xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision b6dcefde)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/usb.h>
25 
26 #include <linux/can.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 
30 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32 MODULE_LICENSE("GPL v2");
33 
34 /* Control-Values for CPC_Control() Command Subject Selection */
35 #define CONTR_CAN_MESSAGE 0x04
36 #define CONTR_CAN_STATE   0x0C
37 #define CONTR_BUS_ERROR   0x1C
38 
39 /* Control Command Actions */
40 #define CONTR_CONT_OFF 0
41 #define CONTR_CONT_ON  1
42 #define CONTR_ONCE     2
43 
44 /* Messages from CPC to PC */
45 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56 
57 /* Messages from the PC to the CPC interface  */
58 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66 
67 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70 
71 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72 
73 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74 
75 /* Overrun types */
76 #define CPC_OVR_EVENT_CAN       0x01
77 #define CPC_OVR_EVENT_CANSTATE  0x02
78 #define CPC_OVR_EVENT_BUSERROR  0x04
79 
80 /*
81  * If the CAN controller lost a message we indicate it with the highest bit
82  * set in the count field.
83  */
84 #define CPC_OVR_HW 0x80
85 
86 /* Size of the "struct ems_cpc_msg" without the union */
87 #define CPC_MSG_HEADER_LEN   11
88 #define CPC_CAN_MSG_MIN_SIZE 5
89 
90 /* Define these values to match your devices */
91 #define USB_CPCUSB_VENDOR_ID 0x12D6
92 
93 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94 
95 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
96 #define SJA1000_MOD_NORMAL 0x00
97 #define SJA1000_MOD_RM     0x01
98 
99 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
100 #define SJA1000_ECC_SEG   0x1F
101 #define SJA1000_ECC_DIR   0x20
102 #define SJA1000_ECC_ERR   0x06
103 #define SJA1000_ECC_BIT   0x00
104 #define SJA1000_ECC_FORM  0x40
105 #define SJA1000_ECC_STUFF 0x80
106 #define SJA1000_ECC_MASK  0xc0
107 
108 /* Status register content */
109 #define SJA1000_SR_BS 0x80
110 #define SJA1000_SR_ES 0x40
111 
112 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113 
114 /*
115  * The device actually uses a 16MHz clock to generate the CAN clock
116  * but it expects SJA1000 bit settings based on 8MHz (is internally
117  * converted).
118  */
119 #define EMS_USB_ARM7_CLOCK 8000000
120 
121 /*
122  * CAN-Message representation in a CPC_MSG. Message object type is
123  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125  */
126 struct cpc_can_msg {
127 	u32 id;
128 	u8 length;
129 	u8 msg[8];
130 };
131 
132 /* Representation of the CAN parameters for the SJA1000 controller */
133 struct cpc_sja1000_params {
134 	u8 mode;
135 	u8 acc_code0;
136 	u8 acc_code1;
137 	u8 acc_code2;
138 	u8 acc_code3;
139 	u8 acc_mask0;
140 	u8 acc_mask1;
141 	u8 acc_mask2;
142 	u8 acc_mask3;
143 	u8 btr0;
144 	u8 btr1;
145 	u8 outp_contr;
146 };
147 
148 /* CAN params message representation */
149 struct cpc_can_params {
150 	u8 cc_type;
151 
152 	/* Will support M16C CAN controller in the future */
153 	union {
154 		struct cpc_sja1000_params sja1000;
155 	} cc_params;
156 };
157 
158 /* Structure for confirmed message handling */
159 struct cpc_confirm {
160 	u8 error; /* error code */
161 };
162 
163 /* Structure for overrun conditions */
164 struct cpc_overrun {
165 	u8 event;
166 	u8 count;
167 };
168 
169 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
170 struct cpc_sja1000_can_error {
171 	u8 ecc;
172 	u8 rxerr;
173 	u8 txerr;
174 };
175 
176 /* structure for CAN error conditions */
177 struct cpc_can_error {
178 	u8 ecode;
179 
180 	struct {
181 		u8 cc_type;
182 
183 		/* Other controllers may also provide error code capture regs */
184 		union {
185 			struct cpc_sja1000_can_error sja1000;
186 		} regs;
187 	} cc;
188 };
189 
190 /*
191  * Structure containing RX/TX error counter. This structure is used to request
192  * the values of the CAN controllers TX and RX error counter.
193  */
194 struct cpc_can_err_counter {
195 	u8 rx;
196 	u8 tx;
197 };
198 
199 /* Main message type used between library and application */
200 struct __attribute__ ((packed)) ems_cpc_msg {
201 	u8 type;	/* type of message */
202 	u8 length;	/* length of data within union 'msg' */
203 	u8 msgid;	/* confirmation handle */
204 	u32 ts_sec;	/* timestamp in seconds */
205 	u32 ts_nsec;	/* timestamp in nano seconds */
206 
207 	union {
208 		u8 generic[64];
209 		struct cpc_can_msg can_msg;
210 		struct cpc_can_params can_params;
211 		struct cpc_confirm confirmation;
212 		struct cpc_overrun overrun;
213 		struct cpc_can_error error;
214 		struct cpc_can_err_counter err_counter;
215 		u8 can_state;
216 	} msg;
217 };
218 
219 /*
220  * Table of devices that work with this driver
221  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222  */
223 static struct usb_device_id ems_usb_table[] = {
224 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225 	{} /* Terminating entry */
226 };
227 
228 MODULE_DEVICE_TABLE(usb, ems_usb_table);
229 
230 #define RX_BUFFER_SIZE      64
231 #define CPC_HEADER_SIZE     4
232 #define INTR_IN_BUFFER_SIZE 4
233 
234 #define MAX_RX_URBS 10
235 #define MAX_TX_URBS 10
236 
237 struct ems_usb;
238 
239 struct ems_tx_urb_context {
240 	struct ems_usb *dev;
241 
242 	u32 echo_index;
243 	u8 dlc;
244 };
245 
246 struct ems_usb {
247 	struct can_priv can; /* must be the first member */
248 	int open_time;
249 
250 	struct sk_buff *echo_skb[MAX_TX_URBS];
251 
252 	struct usb_device *udev;
253 	struct net_device *netdev;
254 
255 	atomic_t active_tx_urbs;
256 	struct usb_anchor tx_submitted;
257 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
258 
259 	struct usb_anchor rx_submitted;
260 
261 	struct urb *intr_urb;
262 
263 	u8 *tx_msg_buffer;
264 
265 	u8 *intr_in_buffer;
266 	unsigned int free_slots; /* remember number of available slots */
267 
268 	struct ems_cpc_msg active_params; /* active controller parameters */
269 };
270 
271 static void ems_usb_read_interrupt_callback(struct urb *urb)
272 {
273 	struct ems_usb *dev = urb->context;
274 	struct net_device *netdev = dev->netdev;
275 	int err;
276 
277 	if (!netif_device_present(netdev))
278 		return;
279 
280 	switch (urb->status) {
281 	case 0:
282 		dev->free_slots = dev->intr_in_buffer[1];
283 		break;
284 
285 	case -ECONNRESET: /* unlink */
286 	case -ENOENT:
287 	case -ESHUTDOWN:
288 		return;
289 
290 	default:
291 		dev_info(netdev->dev.parent, "Rx interrupt aborted %d\n",
292 			 urb->status);
293 		break;
294 	}
295 
296 	err = usb_submit_urb(urb, GFP_ATOMIC);
297 
298 	if (err == -ENODEV)
299 		netif_device_detach(netdev);
300 	else if (err)
301 		dev_err(netdev->dev.parent,
302 			"failed resubmitting intr urb: %d\n", err);
303 
304 	return;
305 }
306 
307 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
308 {
309 	struct can_frame *cf;
310 	struct sk_buff *skb;
311 	int i;
312 	struct net_device_stats *stats = &dev->netdev->stats;
313 
314 	skb = alloc_can_skb(dev->netdev, &cf);
315 	if (skb == NULL)
316 		return;
317 
318 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
319 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
320 
321 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
322 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
323 		cf->can_id |= CAN_EFF_FLAG;
324 
325 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
326 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
327 		cf->can_id |= CAN_RTR_FLAG;
328 	} else {
329 		for (i = 0; i < cf->can_dlc; i++)
330 			cf->data[i] = msg->msg.can_msg.msg[i];
331 	}
332 
333 	netif_rx(skb);
334 
335 	stats->rx_packets++;
336 	stats->rx_bytes += cf->can_dlc;
337 }
338 
339 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
340 {
341 	struct can_frame *cf;
342 	struct sk_buff *skb;
343 	struct net_device_stats *stats = &dev->netdev->stats;
344 
345 	skb = alloc_can_err_skb(dev->netdev, &cf);
346 	if (skb == NULL)
347 		return;
348 
349 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
350 		u8 state = msg->msg.can_state;
351 
352 		if (state & SJA1000_SR_BS) {
353 			dev->can.state = CAN_STATE_BUS_OFF;
354 			cf->can_id |= CAN_ERR_BUSOFF;
355 
356 			can_bus_off(dev->netdev);
357 		} else if (state & SJA1000_SR_ES) {
358 			dev->can.state = CAN_STATE_ERROR_WARNING;
359 			dev->can.can_stats.error_warning++;
360 		} else {
361 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
362 			dev->can.can_stats.error_passive++;
363 		}
364 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
365 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
366 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
367 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
368 
369 		/* bus error interrupt */
370 		dev->can.can_stats.bus_error++;
371 		stats->rx_errors++;
372 
373 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
374 
375 		switch (ecc & SJA1000_ECC_MASK) {
376 		case SJA1000_ECC_BIT:
377 			cf->data[2] |= CAN_ERR_PROT_BIT;
378 			break;
379 		case SJA1000_ECC_FORM:
380 			cf->data[2] |= CAN_ERR_PROT_FORM;
381 			break;
382 		case SJA1000_ECC_STUFF:
383 			cf->data[2] |= CAN_ERR_PROT_STUFF;
384 			break;
385 		default:
386 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
387 			cf->data[3] = ecc & SJA1000_ECC_SEG;
388 			break;
389 		}
390 
391 		/* Error occured during transmission? */
392 		if ((ecc & SJA1000_ECC_DIR) == 0)
393 			cf->data[2] |= CAN_ERR_PROT_TX;
394 
395 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
396 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
397 			cf->data[1] = (txerr > rxerr) ?
398 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
399 		}
400 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
401 		cf->can_id |= CAN_ERR_CRTL;
402 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
403 
404 		stats->rx_over_errors++;
405 		stats->rx_errors++;
406 	}
407 
408 	netif_rx(skb);
409 
410 	stats->rx_packets++;
411 	stats->rx_bytes += cf->can_dlc;
412 }
413 
414 /*
415  * callback for bulk IN urb
416  */
417 static void ems_usb_read_bulk_callback(struct urb *urb)
418 {
419 	struct ems_usb *dev = urb->context;
420 	struct net_device *netdev;
421 	int retval;
422 
423 	netdev = dev->netdev;
424 
425 	if (!netif_device_present(netdev))
426 		return;
427 
428 	switch (urb->status) {
429 	case 0: /* success */
430 		break;
431 
432 	case -ENOENT:
433 		return;
434 
435 	default:
436 		dev_info(netdev->dev.parent, "Rx URB aborted (%d)\n",
437 			 urb->status);
438 		goto resubmit_urb;
439 	}
440 
441 	if (urb->actual_length > CPC_HEADER_SIZE) {
442 		struct ems_cpc_msg *msg;
443 		u8 *ibuf = urb->transfer_buffer;
444 		u8 msg_count, again, start;
445 
446 		msg_count = ibuf[0] & ~0x80;
447 		again = ibuf[0] & 0x80;
448 
449 		start = CPC_HEADER_SIZE;
450 
451 		while (msg_count) {
452 			msg = (struct ems_cpc_msg *)&ibuf[start];
453 
454 			switch (msg->type) {
455 			case CPC_MSG_TYPE_CAN_STATE:
456 				/* Process CAN state changes */
457 				ems_usb_rx_err(dev, msg);
458 				break;
459 
460 			case CPC_MSG_TYPE_CAN_FRAME:
461 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
462 			case CPC_MSG_TYPE_RTR_FRAME:
463 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
464 				ems_usb_rx_can_msg(dev, msg);
465 				break;
466 
467 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
468 				/* Process errorframe */
469 				ems_usb_rx_err(dev, msg);
470 				break;
471 
472 			case CPC_MSG_TYPE_OVERRUN:
473 				/* Message lost while receiving */
474 				ems_usb_rx_err(dev, msg);
475 				break;
476 			}
477 
478 			start += CPC_MSG_HEADER_LEN + msg->length;
479 			msg_count--;
480 
481 			if (start > urb->transfer_buffer_length) {
482 				dev_err(netdev->dev.parent, "format error\n");
483 				break;
484 			}
485 		}
486 	}
487 
488 resubmit_urb:
489 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
490 			  urb->transfer_buffer, RX_BUFFER_SIZE,
491 			  ems_usb_read_bulk_callback, dev);
492 
493 	retval = usb_submit_urb(urb, GFP_ATOMIC);
494 
495 	if (retval == -ENODEV)
496 		netif_device_detach(netdev);
497 	else if (retval)
498 		dev_err(netdev->dev.parent,
499 			"failed resubmitting read bulk urb: %d\n", retval);
500 
501 	return;
502 }
503 
504 /*
505  * callback for bulk IN urb
506  */
507 static void ems_usb_write_bulk_callback(struct urb *urb)
508 {
509 	struct ems_tx_urb_context *context = urb->context;
510 	struct ems_usb *dev;
511 	struct net_device *netdev;
512 
513 	BUG_ON(!context);
514 
515 	dev = context->dev;
516 	netdev = dev->netdev;
517 
518 	/* free up our allocated buffer */
519 	usb_buffer_free(urb->dev, urb->transfer_buffer_length,
520 			urb->transfer_buffer, urb->transfer_dma);
521 
522 	atomic_dec(&dev->active_tx_urbs);
523 
524 	if (!netif_device_present(netdev))
525 		return;
526 
527 	if (urb->status)
528 		dev_info(netdev->dev.parent, "Tx URB aborted (%d)\n",
529 			 urb->status);
530 
531 	netdev->trans_start = jiffies;
532 
533 	/* transmission complete interrupt */
534 	netdev->stats.tx_packets++;
535 	netdev->stats.tx_bytes += context->dlc;
536 
537 	can_get_echo_skb(netdev, context->echo_index);
538 
539 	/* Release context */
540 	context->echo_index = MAX_TX_URBS;
541 
542 	if (netif_queue_stopped(netdev))
543 		netif_wake_queue(netdev);
544 }
545 
546 /*
547  * Send the given CPC command synchronously
548  */
549 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
550 {
551 	int actual_length;
552 
553 	/* Copy payload */
554 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
555 	       msg->length + CPC_MSG_HEADER_LEN);
556 
557 	/* Clear header */
558 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
559 
560 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
561 			    &dev->tx_msg_buffer[0],
562 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
563 			    &actual_length, 1000);
564 }
565 
566 /*
567  * Change CAN controllers' mode register
568  */
569 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
570 {
571 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
572 
573 	return ems_usb_command_msg(dev, &dev->active_params);
574 }
575 
576 /*
577  * Send a CPC_Control command to change behaviour when interface receives a CAN
578  * message, bus error or CAN state changed notifications.
579  */
580 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
581 {
582 	struct ems_cpc_msg cmd;
583 
584 	cmd.type = CPC_CMD_TYPE_CONTROL;
585 	cmd.length = CPC_MSG_HEADER_LEN + 1;
586 
587 	cmd.msgid = 0;
588 
589 	cmd.msg.generic[0] = val;
590 
591 	return ems_usb_command_msg(dev, &cmd);
592 }
593 
594 /*
595  * Start interface
596  */
597 static int ems_usb_start(struct ems_usb *dev)
598 {
599 	struct net_device *netdev = dev->netdev;
600 	int err, i;
601 
602 	dev->intr_in_buffer[0] = 0;
603 	dev->free_slots = 15; /* initial size */
604 
605 	for (i = 0; i < MAX_RX_URBS; i++) {
606 		struct urb *urb = NULL;
607 		u8 *buf = NULL;
608 
609 		/* create a URB, and a buffer for it */
610 		urb = usb_alloc_urb(0, GFP_KERNEL);
611 		if (!urb) {
612 			dev_err(netdev->dev.parent,
613 				"No memory left for URBs\n");
614 			return -ENOMEM;
615 		}
616 
617 		buf = usb_buffer_alloc(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
618 				       &urb->transfer_dma);
619 		if (!buf) {
620 			dev_err(netdev->dev.parent,
621 				"No memory left for USB buffer\n");
622 			usb_free_urb(urb);
623 			return -ENOMEM;
624 		}
625 
626 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
627 				  buf, RX_BUFFER_SIZE,
628 				  ems_usb_read_bulk_callback, dev);
629 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
630 		usb_anchor_urb(urb, &dev->rx_submitted);
631 
632 		err = usb_submit_urb(urb, GFP_KERNEL);
633 		if (err) {
634 			if (err == -ENODEV)
635 				netif_device_detach(dev->netdev);
636 
637 			usb_unanchor_urb(urb);
638 			usb_buffer_free(dev->udev, RX_BUFFER_SIZE, buf,
639 					urb->transfer_dma);
640 			break;
641 		}
642 
643 		/* Drop reference, USB core will take care of freeing it */
644 		usb_free_urb(urb);
645 	}
646 
647 	/* Did we submit any URBs */
648 	if (i == 0) {
649 		dev_warn(netdev->dev.parent, "couldn't setup read URBs\n");
650 		return err;
651 	}
652 
653 	/* Warn if we've couldn't transmit all the URBs */
654 	if (i < MAX_RX_URBS)
655 		dev_warn(netdev->dev.parent, "rx performance may be slow\n");
656 
657 	/* Setup and start interrupt URB */
658 	usb_fill_int_urb(dev->intr_urb, dev->udev,
659 			 usb_rcvintpipe(dev->udev, 1),
660 			 dev->intr_in_buffer,
661 			 INTR_IN_BUFFER_SIZE,
662 			 ems_usb_read_interrupt_callback, dev, 1);
663 
664 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
665 	if (err) {
666 		if (err == -ENODEV)
667 			netif_device_detach(dev->netdev);
668 
669 		dev_warn(netdev->dev.parent, "intr URB submit failed: %d\n",
670 			 err);
671 
672 		return err;
673 	}
674 
675 	/* CPC-USB will transfer received message to host */
676 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
677 	if (err)
678 		goto failed;
679 
680 	/* CPC-USB will transfer CAN state changes to host */
681 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
682 	if (err)
683 		goto failed;
684 
685 	/* CPC-USB will transfer bus errors to host */
686 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
687 	if (err)
688 		goto failed;
689 
690 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
691 	if (err)
692 		goto failed;
693 
694 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
695 
696 	return 0;
697 
698 failed:
699 	if (err == -ENODEV)
700 		netif_device_detach(dev->netdev);
701 
702 	dev_warn(netdev->dev.parent, "couldn't submit control: %d\n", err);
703 
704 	return err;
705 }
706 
707 static void unlink_all_urbs(struct ems_usb *dev)
708 {
709 	int i;
710 
711 	usb_unlink_urb(dev->intr_urb);
712 
713 	usb_kill_anchored_urbs(&dev->rx_submitted);
714 
715 	usb_kill_anchored_urbs(&dev->tx_submitted);
716 	atomic_set(&dev->active_tx_urbs, 0);
717 
718 	for (i = 0; i < MAX_TX_URBS; i++)
719 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
720 }
721 
722 static int ems_usb_open(struct net_device *netdev)
723 {
724 	struct ems_usb *dev = netdev_priv(netdev);
725 	int err;
726 
727 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
728 	if (err)
729 		return err;
730 
731 	/* common open */
732 	err = open_candev(netdev);
733 	if (err)
734 		return err;
735 
736 	/* finally start device */
737 	err = ems_usb_start(dev);
738 	if (err) {
739 		if (err == -ENODEV)
740 			netif_device_detach(dev->netdev);
741 
742 		dev_warn(netdev->dev.parent, "couldn't start device: %d\n",
743 			 err);
744 
745 		close_candev(netdev);
746 
747 		return err;
748 	}
749 
750 	dev->open_time = jiffies;
751 
752 	netif_start_queue(netdev);
753 
754 	return 0;
755 }
756 
757 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
758 {
759 	struct ems_usb *dev = netdev_priv(netdev);
760 	struct ems_tx_urb_context *context = NULL;
761 	struct net_device_stats *stats = &netdev->stats;
762 	struct can_frame *cf = (struct can_frame *)skb->data;
763 	struct ems_cpc_msg *msg;
764 	struct urb *urb;
765 	u8 *buf;
766 	int i, err;
767 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
768 			+ sizeof(struct cpc_can_msg);
769 
770 	/* create a URB, and a buffer for it, and copy the data to the URB */
771 	urb = usb_alloc_urb(0, GFP_ATOMIC);
772 	if (!urb) {
773 		dev_err(netdev->dev.parent, "No memory left for URBs\n");
774 		goto nomem;
775 	}
776 
777 	buf = usb_buffer_alloc(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
778 	if (!buf) {
779 		dev_err(netdev->dev.parent, "No memory left for USB buffer\n");
780 		usb_free_urb(urb);
781 		goto nomem;
782 	}
783 
784 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
785 
786 	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
787 	msg->msg.can_msg.length = cf->can_dlc;
788 
789 	if (cf->can_id & CAN_RTR_FLAG) {
790 		msg->type = cf->can_id & CAN_EFF_FLAG ?
791 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
792 
793 		msg->length = CPC_CAN_MSG_MIN_SIZE;
794 	} else {
795 		msg->type = cf->can_id & CAN_EFF_FLAG ?
796 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
797 
798 		for (i = 0; i < cf->can_dlc; i++)
799 			msg->msg.can_msg.msg[i] = cf->data[i];
800 
801 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
802 	}
803 
804 	/* Respect byte order */
805 	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
806 
807 	for (i = 0; i < MAX_TX_URBS; i++) {
808 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
809 			context = &dev->tx_contexts[i];
810 			break;
811 		}
812 	}
813 
814 	/*
815 	 * May never happen! When this happens we'd more URBs in flight as
816 	 * allowed (MAX_TX_URBS).
817 	 */
818 	if (!context) {
819 		usb_unanchor_urb(urb);
820 		usb_buffer_free(dev->udev, size, buf, urb->transfer_dma);
821 
822 		dev_warn(netdev->dev.parent, "couldn't find free context\n");
823 
824 		return NETDEV_TX_BUSY;
825 	}
826 
827 	context->dev = dev;
828 	context->echo_index = i;
829 	context->dlc = cf->can_dlc;
830 
831 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
832 			  size, ems_usb_write_bulk_callback, context);
833 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
834 	usb_anchor_urb(urb, &dev->tx_submitted);
835 
836 	can_put_echo_skb(skb, netdev, context->echo_index);
837 
838 	atomic_inc(&dev->active_tx_urbs);
839 
840 	err = usb_submit_urb(urb, GFP_ATOMIC);
841 	if (unlikely(err)) {
842 		can_free_echo_skb(netdev, context->echo_index);
843 
844 		usb_unanchor_urb(urb);
845 		usb_buffer_free(dev->udev, size, buf, urb->transfer_dma);
846 		dev_kfree_skb(skb);
847 
848 		atomic_dec(&dev->active_tx_urbs);
849 
850 		if (err == -ENODEV) {
851 			netif_device_detach(netdev);
852 		} else {
853 			dev_warn(netdev->dev.parent, "failed tx_urb %d\n", err);
854 
855 			stats->tx_dropped++;
856 		}
857 	} else {
858 		netdev->trans_start = jiffies;
859 
860 		/* Slow down tx path */
861 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
862 		    dev->free_slots < 5) {
863 			netif_stop_queue(netdev);
864 		}
865 	}
866 
867 	/*
868 	 * Release our reference to this URB, the USB core will eventually free
869 	 * it entirely.
870 	 */
871 	usb_free_urb(urb);
872 
873 	return NETDEV_TX_OK;
874 
875 nomem:
876 	if (skb)
877 		dev_kfree_skb(skb);
878 
879 	stats->tx_dropped++;
880 
881 	return NETDEV_TX_OK;
882 }
883 
884 static int ems_usb_close(struct net_device *netdev)
885 {
886 	struct ems_usb *dev = netdev_priv(netdev);
887 
888 	/* Stop polling */
889 	unlink_all_urbs(dev);
890 
891 	netif_stop_queue(netdev);
892 
893 	/* Set CAN controller to reset mode */
894 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
895 		dev_warn(netdev->dev.parent, "couldn't stop device");
896 
897 	close_candev(netdev);
898 
899 	dev->open_time = 0;
900 
901 	return 0;
902 }
903 
904 static const struct net_device_ops ems_usb_netdev_ops = {
905 	.ndo_open = ems_usb_open,
906 	.ndo_stop = ems_usb_close,
907 	.ndo_start_xmit = ems_usb_start_xmit,
908 };
909 
910 static struct can_bittiming_const ems_usb_bittiming_const = {
911 	.name = "ems_usb",
912 	.tseg1_min = 1,
913 	.tseg1_max = 16,
914 	.tseg2_min = 1,
915 	.tseg2_max = 8,
916 	.sjw_max = 4,
917 	.brp_min = 1,
918 	.brp_max = 64,
919 	.brp_inc = 1,
920 };
921 
922 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
923 {
924 	struct ems_usb *dev = netdev_priv(netdev);
925 
926 	if (!dev->open_time)
927 		return -EINVAL;
928 
929 	switch (mode) {
930 	case CAN_MODE_START:
931 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
932 			dev_warn(netdev->dev.parent, "couldn't start device");
933 
934 		if (netif_queue_stopped(netdev))
935 			netif_wake_queue(netdev);
936 		break;
937 
938 	default:
939 		return -EOPNOTSUPP;
940 	}
941 
942 	return 0;
943 }
944 
945 static int ems_usb_set_bittiming(struct net_device *netdev)
946 {
947 	struct ems_usb *dev = netdev_priv(netdev);
948 	struct can_bittiming *bt = &dev->can.bittiming;
949 	u8 btr0, btr1;
950 
951 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
952 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
953 		(((bt->phase_seg2 - 1) & 0x7) << 4);
954 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
955 		btr1 |= 0x80;
956 
957 	dev_info(netdev->dev.parent, "setting BTR0=0x%02x BTR1=0x%02x\n",
958 		 btr0, btr1);
959 
960 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
961 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
962 
963 	return ems_usb_command_msg(dev, &dev->active_params);
964 }
965 
966 static void init_params_sja1000(struct ems_cpc_msg *msg)
967 {
968 	struct cpc_sja1000_params *sja1000 =
969 		&msg->msg.can_params.cc_params.sja1000;
970 
971 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
972 	msg->length = sizeof(struct cpc_can_params);
973 	msg->msgid = 0;
974 
975 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
976 
977 	/* Acceptance filter open */
978 	sja1000->acc_code0 = 0x00;
979 	sja1000->acc_code1 = 0x00;
980 	sja1000->acc_code2 = 0x00;
981 	sja1000->acc_code3 = 0x00;
982 
983 	/* Acceptance filter open */
984 	sja1000->acc_mask0 = 0xFF;
985 	sja1000->acc_mask1 = 0xFF;
986 	sja1000->acc_mask2 = 0xFF;
987 	sja1000->acc_mask3 = 0xFF;
988 
989 	sja1000->btr0 = 0;
990 	sja1000->btr1 = 0;
991 
992 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
993 	sja1000->mode = SJA1000_MOD_RM;
994 }
995 
996 /*
997  * probe function for new CPC-USB devices
998  */
999 static int ems_usb_probe(struct usb_interface *intf,
1000 			 const struct usb_device_id *id)
1001 {
1002 	struct net_device *netdev;
1003 	struct ems_usb *dev;
1004 	int i, err = -ENOMEM;
1005 
1006 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
1007 	if (!netdev) {
1008 		dev_err(netdev->dev.parent, "Couldn't alloc candev\n");
1009 		return -ENOMEM;
1010 	}
1011 
1012 	dev = netdev_priv(netdev);
1013 
1014 	dev->udev = interface_to_usbdev(intf);
1015 	dev->netdev = netdev;
1016 
1017 	dev->can.state = CAN_STATE_STOPPED;
1018 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1019 	dev->can.bittiming_const = &ems_usb_bittiming_const;
1020 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
1021 	dev->can.do_set_mode = ems_usb_set_mode;
1022 
1023 	netdev->flags |= IFF_ECHO; /* we support local echo */
1024 
1025 	netdev->netdev_ops = &ems_usb_netdev_ops;
1026 
1027 	netdev->flags |= IFF_ECHO; /* we support local echo */
1028 
1029 	init_usb_anchor(&dev->rx_submitted);
1030 
1031 	init_usb_anchor(&dev->tx_submitted);
1032 	atomic_set(&dev->active_tx_urbs, 0);
1033 
1034 	for (i = 0; i < MAX_TX_URBS; i++)
1035 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1036 
1037 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1038 	if (!dev->intr_urb) {
1039 		dev_err(netdev->dev.parent, "Couldn't alloc intr URB\n");
1040 		goto cleanup_candev;
1041 	}
1042 
1043 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1044 	if (!dev->intr_in_buffer) {
1045 		dev_err(netdev->dev.parent, "Couldn't alloc Intr buffer\n");
1046 		goto cleanup_intr_urb;
1047 	}
1048 
1049 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1050 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1051 	if (!dev->tx_msg_buffer) {
1052 		dev_err(netdev->dev.parent, "Couldn't alloc Tx buffer\n");
1053 		goto cleanup_intr_in_buffer;
1054 	}
1055 
1056 	usb_set_intfdata(intf, dev);
1057 
1058 	SET_NETDEV_DEV(netdev, &intf->dev);
1059 
1060 	init_params_sja1000(&dev->active_params);
1061 
1062 	err = ems_usb_command_msg(dev, &dev->active_params);
1063 	if (err) {
1064 		dev_err(netdev->dev.parent,
1065 			"couldn't initialize controller: %d\n", err);
1066 		goto cleanup_tx_msg_buffer;
1067 	}
1068 
1069 	err = register_candev(netdev);
1070 	if (err) {
1071 		dev_err(netdev->dev.parent,
1072 			"couldn't register CAN device: %d\n", err);
1073 		goto cleanup_tx_msg_buffer;
1074 	}
1075 
1076 	return 0;
1077 
1078 cleanup_tx_msg_buffer:
1079 	kfree(dev->tx_msg_buffer);
1080 
1081 cleanup_intr_in_buffer:
1082 	kfree(dev->intr_in_buffer);
1083 
1084 cleanup_intr_urb:
1085 	usb_free_urb(dev->intr_urb);
1086 
1087 cleanup_candev:
1088 	free_candev(netdev);
1089 
1090 	return err;
1091 }
1092 
1093 /*
1094  * called by the usb core when the device is removed from the system
1095  */
1096 static void ems_usb_disconnect(struct usb_interface *intf)
1097 {
1098 	struct ems_usb *dev = usb_get_intfdata(intf);
1099 
1100 	usb_set_intfdata(intf, NULL);
1101 
1102 	if (dev) {
1103 		unregister_netdev(dev->netdev);
1104 		free_candev(dev->netdev);
1105 
1106 		unlink_all_urbs(dev);
1107 
1108 		usb_free_urb(dev->intr_urb);
1109 
1110 		kfree(dev->intr_in_buffer);
1111 	}
1112 }
1113 
1114 /* usb specific object needed to register this driver with the usb subsystem */
1115 static struct usb_driver ems_usb_driver = {
1116 	.name = "ems_usb",
1117 	.probe = ems_usb_probe,
1118 	.disconnect = ems_usb_disconnect,
1119 	.id_table = ems_usb_table,
1120 };
1121 
1122 static int __init ems_usb_init(void)
1123 {
1124 	int err;
1125 
1126 	printk(KERN_INFO "CPC-USB kernel driver loaded\n");
1127 
1128 	/* register this driver with the USB subsystem */
1129 	err = usb_register(&ems_usb_driver);
1130 
1131 	if (err) {
1132 		err("usb_register failed. Error number %d\n", err);
1133 		return err;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static void __exit ems_usb_exit(void)
1140 {
1141 	/* deregister this driver with the USB subsystem */
1142 	usb_deregister(&ems_usb_driver);
1143 }
1144 
1145 module_init(ems_usb_init);
1146 module_exit(ems_usb_exit);
1147