xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision a531b0c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
4  *
5  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
6  */
7 #include <linux/signal.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/netdevice.h>
11 #include <linux/usb.h>
12 
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/error.h>
16 
17 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
18 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
19 MODULE_LICENSE("GPL v2");
20 
21 /* Control-Values for CPC_Control() Command Subject Selection */
22 #define CONTR_CAN_MESSAGE 0x04
23 #define CONTR_CAN_STATE   0x0C
24 #define CONTR_BUS_ERROR   0x1C
25 
26 /* Control Command Actions */
27 #define CONTR_CONT_OFF 0
28 #define CONTR_CONT_ON  1
29 #define CONTR_ONCE     2
30 
31 /* Messages from CPC to PC */
32 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
33 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
34 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
35 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
36 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
37 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
38 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
39 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
40 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
41 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
42 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
43 
44 /* Messages from the PC to the CPC interface  */
45 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
46 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
47 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
48 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
49 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
50 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
51 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
52 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
53 
54 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
55 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
56 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
57 
58 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
59 
60 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
61 
62 /* Overrun types */
63 #define CPC_OVR_EVENT_CAN       0x01
64 #define CPC_OVR_EVENT_CANSTATE  0x02
65 #define CPC_OVR_EVENT_BUSERROR  0x04
66 
67 /*
68  * If the CAN controller lost a message we indicate it with the highest bit
69  * set in the count field.
70  */
71 #define CPC_OVR_HW 0x80
72 
73 /* Size of the "struct ems_cpc_msg" without the union */
74 #define CPC_MSG_HEADER_LEN   11
75 #define CPC_CAN_MSG_MIN_SIZE 5
76 
77 /* Define these values to match your devices */
78 #define USB_CPCUSB_VENDOR_ID 0x12D6
79 
80 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
81 
82 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
83 #define SJA1000_MOD_NORMAL 0x00
84 #define SJA1000_MOD_RM     0x01
85 
86 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
87 #define SJA1000_ECC_SEG   0x1F
88 #define SJA1000_ECC_DIR   0x20
89 #define SJA1000_ECC_ERR   0x06
90 #define SJA1000_ECC_BIT   0x00
91 #define SJA1000_ECC_FORM  0x40
92 #define SJA1000_ECC_STUFF 0x80
93 #define SJA1000_ECC_MASK  0xc0
94 
95 /* Status register content */
96 #define SJA1000_SR_BS 0x80
97 #define SJA1000_SR_ES 0x40
98 
99 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
100 
101 /*
102  * The device actually uses a 16MHz clock to generate the CAN clock
103  * but it expects SJA1000 bit settings based on 8MHz (is internally
104  * converted).
105  */
106 #define EMS_USB_ARM7_CLOCK 8000000
107 
108 #define CPC_TX_QUEUE_TRIGGER_LOW	25
109 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
110 
111 /*
112  * CAN-Message representation in a CPC_MSG. Message object type is
113  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
114  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
115  */
116 struct cpc_can_msg {
117 	__le32 id;
118 	u8 length;
119 	u8 msg[8];
120 };
121 
122 /* Representation of the CAN parameters for the SJA1000 controller */
123 struct cpc_sja1000_params {
124 	u8 mode;
125 	u8 acc_code0;
126 	u8 acc_code1;
127 	u8 acc_code2;
128 	u8 acc_code3;
129 	u8 acc_mask0;
130 	u8 acc_mask1;
131 	u8 acc_mask2;
132 	u8 acc_mask3;
133 	u8 btr0;
134 	u8 btr1;
135 	u8 outp_contr;
136 };
137 
138 /* CAN params message representation */
139 struct cpc_can_params {
140 	u8 cc_type;
141 
142 	/* Will support M16C CAN controller in the future */
143 	union {
144 		struct cpc_sja1000_params sja1000;
145 	} cc_params;
146 };
147 
148 /* Structure for confirmed message handling */
149 struct cpc_confirm {
150 	u8 error; /* error code */
151 };
152 
153 /* Structure for overrun conditions */
154 struct cpc_overrun {
155 	u8 event;
156 	u8 count;
157 };
158 
159 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
160 struct cpc_sja1000_can_error {
161 	u8 ecc;
162 	u8 rxerr;
163 	u8 txerr;
164 };
165 
166 /* structure for CAN error conditions */
167 struct cpc_can_error {
168 	u8 ecode;
169 
170 	struct {
171 		u8 cc_type;
172 
173 		/* Other controllers may also provide error code capture regs */
174 		union {
175 			struct cpc_sja1000_can_error sja1000;
176 		} regs;
177 	} cc;
178 };
179 
180 /*
181  * Structure containing RX/TX error counter. This structure is used to request
182  * the values of the CAN controllers TX and RX error counter.
183  */
184 struct cpc_can_err_counter {
185 	u8 rx;
186 	u8 tx;
187 };
188 
189 /* Main message type used between library and application */
190 struct __packed ems_cpc_msg {
191 	u8 type;	/* type of message */
192 	u8 length;	/* length of data within union 'msg' */
193 	u8 msgid;	/* confirmation handle */
194 	__le32 ts_sec;	/* timestamp in seconds */
195 	__le32 ts_nsec;	/* timestamp in nano seconds */
196 
197 	union {
198 		u8 generic[64];
199 		struct cpc_can_msg can_msg;
200 		struct cpc_can_params can_params;
201 		struct cpc_confirm confirmation;
202 		struct cpc_overrun overrun;
203 		struct cpc_can_error error;
204 		struct cpc_can_err_counter err_counter;
205 		u8 can_state;
206 	} msg;
207 };
208 
209 /*
210  * Table of devices that work with this driver
211  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
212  */
213 static struct usb_device_id ems_usb_table[] = {
214 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
215 	{} /* Terminating entry */
216 };
217 
218 MODULE_DEVICE_TABLE(usb, ems_usb_table);
219 
220 #define RX_BUFFER_SIZE      64
221 #define CPC_HEADER_SIZE     4
222 #define INTR_IN_BUFFER_SIZE 4
223 
224 #define MAX_RX_URBS 10
225 #define MAX_TX_URBS 10
226 
227 struct ems_usb;
228 
229 struct ems_tx_urb_context {
230 	struct ems_usb *dev;
231 
232 	u32 echo_index;
233 	u8 dlc;
234 };
235 
236 struct ems_usb {
237 	struct can_priv can; /* must be the first member */
238 
239 	struct sk_buff *echo_skb[MAX_TX_URBS];
240 
241 	struct usb_device *udev;
242 	struct net_device *netdev;
243 
244 	atomic_t active_tx_urbs;
245 	struct usb_anchor tx_submitted;
246 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
247 
248 	struct usb_anchor rx_submitted;
249 
250 	struct urb *intr_urb;
251 
252 	u8 *tx_msg_buffer;
253 
254 	u8 *intr_in_buffer;
255 	unsigned int free_slots; /* remember number of available slots */
256 
257 	struct ems_cpc_msg active_params; /* active controller parameters */
258 	void *rxbuf[MAX_RX_URBS];
259 	dma_addr_t rxbuf_dma[MAX_RX_URBS];
260 };
261 
262 static void ems_usb_read_interrupt_callback(struct urb *urb)
263 {
264 	struct ems_usb *dev = urb->context;
265 	struct net_device *netdev = dev->netdev;
266 	int err;
267 
268 	if (!netif_device_present(netdev))
269 		return;
270 
271 	switch (urb->status) {
272 	case 0:
273 		dev->free_slots = dev->intr_in_buffer[1];
274 		if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
275 		    netif_queue_stopped(netdev))
276 			netif_wake_queue(netdev);
277 		break;
278 
279 	case -ECONNRESET: /* unlink */
280 	case -ENOENT:
281 	case -EPIPE:
282 	case -EPROTO:
283 	case -ESHUTDOWN:
284 		return;
285 
286 	default:
287 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
288 		break;
289 	}
290 
291 	err = usb_submit_urb(urb, GFP_ATOMIC);
292 
293 	if (err == -ENODEV)
294 		netif_device_detach(netdev);
295 	else if (err)
296 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
297 }
298 
299 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
300 {
301 	struct can_frame *cf;
302 	struct sk_buff *skb;
303 	int i;
304 	struct net_device_stats *stats = &dev->netdev->stats;
305 
306 	skb = alloc_can_skb(dev->netdev, &cf);
307 	if (skb == NULL)
308 		return;
309 
310 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
311 	cf->len = can_cc_dlc2len(msg->msg.can_msg.length & 0xF);
312 
313 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
314 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
315 		cf->can_id |= CAN_EFF_FLAG;
316 
317 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
318 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
319 		cf->can_id |= CAN_RTR_FLAG;
320 	} else {
321 		for (i = 0; i < cf->len; i++)
322 			cf->data[i] = msg->msg.can_msg.msg[i];
323 	}
324 
325 	stats->rx_packets++;
326 	stats->rx_bytes += cf->len;
327 	netif_rx(skb);
328 }
329 
330 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
331 {
332 	struct can_frame *cf;
333 	struct sk_buff *skb;
334 	struct net_device_stats *stats = &dev->netdev->stats;
335 
336 	skb = alloc_can_err_skb(dev->netdev, &cf);
337 	if (skb == NULL)
338 		return;
339 
340 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
341 		u8 state = msg->msg.can_state;
342 
343 		if (state & SJA1000_SR_BS) {
344 			dev->can.state = CAN_STATE_BUS_OFF;
345 			cf->can_id |= CAN_ERR_BUSOFF;
346 
347 			dev->can.can_stats.bus_off++;
348 			can_bus_off(dev->netdev);
349 		} else if (state & SJA1000_SR_ES) {
350 			dev->can.state = CAN_STATE_ERROR_WARNING;
351 			dev->can.can_stats.error_warning++;
352 		} else {
353 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
354 			dev->can.can_stats.error_passive++;
355 		}
356 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
357 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
358 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
359 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
360 
361 		/* bus error interrupt */
362 		dev->can.can_stats.bus_error++;
363 		stats->rx_errors++;
364 
365 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
366 
367 		switch (ecc & SJA1000_ECC_MASK) {
368 		case SJA1000_ECC_BIT:
369 			cf->data[2] |= CAN_ERR_PROT_BIT;
370 			break;
371 		case SJA1000_ECC_FORM:
372 			cf->data[2] |= CAN_ERR_PROT_FORM;
373 			break;
374 		case SJA1000_ECC_STUFF:
375 			cf->data[2] |= CAN_ERR_PROT_STUFF;
376 			break;
377 		default:
378 			cf->data[3] = ecc & SJA1000_ECC_SEG;
379 			break;
380 		}
381 
382 		/* Error occurred during transmission? */
383 		if ((ecc & SJA1000_ECC_DIR) == 0)
384 			cf->data[2] |= CAN_ERR_PROT_TX;
385 
386 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
387 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
388 			cf->can_id |= CAN_ERR_CRTL;
389 			cf->data[1] = (txerr > rxerr) ?
390 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
391 		}
392 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
393 		cf->can_id |= CAN_ERR_CRTL;
394 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
395 
396 		stats->rx_over_errors++;
397 		stats->rx_errors++;
398 	}
399 
400 	stats->rx_packets++;
401 	stats->rx_bytes += cf->len;
402 	netif_rx(skb);
403 }
404 
405 /*
406  * callback for bulk IN urb
407  */
408 static void ems_usb_read_bulk_callback(struct urb *urb)
409 {
410 	struct ems_usb *dev = urb->context;
411 	struct net_device *netdev;
412 	int retval;
413 
414 	netdev = dev->netdev;
415 
416 	if (!netif_device_present(netdev))
417 		return;
418 
419 	switch (urb->status) {
420 	case 0: /* success */
421 		break;
422 
423 	case -ENOENT:
424 		return;
425 
426 	default:
427 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
428 		goto resubmit_urb;
429 	}
430 
431 	if (urb->actual_length > CPC_HEADER_SIZE) {
432 		struct ems_cpc_msg *msg;
433 		u8 *ibuf = urb->transfer_buffer;
434 		u8 msg_count, start;
435 
436 		msg_count = ibuf[0] & ~0x80;
437 
438 		start = CPC_HEADER_SIZE;
439 
440 		while (msg_count) {
441 			msg = (struct ems_cpc_msg *)&ibuf[start];
442 
443 			switch (msg->type) {
444 			case CPC_MSG_TYPE_CAN_STATE:
445 				/* Process CAN state changes */
446 				ems_usb_rx_err(dev, msg);
447 				break;
448 
449 			case CPC_MSG_TYPE_CAN_FRAME:
450 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
451 			case CPC_MSG_TYPE_RTR_FRAME:
452 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
453 				ems_usb_rx_can_msg(dev, msg);
454 				break;
455 
456 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
457 				/* Process errorframe */
458 				ems_usb_rx_err(dev, msg);
459 				break;
460 
461 			case CPC_MSG_TYPE_OVERRUN:
462 				/* Message lost while receiving */
463 				ems_usb_rx_err(dev, msg);
464 				break;
465 			}
466 
467 			start += CPC_MSG_HEADER_LEN + msg->length;
468 			msg_count--;
469 
470 			if (start > urb->transfer_buffer_length) {
471 				netdev_err(netdev, "format error\n");
472 				break;
473 			}
474 		}
475 	}
476 
477 resubmit_urb:
478 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
479 			  urb->transfer_buffer, RX_BUFFER_SIZE,
480 			  ems_usb_read_bulk_callback, dev);
481 
482 	retval = usb_submit_urb(urb, GFP_ATOMIC);
483 
484 	if (retval == -ENODEV)
485 		netif_device_detach(netdev);
486 	else if (retval)
487 		netdev_err(netdev,
488 			   "failed resubmitting read bulk urb: %d\n", retval);
489 }
490 
491 /*
492  * callback for bulk IN urb
493  */
494 static void ems_usb_write_bulk_callback(struct urb *urb)
495 {
496 	struct ems_tx_urb_context *context = urb->context;
497 	struct ems_usb *dev;
498 	struct net_device *netdev;
499 
500 	BUG_ON(!context);
501 
502 	dev = context->dev;
503 	netdev = dev->netdev;
504 
505 	/* free up our allocated buffer */
506 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
507 			  urb->transfer_buffer, urb->transfer_dma);
508 
509 	atomic_dec(&dev->active_tx_urbs);
510 
511 	if (!netif_device_present(netdev))
512 		return;
513 
514 	if (urb->status)
515 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
516 
517 	netif_trans_update(netdev);
518 
519 	/* transmission complete interrupt */
520 	netdev->stats.tx_packets++;
521 	netdev->stats.tx_bytes += context->dlc;
522 
523 	can_get_echo_skb(netdev, context->echo_index, NULL);
524 
525 	/* Release context */
526 	context->echo_index = MAX_TX_URBS;
527 
528 }
529 
530 /*
531  * Send the given CPC command synchronously
532  */
533 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
534 {
535 	int actual_length;
536 
537 	/* Copy payload */
538 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
539 	       msg->length + CPC_MSG_HEADER_LEN);
540 
541 	/* Clear header */
542 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
543 
544 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
545 			    &dev->tx_msg_buffer[0],
546 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
547 			    &actual_length, 1000);
548 }
549 
550 /*
551  * Change CAN controllers' mode register
552  */
553 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
554 {
555 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
556 
557 	return ems_usb_command_msg(dev, &dev->active_params);
558 }
559 
560 /*
561  * Send a CPC_Control command to change behaviour when interface receives a CAN
562  * message, bus error or CAN state changed notifications.
563  */
564 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
565 {
566 	struct ems_cpc_msg cmd;
567 
568 	cmd.type = CPC_CMD_TYPE_CONTROL;
569 	cmd.length = CPC_MSG_HEADER_LEN + 1;
570 
571 	cmd.msgid = 0;
572 
573 	cmd.msg.generic[0] = val;
574 
575 	return ems_usb_command_msg(dev, &cmd);
576 }
577 
578 /*
579  * Start interface
580  */
581 static int ems_usb_start(struct ems_usb *dev)
582 {
583 	struct net_device *netdev = dev->netdev;
584 	int err, i;
585 
586 	dev->intr_in_buffer[0] = 0;
587 	dev->free_slots = 50; /* initial size */
588 
589 	for (i = 0; i < MAX_RX_URBS; i++) {
590 		struct urb *urb = NULL;
591 		u8 *buf = NULL;
592 		dma_addr_t buf_dma;
593 
594 		/* create a URB, and a buffer for it */
595 		urb = usb_alloc_urb(0, GFP_KERNEL);
596 		if (!urb) {
597 			err = -ENOMEM;
598 			break;
599 		}
600 
601 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
602 					 &buf_dma);
603 		if (!buf) {
604 			netdev_err(netdev, "No memory left for USB buffer\n");
605 			usb_free_urb(urb);
606 			err = -ENOMEM;
607 			break;
608 		}
609 
610 		urb->transfer_dma = buf_dma;
611 
612 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
613 				  buf, RX_BUFFER_SIZE,
614 				  ems_usb_read_bulk_callback, dev);
615 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
616 		usb_anchor_urb(urb, &dev->rx_submitted);
617 
618 		err = usb_submit_urb(urb, GFP_KERNEL);
619 		if (err) {
620 			usb_unanchor_urb(urb);
621 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
622 					  urb->transfer_dma);
623 			usb_free_urb(urb);
624 			break;
625 		}
626 
627 		dev->rxbuf[i] = buf;
628 		dev->rxbuf_dma[i] = buf_dma;
629 
630 		/* Drop reference, USB core will take care of freeing it */
631 		usb_free_urb(urb);
632 	}
633 
634 	/* Did we submit any URBs */
635 	if (i == 0) {
636 		netdev_warn(netdev, "couldn't setup read URBs\n");
637 		return err;
638 	}
639 
640 	/* Warn if we've couldn't transmit all the URBs */
641 	if (i < MAX_RX_URBS)
642 		netdev_warn(netdev, "rx performance may be slow\n");
643 
644 	/* Setup and start interrupt URB */
645 	usb_fill_int_urb(dev->intr_urb, dev->udev,
646 			 usb_rcvintpipe(dev->udev, 1),
647 			 dev->intr_in_buffer,
648 			 INTR_IN_BUFFER_SIZE,
649 			 ems_usb_read_interrupt_callback, dev, 1);
650 
651 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
652 	if (err) {
653 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
654 
655 		return err;
656 	}
657 
658 	/* CPC-USB will transfer received message to host */
659 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
660 	if (err)
661 		goto failed;
662 
663 	/* CPC-USB will transfer CAN state changes to host */
664 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
665 	if (err)
666 		goto failed;
667 
668 	/* CPC-USB will transfer bus errors to host */
669 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
670 	if (err)
671 		goto failed;
672 
673 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
674 	if (err)
675 		goto failed;
676 
677 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
678 
679 	return 0;
680 
681 failed:
682 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
683 
684 	return err;
685 }
686 
687 static void unlink_all_urbs(struct ems_usb *dev)
688 {
689 	int i;
690 
691 	usb_unlink_urb(dev->intr_urb);
692 
693 	usb_kill_anchored_urbs(&dev->rx_submitted);
694 
695 	for (i = 0; i < MAX_RX_URBS; ++i)
696 		usb_free_coherent(dev->udev, RX_BUFFER_SIZE,
697 				  dev->rxbuf[i], dev->rxbuf_dma[i]);
698 
699 	usb_kill_anchored_urbs(&dev->tx_submitted);
700 	atomic_set(&dev->active_tx_urbs, 0);
701 
702 	for (i = 0; i < MAX_TX_URBS; i++)
703 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
704 }
705 
706 static int ems_usb_open(struct net_device *netdev)
707 {
708 	struct ems_usb *dev = netdev_priv(netdev);
709 	int err;
710 
711 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
712 	if (err)
713 		return err;
714 
715 	/* common open */
716 	err = open_candev(netdev);
717 	if (err)
718 		return err;
719 
720 	/* finally start device */
721 	err = ems_usb_start(dev);
722 	if (err) {
723 		if (err == -ENODEV)
724 			netif_device_detach(dev->netdev);
725 
726 		netdev_warn(netdev, "couldn't start device: %d\n", err);
727 
728 		close_candev(netdev);
729 
730 		return err;
731 	}
732 
733 
734 	netif_start_queue(netdev);
735 
736 	return 0;
737 }
738 
739 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
740 {
741 	struct ems_usb *dev = netdev_priv(netdev);
742 	struct ems_tx_urb_context *context = NULL;
743 	struct net_device_stats *stats = &netdev->stats;
744 	struct can_frame *cf = (struct can_frame *)skb->data;
745 	struct ems_cpc_msg *msg;
746 	struct urb *urb;
747 	u8 *buf;
748 	int i, err;
749 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
750 			+ sizeof(struct cpc_can_msg);
751 
752 	if (can_dropped_invalid_skb(netdev, skb))
753 		return NETDEV_TX_OK;
754 
755 	/* create a URB, and a buffer for it, and copy the data to the URB */
756 	urb = usb_alloc_urb(0, GFP_ATOMIC);
757 	if (!urb)
758 		goto nomem;
759 
760 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
761 	if (!buf) {
762 		netdev_err(netdev, "No memory left for USB buffer\n");
763 		usb_free_urb(urb);
764 		goto nomem;
765 	}
766 
767 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
768 
769 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
770 	msg->msg.can_msg.length = cf->len;
771 
772 	if (cf->can_id & CAN_RTR_FLAG) {
773 		msg->type = cf->can_id & CAN_EFF_FLAG ?
774 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
775 
776 		msg->length = CPC_CAN_MSG_MIN_SIZE;
777 	} else {
778 		msg->type = cf->can_id & CAN_EFF_FLAG ?
779 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
780 
781 		for (i = 0; i < cf->len; i++)
782 			msg->msg.can_msg.msg[i] = cf->data[i];
783 
784 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->len;
785 	}
786 
787 	for (i = 0; i < MAX_TX_URBS; i++) {
788 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
789 			context = &dev->tx_contexts[i];
790 			break;
791 		}
792 	}
793 
794 	/*
795 	 * May never happen! When this happens we'd more URBs in flight as
796 	 * allowed (MAX_TX_URBS).
797 	 */
798 	if (!context) {
799 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
800 		usb_free_urb(urb);
801 
802 		netdev_warn(netdev, "couldn't find free context\n");
803 
804 		return NETDEV_TX_BUSY;
805 	}
806 
807 	context->dev = dev;
808 	context->echo_index = i;
809 	context->dlc = cf->len;
810 
811 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
812 			  size, ems_usb_write_bulk_callback, context);
813 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
814 	usb_anchor_urb(urb, &dev->tx_submitted);
815 
816 	can_put_echo_skb(skb, netdev, context->echo_index, 0);
817 
818 	atomic_inc(&dev->active_tx_urbs);
819 
820 	err = usb_submit_urb(urb, GFP_ATOMIC);
821 	if (unlikely(err)) {
822 		can_free_echo_skb(netdev, context->echo_index, NULL);
823 
824 		usb_unanchor_urb(urb);
825 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
826 		dev_kfree_skb(skb);
827 
828 		atomic_dec(&dev->active_tx_urbs);
829 
830 		if (err == -ENODEV) {
831 			netif_device_detach(netdev);
832 		} else {
833 			netdev_warn(netdev, "failed tx_urb %d\n", err);
834 
835 			stats->tx_dropped++;
836 		}
837 	} else {
838 		netif_trans_update(netdev);
839 
840 		/* Slow down tx path */
841 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
842 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
843 			netif_stop_queue(netdev);
844 		}
845 	}
846 
847 	/*
848 	 * Release our reference to this URB, the USB core will eventually free
849 	 * it entirely.
850 	 */
851 	usb_free_urb(urb);
852 
853 	return NETDEV_TX_OK;
854 
855 nomem:
856 	dev_kfree_skb(skb);
857 	stats->tx_dropped++;
858 
859 	return NETDEV_TX_OK;
860 }
861 
862 static int ems_usb_close(struct net_device *netdev)
863 {
864 	struct ems_usb *dev = netdev_priv(netdev);
865 
866 	/* Stop polling */
867 	unlink_all_urbs(dev);
868 
869 	netif_stop_queue(netdev);
870 
871 	/* Set CAN controller to reset mode */
872 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
873 		netdev_warn(netdev, "couldn't stop device");
874 
875 	close_candev(netdev);
876 
877 	return 0;
878 }
879 
880 static const struct net_device_ops ems_usb_netdev_ops = {
881 	.ndo_open = ems_usb_open,
882 	.ndo_stop = ems_usb_close,
883 	.ndo_start_xmit = ems_usb_start_xmit,
884 	.ndo_change_mtu = can_change_mtu,
885 };
886 
887 static const struct can_bittiming_const ems_usb_bittiming_const = {
888 	.name = "ems_usb",
889 	.tseg1_min = 1,
890 	.tseg1_max = 16,
891 	.tseg2_min = 1,
892 	.tseg2_max = 8,
893 	.sjw_max = 4,
894 	.brp_min = 1,
895 	.brp_max = 64,
896 	.brp_inc = 1,
897 };
898 
899 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
900 {
901 	struct ems_usb *dev = netdev_priv(netdev);
902 
903 	switch (mode) {
904 	case CAN_MODE_START:
905 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
906 			netdev_warn(netdev, "couldn't start device");
907 
908 		if (netif_queue_stopped(netdev))
909 			netif_wake_queue(netdev);
910 		break;
911 
912 	default:
913 		return -EOPNOTSUPP;
914 	}
915 
916 	return 0;
917 }
918 
919 static int ems_usb_set_bittiming(struct net_device *netdev)
920 {
921 	struct ems_usb *dev = netdev_priv(netdev);
922 	struct can_bittiming *bt = &dev->can.bittiming;
923 	u8 btr0, btr1;
924 
925 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
926 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
927 		(((bt->phase_seg2 - 1) & 0x7) << 4);
928 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
929 		btr1 |= 0x80;
930 
931 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
932 
933 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
934 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
935 
936 	return ems_usb_command_msg(dev, &dev->active_params);
937 }
938 
939 static void init_params_sja1000(struct ems_cpc_msg *msg)
940 {
941 	struct cpc_sja1000_params *sja1000 =
942 		&msg->msg.can_params.cc_params.sja1000;
943 
944 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
945 	msg->length = sizeof(struct cpc_can_params);
946 	msg->msgid = 0;
947 
948 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
949 
950 	/* Acceptance filter open */
951 	sja1000->acc_code0 = 0x00;
952 	sja1000->acc_code1 = 0x00;
953 	sja1000->acc_code2 = 0x00;
954 	sja1000->acc_code3 = 0x00;
955 
956 	/* Acceptance filter open */
957 	sja1000->acc_mask0 = 0xFF;
958 	sja1000->acc_mask1 = 0xFF;
959 	sja1000->acc_mask2 = 0xFF;
960 	sja1000->acc_mask3 = 0xFF;
961 
962 	sja1000->btr0 = 0;
963 	sja1000->btr1 = 0;
964 
965 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
966 	sja1000->mode = SJA1000_MOD_RM;
967 }
968 
969 /*
970  * probe function for new CPC-USB devices
971  */
972 static int ems_usb_probe(struct usb_interface *intf,
973 			 const struct usb_device_id *id)
974 {
975 	struct net_device *netdev;
976 	struct ems_usb *dev;
977 	int i, err = -ENOMEM;
978 
979 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
980 	if (!netdev) {
981 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
982 		return -ENOMEM;
983 	}
984 
985 	dev = netdev_priv(netdev);
986 
987 	dev->udev = interface_to_usbdev(intf);
988 	dev->netdev = netdev;
989 
990 	dev->can.state = CAN_STATE_STOPPED;
991 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
992 	dev->can.bittiming_const = &ems_usb_bittiming_const;
993 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
994 	dev->can.do_set_mode = ems_usb_set_mode;
995 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
996 
997 	netdev->netdev_ops = &ems_usb_netdev_ops;
998 
999 	netdev->flags |= IFF_ECHO; /* we support local echo */
1000 
1001 	init_usb_anchor(&dev->rx_submitted);
1002 
1003 	init_usb_anchor(&dev->tx_submitted);
1004 	atomic_set(&dev->active_tx_urbs, 0);
1005 
1006 	for (i = 0; i < MAX_TX_URBS; i++)
1007 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1008 
1009 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1010 	if (!dev->intr_urb)
1011 		goto cleanup_candev;
1012 
1013 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1014 	if (!dev->intr_in_buffer)
1015 		goto cleanup_intr_urb;
1016 
1017 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1018 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1019 	if (!dev->tx_msg_buffer)
1020 		goto cleanup_intr_in_buffer;
1021 
1022 	usb_set_intfdata(intf, dev);
1023 
1024 	SET_NETDEV_DEV(netdev, &intf->dev);
1025 
1026 	init_params_sja1000(&dev->active_params);
1027 
1028 	err = ems_usb_command_msg(dev, &dev->active_params);
1029 	if (err) {
1030 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1031 		goto cleanup_tx_msg_buffer;
1032 	}
1033 
1034 	err = register_candev(netdev);
1035 	if (err) {
1036 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1037 		goto cleanup_tx_msg_buffer;
1038 	}
1039 
1040 	return 0;
1041 
1042 cleanup_tx_msg_buffer:
1043 	kfree(dev->tx_msg_buffer);
1044 
1045 cleanup_intr_in_buffer:
1046 	kfree(dev->intr_in_buffer);
1047 
1048 cleanup_intr_urb:
1049 	usb_free_urb(dev->intr_urb);
1050 
1051 cleanup_candev:
1052 	free_candev(netdev);
1053 
1054 	return err;
1055 }
1056 
1057 /*
1058  * called by the usb core when the device is removed from the system
1059  */
1060 static void ems_usb_disconnect(struct usb_interface *intf)
1061 {
1062 	struct ems_usb *dev = usb_get_intfdata(intf);
1063 
1064 	usb_set_intfdata(intf, NULL);
1065 
1066 	if (dev) {
1067 		unregister_netdev(dev->netdev);
1068 
1069 		unlink_all_urbs(dev);
1070 
1071 		usb_free_urb(dev->intr_urb);
1072 
1073 		kfree(dev->intr_in_buffer);
1074 		kfree(dev->tx_msg_buffer);
1075 
1076 		free_candev(dev->netdev);
1077 	}
1078 }
1079 
1080 /* usb specific object needed to register this driver with the usb subsystem */
1081 static struct usb_driver ems_usb_driver = {
1082 	.name = "ems_usb",
1083 	.probe = ems_usb_probe,
1084 	.disconnect = ems_usb_disconnect,
1085 	.id_table = ems_usb_table,
1086 };
1087 
1088 module_usb_driver(ems_usb_driver);
1089