_PROT_FORM;
375 			break;
376 		case SJA1000_ECC_STUFF:
377 			cf->data[2] |= CAN_ERR_PROT_STUFF;
378 			break;
379 		default:
380 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
381 			cf->data[3] = ecc & SJA1000_ECC_SEG;
382 			break;
383 		}
384 
385 		/* Error occurred during transmission? */
386 		if ((ecc & SJA1000_ECC_DIR) == 0)
387 			cf->data[2] |= CAN_ERR_PROT_TX;
388 
389 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
390 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
391 			cf->data[1] = (txerr > rxerr) ?
392 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
393 		}
394 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
395 		cf->can_id |= CAN_ERR_CRTL;
396 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
397 
398 		stats->rx_over_errors++;
399 		stats->rx_errors++;
400 	}
401 
402 	stats->rx_packets++;
403 	stats->rx_bytes += cf->can_dlc;
404 	netif_rx(skb);
405 }
406 
407 /*
408  * callback for bulk IN urb
409  */
410 static void ems_usb_read_bulk_callback(struct urb *urb)
411 {
412 	struct ems_usb *dev = urb->context;
413 	struct net_device *netdev;
414 	int retval;
415 
416 	netdev = dev->netdev;
417 
418 	if (!netif_device_present(netdev))
419 		return;
420 
421 	switch (urb->status) {
422 	case 0: /* success */
423 		break;
424 
425 	case -ENOENT:
426 		return;
427 
428 	default:
429 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
430 		goto resubmit_urb;
431 	}
432 
433 	if (urb->actual_length > CPC_HEADER_SIZE) {
434 		struct ems_cpc_msg *msg;
435 		u8 *ibuf = urb->transfer_buffer;
436 		u8 msg_count, start;
437 
438 		msg_count = ibuf[0] & ~0x80;
439 
440 		start = CPC_HEADER_SIZE;
441 
442 		while (msg_count) {
443 			msg = (struct ems_cpc_msg *)&ibuf[start];
444 
445 			switch (msg->type) {
446 			case CPC_MSG_TYPE_CAN_STATE:
447 				/* Process CAN state changes */
448 				ems_usb_rx_err(dev, msg);
449 				break;
450 
451 			case CPC_MSG_TYPE_CAN_FRAME:
452 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
453 			case CPC_MSG_TYPE_RTR_FRAME:
454 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
455 				ems_usb_rx_can_msg(dev, msg);
456 				break;
457 
458 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
459 				/* Process errorframe */
460 				ems_usb_rx_err(dev, msg);
461 				break;
462 
463 			case CPC_MSG_TYPE_OVERRUN:
464 				/* Message lost while receiving */
465 				ems_usb_rx_err(dev, msg);
466 				break;
467 			}
468 
469 			start += CPC_MSG_HEADER_LEN + msg->length;
470 			msg_count--;
471 
472 			if (start > urb->transfer_buffer_length) {
473 				netdev_err(netdev, "format error\n");
474 				break;
475 			}
476 		}
477 	}
478 
479 resubmit_urb:
480 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
481 			  urb->transfer_buffer, RX_BUFFER_SIZE,
482 			  ems_usb_read_bulk_callback, dev);
483 
484 	retval = usb_submit_urb(urb, GFP_ATOMIC);
485 
486 	if (retval == -ENODEV)
487 		netif_device_detach(netdev);
488 	else if (retval)
489 		netdev_err(netdev,
490 			   "failed resubmitting read bulk urb: %d\n", retval);
491 }
492 
493 /*
494  * callback for bulk IN urb
495  */
496 static void ems_usb_write_bulk_callback(struct urb *urb)
497 {
498 	struct ems_tx_urb_context *context = urb->context;
499 	struct ems_usb *dev;
500 	struct net_device *netdev;
501 
502 	BUG_ON(!context);
503 
504 	dev = context->dev;
505 	netdev = dev->netdev;
506 
507 	/* free up our allocated buffer */
508 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
509 			  urb->transfer_buffer, urb->transfer_dma);
510 
511 	atomic_dec(&dev->active_tx_urbs);
512 
513 	if (!netif_device_present(netdev))
514 		return;
515 
516 	if (urb->status)
517 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
518 
519 	netdev->trans_start = jiffies;
520 
521 	/* transmission complete interrupt */
522 	netdev->stats.tx_packets++;
523 	netdev->stats.tx_bytes += context->dlc;
524 
525 	can_get_echo_skb(netdev, context->echo_index);
526 
527 	/* Release context */
528 	context->echo_index = MAX_TX_URBS;
529 
530 	if (netif_queue_stopped(netdev))
531 		netif_wake_queue(netdev);
532 }
533 
534 /*
535  * Send the given CPC command synchronously
536  */
537 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
538 {
539 	int actual_length;
540 
541 	/* Copy payload */
542 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
543 	       msg->length + CPC_MSG_HEADER_LEN);
544 
545 	/* Clear header */
546 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
547 
548 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
549 			    &dev->tx_msg_buffer[0],
550 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
551 			    &actual_length, 1000);
552 }
553 
554 /*
555  * Change CAN controllers' mode register
556  */
557 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
558 {
559 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
560 
561 	return ems_usb_command_msg(dev, &dev->active_params);
562 }
563 
564 /*
565  * Send a CPC_Control command to change behaviour when interface receives a CAN
566  * message, bus error or CAN state changed notifications.
567  */
568 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
569 {
570 	struct ems_cpc_msg cmd;
571 
572 	cmd.type = CPC_CMD_TYPE_CONTROL;
573 	cmd.length = CPC_MSG_HEADER_LEN + 1;
574 
575 	cmd.msgid = 0;
576 
577 	cmd.msg.generic[0] = val;
578 
579 	return ems_usb_command_msg(dev, &cmd);
580 }
581 
582 /*
583  * Start interface
584  */
585 static int ems_usb_start(struct ems_usb *dev)
586 {
587 	struct net_device *netdev = dev->netdev;
588 	int err, i;
589 
590 	dev->intr_in_buffer[0] = 0;
591 	dev->free_slots = 15; /* initial size */
592 
593 	for (i = 0; i < MAX_RX_URBS; i++) {
594 		struct urb *urb = NULL;
595 		u8 *buf = NULL;
596 
597 		/* create a URB, and a buffer for it */
598 		urb = usb_alloc_urb(0, GFP_KERNEL);
599 		if (!urb) {
600 			netdev_err(netdev, "No memory left for URBs\n");
601 			err = -ENOMEM;
602 			break;
603 		}
604 
605 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
606 					 &urb->transfer_dma);
607 		if (!buf) {
608 			netdev_err(netdev, "No memory left for USB buffer\n");
609 			usb_free_urb(urb);
610 			err = -ENOMEM;
611 			break;
612 		}
613 
614 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
615 				  buf, RX_BUFFER_SIZE,
616 				  ems_usb_read_bulk_callback, dev);
617 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
618 		usb_anchor_urb(urb, &dev->rx_submitted);
619 
620 		err = usb_submit_urb(urb, GFP_KERNEL);
621 		if (err) {
622 			usb_unanchor_urb(urb);
623 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
624 					  urb->transfer_dma);
625 			usb_free_urb(urb);
626 			break;
627 		}
628 
629 		/* Drop reference, USB core will take care of freeing it */
630 		usb_free_urb(urb);
631 	}
632 
633 	/* Did we submit any URBs */
634 	if (i == 0) {
635 		netdev_warn(netdev, "couldn't setup read URBs\n");
636 		return err;
637 	}
638 
639 	/* Warn if we've couldn't transmit all the URBs */
640 	if (i < MAX_RX_URBS)
641 		netdev_warn(netdev, "rx performance may be slow\n");
642 
643 	/* Setup and start interrupt URB */
644 	usb_fill_int_urb(dev->intr_urb, dev->udev,
645 			 usb_rcvintpipe(dev->udev, 1),
646 			 dev->intr_in_buffer,
647 			 INTR_IN_BUFFER_SIZE,
648 			 ems_usb_read_interrupt_callback, dev, 1);
649 
650 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
651 	if (err) {
652 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
653 
654 		return err;
655 	}
656 
657 	/* CPC-USB will transfer received message to host */
658 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
659 	if (err)
660 		goto failed;
661 
662 	/* CPC-USB will transfer CAN state changes to host */
663 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
664 	if (err)
665 		goto failed;
666 
667 	/* CPC-USB will transfer bus errors to host */
668 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
669 	if (err)
670 		goto failed;
671 
672 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
673 	if (err)
674 		goto failed;
675 
676 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
677 
678 	return 0;
679 
680 failed:
681 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
682 
683 	return err;
684 }
685 
686 static void unlink_all_urbs(struct ems_usb *dev)
687 {
688 	int i;
689 
690 	usb_unlink_urb(dev->intr_urb);
691 
692 	usb_kill_anchored_urbs(&dev->rx_submitted);
693 
694 	usb_kill_anchored_urbs(&dev->tx_submitted);
695 	atomic_set(&dev->active_tx_urbs, 0);
696 
697 	for (i = 0; i < MAX_TX_URBS; i++)
698 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
699 }
700 
701 static int ems_usb_open(struct net_device *netdev)
702 {
703 	struct ems_usb *dev = netdev_priv(netdev);
704 	int err;
705 
706 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
707 	if (err)
708 		return err;
709 
710 	/* common open */
711 	err = open_candev(netdev);
712 	if (err)
713 		return err;
714 
715 	/* finally start device */
716 	err = ems_usb_start(dev);
717 	if (err) {
718 		if (err == -ENODEV)
719 			netif_device_detach(dev->netdev);
720 
721 		netdev_warn(netdev, "couldn't start device: %d\n", err);
722 
723 		close_candev(netdev);
724 
725 		return err;
726 	}
727 
728 
729 	netif_start_queue(netdev);
730 
731 	return 0;
732 }
733 
734 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
735 {
736 	struct ems_usb *dev = netdev_priv(netdev);
737 	struct ems_tx_urb_context *context = NULL;
738 	struct net_device_stats *stats = &netdev->stats;
739 	struct can_frame *cf = (struct can_frame *)skb->data;
740 	struct ems_cpc_msg *msg;
741 	struct urb *urb;
742 	u8 *buf;
743 	int i, err;
744 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
745 			+ sizeof(struct cpc_can_msg);
746 
747 	if (can_dropped_invalid_skb(netdev, skb))
748 		return NETDEV_TX_OK;
749 
750 	/* create a URB, and a buffer for it, and copy the data to the URB */
751 	urb = usb_alloc_urb(0, GFP_ATOMIC);
752 	if (!urb) {
753 		netdev_err(netdev, "No memory left for URBs\n");
754 		goto nomem;
755 	}
756 
757 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
758 	if (!buf) {
759 		netdev_err(netdev, "No memory left for USB buffer\n");
760 		usb_free_urb(urb);
761 		goto nomem;
762 	}
763 
764 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
765 
766 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
767 	msg->msg.can_msg.length = cf->can_dlc;
768 
769 	if (cf->can_id & CAN_RTR_FLAG) {
770 		msg->type = cf->can_id & CAN_EFF_FLAG ?
771 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
772 
773 		msg->length = CPC_CAN_MSG_MIN_SIZE;
774 	} else {
775 		msg->type = cf->can_id & CAN_EFF_FLAG ?
776 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
777 
778 		for (i = 0; i < cf->can_dlc; i++)
779 			msg->msg.can_msg.msg[i] = cf->data[i];
780 
781 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
782 	}
783 
784 	for (i = 0; i < MAX_TX_URBS; i++) {
785 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
786 			context = &dev->tx_contexts[i];
787 			break;
788 		}
789 	}
790 
791 	/*
792 	 * May never happen! When this happens we'd more URBs in flight as
793 	 * allowed (MAX_TX_URBS).
794 	 */
795 	if (!context) {
796 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
797 		usb_free_urb(urb);
798 
799 		netdev_warn(netdev, "couldn't find free context\n");
800 
801 		return NETDEV_TX_BUSY;
802 	}
803 
804 	context->dev = dev;
805 	context->echo_index = i;
806 	context->dlc = cf->can_dlc;
807 
808 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
809 			  size, ems_usb_write_bulk_callback, context);
810 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
811 	usb_anchor_urb(urb, &dev->tx_submitted);
812 
813 	can_put_echo_skb(skb, netdev, context->echo_index);
814 
815 	atomic_inc(&dev->active_tx_urbs);
816 
817 	err = usb_submit_urb(urb, GFP_ATOMIC);
818 	if (unlikely(err)) {
819 		can_free_echo_skb(netdev, context->echo_index);
820 
821 		usb_unanchor_urb(urb);
822 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
823 		dev_kfree_skb(skb);
824 
825 		atomic_dec(&dev->active_tx_urbs);
826 
827 		if (err == -ENODEV) {
828 			netif_device_detach(netdev);
829 		} else {
830 			netdev_warn(netdev, "failed tx_urb %d\n", err);
831 
832 			stats->tx_dropped++;
833 		}
834 	} else {
835 		netdev->trans_start = jiffies;
836 
837 		/* Slow down tx path */
838 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
839 		    dev->free_slots < 5) {
840 			netif_stop_queue(netdev);
841 		}
842 	}
843 
844 	/*
845 	 * Release our reference to this URB, the USB core will eventually free
846 	 * it entirely.
847 	 */
848 	usb_free_urb(urb);
849 
850 	return NETDEV_TX_OK;
851 
852 nomem:
853 	dev_kfree_skb(skb);
854 	stats->tx_dropped++;
855 
856 	return NETDEV_TX_OK;
857 }
858 
859 static int ems_usb_close(struct net_device *netdev)
860 {
861 	struct ems_usb *dev = netdev_priv(netdev);
862 
863 	/* Stop polling */
864 	unlink_all_urbs(dev);
865 
866 	netif_stop_queue(netdev);
867 
868 	/* Set CAN controller to reset mode */
869 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
870 		netdev_warn(netdev, "couldn't stop device");
871 
872 	close_candev(netdev);
873 
874 	return 0;
875 }
876 
877 static const struct net_device_ops ems_usb_netdev_ops = {
878 	.ndo_open = ems_usb_open,
879 	.ndo_stop = ems_usb_close,
880 	.ndo_start_xmit = ems_usb_start_xmit,
881 	.ndo_change_mtu = can_change_mtu,
882 };
883 
884 static const struct can_bittiming_const ems_usb_bittiming_const = {
885 	.name = "ems_usb",
886 	.tseg1_min = 1,
887 	.tseg1_max = 16,
888 	.tseg2_min = 1,
889 	.tseg2_max = 8,
890 	.sjw_max = 4,
891 	.brp_min = 1,
892 	.brp_max = 64,
893 	.brp_inc = 1,
894 };
895 
896 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
897 {
898 	struct ems_usb *dev = netdev_priv(netdev);
899 
900 	switch (mode) {
901 	case CAN_MODE_START:
902 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
903 			netdev_warn(netdev, "couldn't start device");
904 
905 		if (netif_queue_stopped(netdev))
906 			netif_wake_queue(netdev);
907 		break;
908 
909 	default:
910 		return -EOPNOTSUPP;
911 	}
912 
913 	return 0;
914 }
915 
916 static int ems_usb_set_bittiming(struct net_device *netdev)
917 {
918 	struct ems_usb *dev = netdev_priv(netdev);
919 	struct can_bittiming *bt = &dev->can.bittiming;
920 	u8 btr0, btr1;
921 
922 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
923 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
924 		(((bt->phase_seg2 - 1) & 0x7) << 4);
925 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
926 		btr1 |= 0x80;
927 
928 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
929 
930 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
931 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
932 
933 	return ems_usb_command_msg(dev, &dev->active_params);
934 }
935 
936 static void init_params_sja1000(struct ems_cpc_msg *msg)
937 {
938 	struct cpc_sja1000_params *sja1000 =
939 		&msg->msg.can_params.cc_params.sja1000;
940 
941 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
942 	msg->length = sizeof(struct cpc_can_params);
943 	msg->msgid = 0;
944 
945 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
946 
947 	/* Acceptance filter open */
948 	sja1000->acc_code0 = 0x00;
949 	sja1000->acc_code1 = 0x00;
950 	sja1000->acc_code2 = 0x00;
951 	sja1000->acc_code3 = 0x00;
952 
953 	/* Acceptance filter open */
954 	sja1000->acc_mask0 = 0xFF;
955 	sja1000->acc_mask1 = 0xFF;
956 	sja1000->acc_mask2 = 0xFF;
957 	sja1000->acc_mask3 = 0xFF;
958 
959 	sja1000->btr0 = 0;
960 	sja1000->btr1 = 0;
961 
962 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
963 	sja1000->mode = SJA1000_MOD_RM;
964 }
965 
966 /*
967  * probe function for new CPC-USB devices
968  */
969 static int ems_usb_probe(struct usb_interface *intf,
970 			 const struct usb_device_id *id)
971 {
972 	struct net_device *netdev;
973 	struct ems_usb *dev;
974 	int i, err = -ENOMEM;
975 
976 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
977 	if (!netdev) {
978 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
979 		return -ENOMEM;
980 	}
981 
982 	dev = netdev_priv(netdev);
983 
984 	dev->udev = interface_to_usbdev(intf);
985 	dev->netdev = netdev;
986 
987 	dev->can.state = CAN_STATE_STOPPED;
988 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
989 	dev->can.bittiming_const = &ems_usb_bittiming_const;
990 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
991 	dev->can.do_set_mode = ems_usb_set_mode;
992 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
993 
994 	netdev->netdev_ops = &ems_usb_netdev_ops;
995 
996 	netdev->flags |= IFF_ECHO; /* we support local echo */
997 
998 	init_usb_anchor(&dev->rx_submitted);
999 
1000 	init_usb_anchor(&dev->tx_submitted);
1001 	atomic_set(&dev->active_tx_urbs, 0);
1002 
1003 	for (i = 0; i < MAX_TX_URBS; i++)
1004 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1005 
1006 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1007 	if (!dev->intr_urb) {
1008 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1009 		goto cleanup_candev;
1010 	}
1011 
1012 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1013 	if (!dev->intr_in_buffer)
1014 		goto cleanup_intr_urb;
1015 
1016 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1017 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1018 	if (!dev->tx_msg_buffer)
1019 		goto cleanup_intr_in_buffer;
1020 
1021 	usb_set_intfdata(intf, dev);
1022 
1023 	SET_NETDEV_DEV(netdev, &intf->dev);
1024 
1025 	init_params_sja1000(&dev->active_params);
1026 
1027 	err = ems_usb_command_msg(dev, &dev->active_params);
1028 	if (err) {
1029 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1030 		goto cleanup_tx_msg_buffer;
1031 	}
1032 
1033 	err = register_candev(netdev);
1034 	if (err) {
1035 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1036 		goto cleanup_tx_msg_buffer;
1037 	}
1038 
1039 	return 0;
1040 
1041 cleanup_tx_msg_buffer:
1042 	kfree(dev->tx_msg_buffer);
1043 
1044 cleanup_intr_in_buffer:
1045 	kfree(dev->intr_in_buffer);
1046 
1047 cleanup_intr_urb:
1048 	usb_free_urb(dev->intr_urb);
1049 
1050 cleanup_candev:
1051 	free_candev(netdev);
1052 
1053 	return err;
1054 }
1055 
1056 /*
1057  * called by the usb core when the device is removed from the system
1058  */
1059 static void ems_usb_disconnect(struct usb_interface *intf)
1060 {
1061 	struct ems_usb *dev = usb_get_intfdata(intf);
1062 
1063 	usb_set_intfdata(intf, NULL);
1064 
1065 	if (dev) {
1066 		unregister_netdev(dev->netdev);
1067 		free_candev(dev->netdev);
1068 
1069 		unlink_all_urbs(dev);
1070 
1071 		usb_free_urb(dev->intr_urb);
1072 
1073 		kfree(dev->intr_in_buffer);
1074 	}
1075 }
1076 
1077 /* usb specific object needed to register this driver with the usb subsystem */
1078 static struct usb_driver ems_usb_driver = {
1079 	.name = "ems_usb",
1080 	.probe = ems_usb_probe,
1081 	.disconnect = ems_usb_disconnect,
1082 	.id_table = ems_usb_table,
1083 };
1084 
1085 module_usb_driver(ems_usb_driver);
1086