xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision e5c86679)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 #define CPC_TX_QUEUE_TRIGGER_LOW	25
121 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
122 
123 /*
124  * CAN-Message representation in a CPC_MSG. Message object type is
125  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127  */
128 struct cpc_can_msg {
129 	__le32 id;
130 	u8 length;
131 	u8 msg[8];
132 };
133 
134 /* Representation of the CAN parameters for the SJA1000 controller */
135 struct cpc_sja1000_params {
136 	u8 mode;
137 	u8 acc_code0;
138 	u8 acc_code1;
139 	u8 acc_code2;
140 	u8 acc_code3;
141 	u8 acc_mask0;
142 	u8 acc_mask1;
143 	u8 acc_mask2;
144 	u8 acc_mask3;
145 	u8 btr0;
146 	u8 btr1;
147 	u8 outp_contr;
148 };
149 
150 /* CAN params message representation */
151 struct cpc_can_params {
152 	u8 cc_type;
153 
154 	/* Will support M16C CAN controller in the future */
155 	union {
156 		struct cpc_sja1000_params sja1000;
157 	} cc_params;
158 };
159 
160 /* Structure for confirmed message handling */
161 struct cpc_confirm {
162 	u8 error; /* error code */
163 };
164 
165 /* Structure for overrun conditions */
166 struct cpc_overrun {
167 	u8 event;
168 	u8 count;
169 };
170 
171 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
172 struct cpc_sja1000_can_error {
173 	u8 ecc;
174 	u8 rxerr;
175 	u8 txerr;
176 };
177 
178 /* structure for CAN error conditions */
179 struct cpc_can_error {
180 	u8 ecode;
181 
182 	struct {
183 		u8 cc_type;
184 
185 		/* Other controllers may also provide error code capture regs */
186 		union {
187 			struct cpc_sja1000_can_error sja1000;
188 		} regs;
189 	} cc;
190 };
191 
192 /*
193  * Structure containing RX/TX error counter. This structure is used to request
194  * the values of the CAN controllers TX and RX error counter.
195  */
196 struct cpc_can_err_counter {
197 	u8 rx;
198 	u8 tx;
199 };
200 
201 /* Main message type used between library and application */
202 struct __packed ems_cpc_msg {
203 	u8 type;	/* type of message */
204 	u8 length;	/* length of data within union 'msg' */
205 	u8 msgid;	/* confirmation handle */
206 	__le32 ts_sec;	/* timestamp in seconds */
207 	__le32 ts_nsec;	/* timestamp in nano seconds */
208 
209 	union {
210 		u8 generic[64];
211 		struct cpc_can_msg can_msg;
212 		struct cpc_can_params can_params;
213 		struct cpc_confirm confirmation;
214 		struct cpc_overrun overrun;
215 		struct cpc_can_error error;
216 		struct cpc_can_err_counter err_counter;
217 		u8 can_state;
218 	} msg;
219 };
220 
221 /*
222  * Table of devices that work with this driver
223  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224  */
225 static struct usb_device_id ems_usb_table[] = {
226 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227 	{} /* Terminating entry */
228 };
229 
230 MODULE_DEVICE_TABLE(usb, ems_usb_table);
231 
232 #define RX_BUFFER_SIZE      64
233 #define CPC_HEADER_SIZE     4
234 #define INTR_IN_BUFFER_SIZE 4
235 
236 #define MAX_RX_URBS 10
237 #define MAX_TX_URBS 10
238 
239 struct ems_usb;
240 
241 struct ems_tx_urb_context {
242 	struct ems_usb *dev;
243 
244 	u32 echo_index;
245 	u8 dlc;
246 };
247 
248 struct ems_usb {
249 	struct can_priv can; /* must be the first member */
250 
251 	struct sk_buff *echo_skb[MAX_TX_URBS];
252 
253 	struct usb_device *udev;
254 	struct net_device *netdev;
255 
256 	atomic_t active_tx_urbs;
257 	struct usb_anchor tx_submitted;
258 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259 
260 	struct usb_anchor rx_submitted;
261 
262 	struct urb *intr_urb;
263 
264 	u8 *tx_msg_buffer;
265 
266 	u8 *intr_in_buffer;
267 	unsigned int free_slots; /* remember number of available slots */
268 
269 	struct ems_cpc_msg active_params; /* active controller parameters */
270 };
271 
272 static void ems_usb_read_interrupt_callback(struct urb *urb)
273 {
274 	struct ems_usb *dev = urb->context;
275 	struct net_device *netdev = dev->netdev;
276 	int err;
277 
278 	if (!netif_device_present(netdev))
279 		return;
280 
281 	switch (urb->status) {
282 	case 0:
283 		dev->free_slots = dev->intr_in_buffer[1];
284 		if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
285 		    netif_queue_stopped(netdev))
286 			netif_wake_queue(netdev);
287 		break;
288 
289 	case -ECONNRESET: /* unlink */
290 	case -ENOENT:
291 	case -ESHUTDOWN:
292 		return;
293 
294 	default:
295 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
296 		break;
297 	}
298 
299 	err = usb_submit_urb(urb, GFP_ATOMIC);
300 
301 	if (err == -ENODEV)
302 		netif_device_detach(netdev);
303 	else if (err)
304 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
305 }
306 
307 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
308 {
309 	struct can_frame *cf;
310 	struct sk_buff *skb;
311 	int i;
312 	struct net_device_stats *stats = &dev->netdev->stats;
313 
314 	skb = alloc_can_skb(dev->netdev, &cf);
315 	if (skb == NULL)
316 		return;
317 
318 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
319 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
320 
321 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
322 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
323 		cf->can_id |= CAN_EFF_FLAG;
324 
325 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
326 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
327 		cf->can_id |= CAN_RTR_FLAG;
328 	} else {
329 		for (i = 0; i < cf->can_dlc; i++)
330 			cf->data[i] = msg->msg.can_msg.msg[i];
331 	}
332 
333 	stats->rx_packets++;
334 	stats->rx_bytes += cf->can_dlc;
335 	netif_rx(skb);
336 }
337 
338 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
339 {
340 	struct can_frame *cf;
341 	struct sk_buff *skb;
342 	struct net_device_stats *stats = &dev->netdev->stats;
343 
344 	skb = alloc_can_err_skb(dev->netdev, &cf);
345 	if (skb == NULL)
346 		return;
347 
348 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
349 		u8 state = msg->msg.can_state;
350 
351 		if (state & SJA1000_SR_BS) {
352 			dev->can.state = CAN_STATE_BUS_OFF;
353 			cf->can_id |= CAN_ERR_BUSOFF;
354 
355 			dev->can.can_stats.bus_off++;
356 			can_bus_off(dev->netdev);
357 		} else if (state & SJA1000_SR_ES) {
358 			dev->can.state = CAN_STATE_ERROR_WARNING;
359 			dev->can.can_stats.error_warning++;
360 		} else {
361 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
362 			dev->can.can_stats.error_passive++;
363 		}
364 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
365 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
366 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
367 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
368 
369 		/* bus error interrupt */
370 		dev->can.can_stats.bus_error++;
371 		stats->rx_errors++;
372 
373 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
374 
375 		switch (ecc & SJA1000_ECC_MASK) {
376 		case SJA1000_ECC_BIT:
377 			cf->data[2] |= CAN_ERR_PROT_BIT;
378 			break;
379 		case SJA1000_ECC_FORM:
380 			cf->data[2] |= CAN_ERR_PROT_FORM;
381 			break;
382 		case SJA1000_ECC_STUFF:
383 			cf->data[2] |= CAN_ERR_PROT_STUFF;
384 			break;
385 		default:
386 			cf->data[3] = ecc & SJA1000_ECC_SEG;
387 			break;
388 		}
389 
390 		/* Error occurred during transmission? */
391 		if ((ecc & SJA1000_ECC_DIR) == 0)
392 			cf->data[2] |= CAN_ERR_PROT_TX;
393 
394 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
395 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
396 			cf->data[1] = (txerr > rxerr) ?
397 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
398 		}
399 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
400 		cf->can_id |= CAN_ERR_CRTL;
401 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
402 
403 		stats->rx_over_errors++;
404 		stats->rx_errors++;
405 	}
406 
407 	stats->rx_packets++;
408 	stats->rx_bytes += cf->can_dlc;
409 	netif_rx(skb);
410 }
411 
412 /*
413  * callback for bulk IN urb
414  */
415 static void ems_usb_read_bulk_callback(struct urb *urb)
416 {
417 	struct ems_usb *dev = urb->context;
418 	struct net_device *netdev;
419 	int retval;
420 
421 	netdev = dev->netdev;
422 
423 	if (!netif_device_present(netdev))
424 		return;
425 
426 	switch (urb->status) {
427 	case 0: /* success */
428 		break;
429 
430 	case -ENOENT:
431 		return;
432 
433 	default:
434 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
435 		goto resubmit_urb;
436 	}
437 
438 	if (urb->actual_length > CPC_HEADER_SIZE) {
439 		struct ems_cpc_msg *msg;
440 		u8 *ibuf = urb->transfer_buffer;
441 		u8 msg_count, start;
442 
443 		msg_count = ibuf[0] & ~0x80;
444 
445 		start = CPC_HEADER_SIZE;
446 
447 		while (msg_count) {
448 			msg = (struct ems_cpc_msg *)&ibuf[start];
449 
450 			switch (msg->type) {
451 			case CPC_MSG_TYPE_CAN_STATE:
452 				/* Process CAN state changes */
453 				ems_usb_rx_err(dev, msg);
454 				break;
455 
456 			case CPC_MSG_TYPE_CAN_FRAME:
457 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
458 			case CPC_MSG_TYPE_RTR_FRAME:
459 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
460 				ems_usb_rx_can_msg(dev, msg);
461 				break;
462 
463 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
464 				/* Process errorframe */
465 				ems_usb_rx_err(dev, msg);
466 				break;
467 
468 			case CPC_MSG_TYPE_OVERRUN:
469 				/* Message lost while receiving */
470 				ems_usb_rx_err(dev, msg);
471 				break;
472 			}
473 
474 			start += CPC_MSG_HEADER_LEN + msg->length;
475 			msg_count--;
476 
477 			if (start > urb->transfer_buffer_length) {
478 				netdev_err(netdev, "format error\n");
479 				break;
480 			}
481 		}
482 	}
483 
484 resubmit_urb:
485 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
486 			  urb->transfer_buffer, RX_BUFFER_SIZE,
487 			  ems_usb_read_bulk_callback, dev);
488 
489 	retval = usb_submit_urb(urb, GFP_ATOMIC);
490 
491 	if (retval == -ENODEV)
492 		netif_device_detach(netdev);
493 	else if (retval)
494 		netdev_err(netdev,
495 			   "failed resubmitting read bulk urb: %d\n", retval);
496 }
497 
498 /*
499  * callback for bulk IN urb
500  */
501 static void ems_usb_write_bulk_callback(struct urb *urb)
502 {
503 	struct ems_tx_urb_context *context = urb->context;
504 	struct ems_usb *dev;
505 	struct net_device *netdev;
506 
507 	BUG_ON(!context);
508 
509 	dev = context->dev;
510 	netdev = dev->netdev;
511 
512 	/* free up our allocated buffer */
513 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
514 			  urb->transfer_buffer, urb->transfer_dma);
515 
516 	atomic_dec(&dev->active_tx_urbs);
517 
518 	if (!netif_device_present(netdev))
519 		return;
520 
521 	if (urb->status)
522 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
523 
524 	netif_trans_update(netdev);
525 
526 	/* transmission complete interrupt */
527 	netdev->stats.tx_packets++;
528 	netdev->stats.tx_bytes += context->dlc;
529 
530 	can_get_echo_skb(netdev, context->echo_index);
531 
532 	/* Release context */
533 	context->echo_index = MAX_TX_URBS;
534 
535 }
536 
537 /*
538  * Send the given CPC command synchronously
539  */
540 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
541 {
542 	int actual_length;
543 
544 	/* Copy payload */
545 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
546 	       msg->length + CPC_MSG_HEADER_LEN);
547 
548 	/* Clear header */
549 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
550 
551 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
552 			    &dev->tx_msg_buffer[0],
553 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
554 			    &actual_length, 1000);
555 }
556 
557 /*
558  * Change CAN controllers' mode register
559  */
560 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
561 {
562 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
563 
564 	return ems_usb_command_msg(dev, &dev->active_params);
565 }
566 
567 /*
568  * Send a CPC_Control command to change behaviour when interface receives a CAN
569  * message, bus error or CAN state changed notifications.
570  */
571 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
572 {
573 	struct ems_cpc_msg cmd;
574 
575 	cmd.type = CPC_CMD_TYPE_CONTROL;
576 	cmd.length = CPC_MSG_HEADER_LEN + 1;
577 
578 	cmd.msgid = 0;
579 
580 	cmd.msg.generic[0] = val;
581 
582 	return ems_usb_command_msg(dev, &cmd);
583 }
584 
585 /*
586  * Start interface
587  */
588 static int ems_usb_start(struct ems_usb *dev)
589 {
590 	struct net_device *netdev = dev->netdev;
591 	int err, i;
592 
593 	dev->intr_in_buffer[0] = 0;
594 	dev->free_slots = 50; /* initial size */
595 
596 	for (i = 0; i < MAX_RX_URBS; i++) {
597 		struct urb *urb = NULL;
598 		u8 *buf = NULL;
599 
600 		/* create a URB, and a buffer for it */
601 		urb = usb_alloc_urb(0, GFP_KERNEL);
602 		if (!urb) {
603 			err = -ENOMEM;
604 			break;
605 		}
606 
607 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
608 					 &urb->transfer_dma);
609 		if (!buf) {
610 			netdev_err(netdev, "No memory left for USB buffer\n");
611 			usb_free_urb(urb);
612 			err = -ENOMEM;
613 			break;
614 		}
615 
616 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
617 				  buf, RX_BUFFER_SIZE,
618 				  ems_usb_read_bulk_callback, dev);
619 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
620 		usb_anchor_urb(urb, &dev->rx_submitted);
621 
622 		err = usb_submit_urb(urb, GFP_KERNEL);
623 		if (err) {
624 			usb_unanchor_urb(urb);
625 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
626 					  urb->transfer_dma);
627 			usb_free_urb(urb);
628 			break;
629 		}
630 
631 		/* Drop reference, USB core will take care of freeing it */
632 		usb_free_urb(urb);
633 	}
634 
635 	/* Did we submit any URBs */
636 	if (i == 0) {
637 		netdev_warn(netdev, "couldn't setup read URBs\n");
638 		return err;
639 	}
640 
641 	/* Warn if we've couldn't transmit all the URBs */
642 	if (i < MAX_RX_URBS)
643 		netdev_warn(netdev, "rx performance may be slow\n");
644 
645 	/* Setup and start interrupt URB */
646 	usb_fill_int_urb(dev->intr_urb, dev->udev,
647 			 usb_rcvintpipe(dev->udev, 1),
648 			 dev->intr_in_buffer,
649 			 INTR_IN_BUFFER_SIZE,
650 			 ems_usb_read_interrupt_callback, dev, 1);
651 
652 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
653 	if (err) {
654 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
655 
656 		return err;
657 	}
658 
659 	/* CPC-USB will transfer received message to host */
660 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
661 	if (err)
662 		goto failed;
663 
664 	/* CPC-USB will transfer CAN state changes to host */
665 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
666 	if (err)
667 		goto failed;
668 
669 	/* CPC-USB will transfer bus errors to host */
670 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
671 	if (err)
672 		goto failed;
673 
674 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
675 	if (err)
676 		goto failed;
677 
678 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
679 
680 	return 0;
681 
682 failed:
683 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
684 
685 	return err;
686 }
687 
688 static void unlink_all_urbs(struct ems_usb *dev)
689 {
690 	int i;
691 
692 	usb_unlink_urb(dev->intr_urb);
693 
694 	usb_kill_anchored_urbs(&dev->rx_submitted);
695 
696 	usb_kill_anchored_urbs(&dev->tx_submitted);
697 	atomic_set(&dev->active_tx_urbs, 0);
698 
699 	for (i = 0; i < MAX_TX_URBS; i++)
700 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
701 }
702 
703 static int ems_usb_open(struct net_device *netdev)
704 {
705 	struct ems_usb *dev = netdev_priv(netdev);
706 	int err;
707 
708 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
709 	if (err)
710 		return err;
711 
712 	/* common open */
713 	err = open_candev(netdev);
714 	if (err)
715 		return err;
716 
717 	/* finally start device */
718 	err = ems_usb_start(dev);
719 	if (err) {
720 		if (err == -ENODEV)
721 			netif_device_detach(dev->netdev);
722 
723 		netdev_warn(netdev, "couldn't start device: %d\n", err);
724 
725 		close_candev(netdev);
726 
727 		return err;
728 	}
729 
730 
731 	netif_start_queue(netdev);
732 
733 	return 0;
734 }
735 
736 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
737 {
738 	struct ems_usb *dev = netdev_priv(netdev);
739 	struct ems_tx_urb_context *context = NULL;
740 	struct net_device_stats *stats = &netdev->stats;
741 	struct can_frame *cf = (struct can_frame *)skb->data;
742 	struct ems_cpc_msg *msg;
743 	struct urb *urb;
744 	u8 *buf;
745 	int i, err;
746 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
747 			+ sizeof(struct cpc_can_msg);
748 
749 	if (can_dropped_invalid_skb(netdev, skb))
750 		return NETDEV_TX_OK;
751 
752 	/* create a URB, and a buffer for it, and copy the data to the URB */
753 	urb = usb_alloc_urb(0, GFP_ATOMIC);
754 	if (!urb)
755 		goto nomem;
756 
757 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
758 	if (!buf) {
759 		netdev_err(netdev, "No memory left for USB buffer\n");
760 		usb_free_urb(urb);
761 		goto nomem;
762 	}
763 
764 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
765 
766 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
767 	msg->msg.can_msg.length = cf->can_dlc;
768 
769 	if (cf->can_id & CAN_RTR_FLAG) {
770 		msg->type = cf->can_id & CAN_EFF_FLAG ?
771 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
772 
773 		msg->length = CPC_CAN_MSG_MIN_SIZE;
774 	} else {
775 		msg->type = cf->can_id & CAN_EFF_FLAG ?
776 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
777 
778 		for (i = 0; i < cf->can_dlc; i++)
779 			msg->msg.can_msg.msg[i] = cf->data[i];
780 
781 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
782 	}
783 
784 	for (i = 0; i < MAX_TX_URBS; i++) {
785 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
786 			context = &dev->tx_contexts[i];
787 			break;
788 		}
789 	}
790 
791 	/*
792 	 * May never happen! When this happens we'd more URBs in flight as
793 	 * allowed (MAX_TX_URBS).
794 	 */
795 	if (!context) {
796 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
797 		usb_free_urb(urb);
798 
799 		netdev_warn(netdev, "couldn't find free context\n");
800 
801 		return NETDEV_TX_BUSY;
802 	}
803 
804 	context->dev = dev;
805 	context->echo_index = i;
806 	context->dlc = cf->can_dlc;
807 
808 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
809 			  size, ems_usb_write_bulk_callback, context);
810 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
811 	usb_anchor_urb(urb, &dev->tx_submitted);
812 
813 	can_put_echo_skb(skb, netdev, context->echo_index);
814 
815 	atomic_inc(&dev->active_tx_urbs);
816 
817 	err = usb_submit_urb(urb, GFP_ATOMIC);
818 	if (unlikely(err)) {
819 		can_free_echo_skb(netdev, context->echo_index);
820 
821 		usb_unanchor_urb(urb);
822 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
823 		dev_kfree_skb(skb);
824 
825 		atomic_dec(&dev->active_tx_urbs);
826 
827 		if (err == -ENODEV) {
828 			netif_device_detach(netdev);
829 		} else {
830 			netdev_warn(netdev, "failed tx_urb %d\n", err);
831 
832 			stats->tx_dropped++;
833 		}
834 	} else {
835 		netif_trans_update(netdev);
836 
837 		/* Slow down tx path */
838 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
839 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
840 			netif_stop_queue(netdev);
841 		}
842 	}
843 
844 	/*
845 	 * Release our reference to this URB, the USB core will eventually free
846 	 * it entirely.
847 	 */
848 	usb_free_urb(urb);
849 
850 	return NETDEV_TX_OK;
851 
852 nomem:
853 	dev_kfree_skb(skb);
854 	stats->tx_dropped++;
855 
856 	return NETDEV_TX_OK;
857 }
858 
859 static int ems_usb_close(struct net_device *netdev)
860 {
861 	struct ems_usb *dev = netdev_priv(netdev);
862 
863 	/* Stop polling */
864 	unlink_all_urbs(dev);
865 
866 	netif_stop_queue(netdev);
867 
868 	/* Set CAN controller to reset mode */
869 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
870 		netdev_warn(netdev, "couldn't stop device");
871 
872 	close_candev(netdev);
873 
874 	return 0;
875 }
876 
877 static const struct net_device_ops ems_usb_netdev_ops = {
878 	.ndo_open = ems_usb_open,
879 	.ndo_stop = ems_usb_close,
880 	.ndo_start_xmit = ems_usb_start_xmit,
881 	.ndo_change_mtu = can_change_mtu,
882 };
883 
884 static const struct can_bittiming_const ems_usb_bittiming_const = {
885 	.name = "ems_usb",
886 	.tseg1_min = 1,
887 	.tseg1_max = 16,
888 	.tseg2_min = 1,
889 	.tseg2_max = 8,
890 	.sjw_max = 4,
891 	.brp_min = 1,
892 	.brp_max = 64,
893 	.brp_inc = 1,
894 };
895 
896 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
897 {
898 	struct ems_usb *dev = netdev_priv(netdev);
899 
900 	switch (mode) {
901 	case CAN_MODE_START:
902 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
903 			netdev_warn(netdev, "couldn't start device");
904 
905 		if (netif_queue_stopped(netdev))
906 			netif_wake_queue(netdev);
907 		break;
908 
909 	default:
910 		return -EOPNOTSUPP;
911 	}
912 
913 	return 0;
914 }
915 
916 static int ems_usb_set_bittiming(struct net_device *netdev)
917 {
918 	struct ems_usb *dev = netdev_priv(netdev);
919 	struct can_bittiming *bt = &dev->can.bittiming;
920 	u8 btr0, btr1;
921 
922 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
923 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
924 		(((bt->phase_seg2 - 1) & 0x7) << 4);
925 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
926 		btr1 |= 0x80;
927 
928 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
929 
930 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
931 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
932 
933 	return ems_usb_command_msg(dev, &dev->active_params);
934 }
935 
936 static void init_params_sja1000(struct ems_cpc_msg *msg)
937 {
938 	struct cpc_sja1000_params *sja1000 =
939 		&msg->msg.can_params.cc_params.sja1000;
940 
941 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
942 	msg->length = sizeof(struct cpc_can_params);
943 	msg->msgid = 0;
944 
945 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
946 
947 	/* Acceptance filter open */
948 	sja1000->acc_code0 = 0x00;
949 	sja1000->acc_code1 = 0x00;
950 	sja1000->acc_code2 = 0x00;
951 	sja1000->acc_code3 = 0x00;
952 
953 	/* Acceptance filter open */
954 	sja1000->acc_mask0 = 0xFF;
955 	sja1000->acc_mask1 = 0xFF;
956 	sja1000->acc_mask2 = 0xFF;
957 	sja1000->acc_mask3 = 0xFF;
958 
959 	sja1000->btr0 = 0;
960 	sja1000->btr1 = 0;
961 
962 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
963 	sja1000->mode = SJA1000_MOD_RM;
964 }
965 
966 /*
967  * probe function for new CPC-USB devices
968  */
969 static int ems_usb_probe(struct usb_interface *intf,
970 			 const struct usb_device_id *id)
971 {
972 	struct net_device *netdev;
973 	struct ems_usb *dev;
974 	int i, err = -ENOMEM;
975 
976 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
977 	if (!netdev) {
978 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
979 		return -ENOMEM;
980 	}
981 
982 	dev = netdev_priv(netdev);
983 
984 	dev->udev = interface_to_usbdev(intf);
985 	dev->netdev = netdev;
986 
987 	dev->can.state = CAN_STATE_STOPPED;
988 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
989 	dev->can.bittiming_const = &ems_usb_bittiming_const;
990 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
991 	dev->can.do_set_mode = ems_usb_set_mode;
992 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
993 
994 	netdev->netdev_ops = &ems_usb_netdev_ops;
995 
996 	netdev->flags |= IFF_ECHO; /* we support local echo */
997 
998 	init_usb_anchor(&dev->rx_submitted);
999 
1000 	init_usb_anchor(&dev->tx_submitted);
1001 	atomic_set(&dev->active_tx_urbs, 0);
1002 
1003 	for (i = 0; i < MAX_TX_URBS; i++)
1004 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1005 
1006 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1007 	if (!dev->intr_urb)
1008 		goto cleanup_candev;
1009 
1010 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1011 	if (!dev->intr_in_buffer)
1012 		goto cleanup_intr_urb;
1013 
1014 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1015 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1016 	if (!dev->tx_msg_buffer)
1017 		goto cleanup_intr_in_buffer;
1018 
1019 	usb_set_intfdata(intf, dev);
1020 
1021 	SET_NETDEV_DEV(netdev, &intf->dev);
1022 
1023 	init_params_sja1000(&dev->active_params);
1024 
1025 	err = ems_usb_command_msg(dev, &dev->active_params);
1026 	if (err) {
1027 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1028 		goto cleanup_tx_msg_buffer;
1029 	}
1030 
1031 	err = register_candev(netdev);
1032 	if (err) {
1033 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1034 		goto cleanup_tx_msg_buffer;
1035 	}
1036 
1037 	return 0;
1038 
1039 cleanup_tx_msg_buffer:
1040 	kfree(dev->tx_msg_buffer);
1041 
1042 cleanup_intr_in_buffer:
1043 	kfree(dev->intr_in_buffer);
1044 
1045 cleanup_intr_urb:
1046 	usb_free_urb(dev->intr_urb);
1047 
1048 cleanup_candev:
1049 	free_candev(netdev);
1050 
1051 	return err;
1052 }
1053 
1054 /*
1055  * called by the usb core when the device is removed from the system
1056  */
1057 static void ems_usb_disconnect(struct usb_interface *intf)
1058 {
1059 	struct ems_usb *dev = usb_get_intfdata(intf);
1060 
1061 	usb_set_intfdata(intf, NULL);
1062 
1063 	if (dev) {
1064 		unregister_netdev(dev->netdev);
1065 		free_candev(dev->netdev);
1066 
1067 		unlink_all_urbs(dev);
1068 
1069 		usb_free_urb(dev->intr_urb);
1070 
1071 		kfree(dev->intr_in_buffer);
1072 	}
1073 }
1074 
1075 /* usb specific object needed to register this driver with the usb subsystem */
1076 static struct usb_driver ems_usb_driver = {
1077 	.name = "ems_usb",
1078 	.probe = ems_usb_probe,
1079 	.disconnect = ems_usb_disconnect,
1080 	.id_table = ems_usb_table,
1081 };
1082 
1083 module_usb_driver(ems_usb_driver);
1084