xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 9b9c2cd4)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 /*
121  * CAN-Message representation in a CPC_MSG. Message object type is
122  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
123  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
124  */
125 struct cpc_can_msg {
126 	__le32 id;
127 	u8 length;
128 	u8 msg[8];
129 };
130 
131 /* Representation of the CAN parameters for the SJA1000 controller */
132 struct cpc_sja1000_params {
133 	u8 mode;
134 	u8 acc_code0;
135 	u8 acc_code1;
136 	u8 acc_code2;
137 	u8 acc_code3;
138 	u8 acc_mask0;
139 	u8 acc_mask1;
140 	u8 acc_mask2;
141 	u8 acc_mask3;
142 	u8 btr0;
143 	u8 btr1;
144 	u8 outp_contr;
145 };
146 
147 /* CAN params message representation */
148 struct cpc_can_params {
149 	u8 cc_type;
150 
151 	/* Will support M16C CAN controller in the future */
152 	union {
153 		struct cpc_sja1000_params sja1000;
154 	} cc_params;
155 };
156 
157 /* Structure for confirmed message handling */
158 struct cpc_confirm {
159 	u8 error; /* error code */
160 };
161 
162 /* Structure for overrun conditions */
163 struct cpc_overrun {
164 	u8 event;
165 	u8 count;
166 };
167 
168 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
169 struct cpc_sja1000_can_error {
170 	u8 ecc;
171 	u8 rxerr;
172 	u8 txerr;
173 };
174 
175 /* structure for CAN error conditions */
176 struct cpc_can_error {
177 	u8 ecode;
178 
179 	struct {
180 		u8 cc_type;
181 
182 		/* Other controllers may also provide error code capture regs */
183 		union {
184 			struct cpc_sja1000_can_error sja1000;
185 		} regs;
186 	} cc;
187 };
188 
189 /*
190  * Structure containing RX/TX error counter. This structure is used to request
191  * the values of the CAN controllers TX and RX error counter.
192  */
193 struct cpc_can_err_counter {
194 	u8 rx;
195 	u8 tx;
196 };
197 
198 /* Main message type used between library and application */
199 struct __packed ems_cpc_msg {
200 	u8 type;	/* type of message */
201 	u8 length;	/* length of data within union 'msg' */
202 	u8 msgid;	/* confirmation handle */
203 	__le32 ts_sec;	/* timestamp in seconds */
204 	__le32 ts_nsec;	/* timestamp in nano seconds */
205 
206 	union {
207 		u8 generic[64];
208 		struct cpc_can_msg can_msg;
209 		struct cpc_can_params can_params;
210 		struct cpc_confirm confirmation;
211 		struct cpc_overrun overrun;
212 		struct cpc_can_error error;
213 		struct cpc_can_err_counter err_counter;
214 		u8 can_state;
215 	} msg;
216 };
217 
218 /*
219  * Table of devices that work with this driver
220  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
221  */
222 static struct usb_device_id ems_usb_table[] = {
223 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
224 	{} /* Terminating entry */
225 };
226 
227 MODULE_DEVICE_TABLE(usb, ems_usb_table);
228 
229 #define RX_BUFFER_SIZE      64
230 #define CPC_HEADER_SIZE     4
231 #define INTR_IN_BUFFER_SIZE 4
232 
233 #define MAX_RX_URBS 10
234 #define MAX_TX_URBS 10
235 
236 struct ems_usb;
237 
238 struct ems_tx_urb_context {
239 	struct ems_usb *dev;
240 
241 	u32 echo_index;
242 	u8 dlc;
243 };
244 
245 struct ems_usb {
246 	struct can_priv can; /* must be the first member */
247 
248 	struct sk_buff *echo_skb[MAX_TX_URBS];
249 
250 	struct usb_device *udev;
251 	struct net_device *netdev;
252 
253 	atomic_t active_tx_urbs;
254 	struct usb_anchor tx_submitted;
255 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
256 
257 	struct usb_anchor rx_submitted;
258 
259 	struct urb *intr_urb;
260 
261 	u8 *tx_msg_buffer;
262 
263 	u8 *intr_in_buffer;
264 	unsigned int free_slots; /* remember number of available slots */
265 
266 	struct ems_cpc_msg active_params; /* active controller parameters */
267 };
268 
269 static void ems_usb_read_interrupt_callback(struct urb *urb)
270 {
271 	struct ems_usb *dev = urb->context;
272 	struct net_device *netdev = dev->netdev;
273 	int err;
274 
275 	if (!netif_device_present(netdev))
276 		return;
277 
278 	switch (urb->status) {
279 	case 0:
280 		dev->free_slots = dev->intr_in_buffer[1];
281 		break;
282 
283 	case -ECONNRESET: /* unlink */
284 	case -ENOENT:
285 	case -ESHUTDOWN:
286 		return;
287 
288 	default:
289 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
290 		break;
291 	}
292 
293 	err = usb_submit_urb(urb, GFP_ATOMIC);
294 
295 	if (err == -ENODEV)
296 		netif_device_detach(netdev);
297 	else if (err)
298 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
299 }
300 
301 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
302 {
303 	struct can_frame *cf;
304 	struct sk_buff *skb;
305 	int i;
306 	struct net_device_stats *stats = &dev->netdev->stats;
307 
308 	skb = alloc_can_skb(dev->netdev, &cf);
309 	if (skb == NULL)
310 		return;
311 
312 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
313 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
314 
315 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
316 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
317 		cf->can_id |= CAN_EFF_FLAG;
318 
319 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
320 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
321 		cf->can_id |= CAN_RTR_FLAG;
322 	} else {
323 		for (i = 0; i < cf->can_dlc; i++)
324 			cf->data[i] = msg->msg.can_msg.msg[i];
325 	}
326 
327 	stats->rx_packets++;
328 	stats->rx_bytes += cf->can_dlc;
329 	netif_rx(skb);
330 }
331 
332 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
333 {
334 	struct can_frame *cf;
335 	struct sk_buff *skb;
336 	struct net_device_stats *stats = &dev->netdev->stats;
337 
338 	skb = alloc_can_err_skb(dev->netdev, &cf);
339 	if (skb == NULL)
340 		return;
341 
342 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
343 		u8 state = msg->msg.can_state;
344 
345 		if (state & SJA1000_SR_BS) {
346 			dev->can.state = CAN_STATE_BUS_OFF;
347 			cf->can_id |= CAN_ERR_BUSOFF;
348 
349 			dev->can.can_stats.bus_off++;
350 			can_bus_off(dev->netdev);
351 		} else if (state & SJA1000_SR_ES) {
352 			dev->can.state = CAN_STATE_ERROR_WARNING;
353 			dev->can.can_stats.error_warning++;
354 		} else {
355 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
356 			dev->can.can_stats.error_passive++;
357 		}
358 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
359 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
360 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
361 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
362 
363 		/* bus error interrupt */
364 		dev->can.can_stats.bus_error++;
365 		stats->rx_errors++;
366 
367 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
368 
369 		switch (ecc & SJA1000_ECC_MASK) {
370 		case SJA1000_ECC_BIT:
371 			cf->data[2] |= CAN_ERR_PROT_BIT;
372 			break;
373 		case SJA1000_ECC_FORM:
374 			cf->data[2] |= CAN_ERR_PROT_FORM;
375 			break;
376 		case SJA1000_ECC_STUFF:
377 			cf->data[2] |= CAN_ERR_PROT_STUFF;
378 			break;
379 		default:
380 			cf->data[3] = ecc & SJA1000_ECC_SEG;
381 			break;
382 		}
383 
384 		/* Error occurred during transmission? */
385 		if ((ecc & SJA1000_ECC_DIR) == 0)
386 			cf->data[2] |= CAN_ERR_PROT_TX;
387 
388 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
389 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
390 			cf->data[1] = (txerr > rxerr) ?
391 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
392 		}
393 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
394 		cf->can_id |= CAN_ERR_CRTL;
395 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
396 
397 		stats->rx_over_errors++;
398 		stats->rx_errors++;
399 	}
400 
401 	stats->rx_packets++;
402 	stats->rx_bytes += cf->can_dlc;
403 	netif_rx(skb);
404 }
405 
406 /*
407  * callback for bulk IN urb
408  */
409 static void ems_usb_read_bulk_callback(struct urb *urb)
410 {
411 	struct ems_usb *dev = urb->context;
412 	struct net_device *netdev;
413 	int retval;
414 
415 	netdev = dev->netdev;
416 
417 	if (!netif_device_present(netdev))
418 		return;
419 
420 	switch (urb->status) {
421 	case 0: /* success */
422 		break;
423 
424 	case -ENOENT:
425 		return;
426 
427 	default:
428 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
429 		goto resubmit_urb;
430 	}
431 
432 	if (urb->actual_length > CPC_HEADER_SIZE) {
433 		struct ems_cpc_msg *msg;
434 		u8 *ibuf = urb->transfer_buffer;
435 		u8 msg_count, start;
436 
437 		msg_count = ibuf[0] & ~0x80;
438 
439 		start = CPC_HEADER_SIZE;
440 
441 		while (msg_count) {
442 			msg = (struct ems_cpc_msg *)&ibuf[start];
443 
444 			switch (msg->type) {
445 			case CPC_MSG_TYPE_CAN_STATE:
446 				/* Process CAN state changes */
447 				ems_usb_rx_err(dev, msg);
448 				break;
449 
450 			case CPC_MSG_TYPE_CAN_FRAME:
451 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
452 			case CPC_MSG_TYPE_RTR_FRAME:
453 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
454 				ems_usb_rx_can_msg(dev, msg);
455 				break;
456 
457 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
458 				/* Process errorframe */
459 				ems_usb_rx_err(dev, msg);
460 				break;
461 
462 			case CPC_MSG_TYPE_OVERRUN:
463 				/* Message lost while receiving */
464 				ems_usb_rx_err(dev, msg);
465 				break;
466 			}
467 
468 			start += CPC_MSG_HEADER_LEN + msg->length;
469 			msg_count--;
470 
471 			if (start > urb->transfer_buffer_length) {
472 				netdev_err(netdev, "format error\n");
473 				break;
474 			}
475 		}
476 	}
477 
478 resubmit_urb:
479 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
480 			  urb->transfer_buffer, RX_BUFFER_SIZE,
481 			  ems_usb_read_bulk_callback, dev);
482 
483 	retval = usb_submit_urb(urb, GFP_ATOMIC);
484 
485 	if (retval == -ENODEV)
486 		netif_device_detach(netdev);
487 	else if (retval)
488 		netdev_err(netdev,
489 			   "failed resubmitting read bulk urb: %d\n", retval);
490 }
491 
492 /*
493  * callback for bulk IN urb
494  */
495 static void ems_usb_write_bulk_callback(struct urb *urb)
496 {
497 	struct ems_tx_urb_context *context = urb->context;
498 	struct ems_usb *dev;
499 	struct net_device *netdev;
500 
501 	BUG_ON(!context);
502 
503 	dev = context->dev;
504 	netdev = dev->netdev;
505 
506 	/* free up our allocated buffer */
507 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
508 			  urb->transfer_buffer, urb->transfer_dma);
509 
510 	atomic_dec(&dev->active_tx_urbs);
511 
512 	if (!netif_device_present(netdev))
513 		return;
514 
515 	if (urb->status)
516 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
517 
518 	netdev->trans_start = jiffies;
519 
520 	/* transmission complete interrupt */
521 	netdev->stats.tx_packets++;
522 	netdev->stats.tx_bytes += context->dlc;
523 
524 	can_get_echo_skb(netdev, context->echo_index);
525 
526 	/* Release context */
527 	context->echo_index = MAX_TX_URBS;
528 
529 	if (netif_queue_stopped(netdev))
530 		netif_wake_queue(netdev);
531 }
532 
533 /*
534  * Send the given CPC command synchronously
535  */
536 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
537 {
538 	int actual_length;
539 
540 	/* Copy payload */
541 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
542 	       msg->length + CPC_MSG_HEADER_LEN);
543 
544 	/* Clear header */
545 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
546 
547 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
548 			    &dev->tx_msg_buffer[0],
549 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
550 			    &actual_length, 1000);
551 }
552 
553 /*
554  * Change CAN controllers' mode register
555  */
556 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
557 {
558 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
559 
560 	return ems_usb_command_msg(dev, &dev->active_params);
561 }
562 
563 /*
564  * Send a CPC_Control command to change behaviour when interface receives a CAN
565  * message, bus error or CAN state changed notifications.
566  */
567 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
568 {
569 	struct ems_cpc_msg cmd;
570 
571 	cmd.type = CPC_CMD_TYPE_CONTROL;
572 	cmd.length = CPC_MSG_HEADER_LEN + 1;
573 
574 	cmd.msgid = 0;
575 
576 	cmd.msg.generic[0] = val;
577 
578 	return ems_usb_command_msg(dev, &cmd);
579 }
580 
581 /*
582  * Start interface
583  */
584 static int ems_usb_start(struct ems_usb *dev)
585 {
586 	struct net_device *netdev = dev->netdev;
587 	int err, i;
588 
589 	dev->intr_in_buffer[0] = 0;
590 	dev->free_slots = 15; /* initial size */
591 
592 	for (i = 0; i < MAX_RX_URBS; i++) {
593 		struct urb *urb = NULL;
594 		u8 *buf = NULL;
595 
596 		/* create a URB, and a buffer for it */
597 		urb = usb_alloc_urb(0, GFP_KERNEL);
598 		if (!urb) {
599 			netdev_err(netdev, "No memory left for URBs\n");
600 			err = -ENOMEM;
601 			break;
602 		}
603 
604 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
605 					 &urb->transfer_dma);
606 		if (!buf) {
607 			netdev_err(netdev, "No memory left for USB buffer\n");
608 			usb_free_urb(urb);
609 			err = -ENOMEM;
610 			break;
611 		}
612 
613 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
614 				  buf, RX_BUFFER_SIZE,
615 				  ems_usb_read_bulk_callback, dev);
616 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
617 		usb_anchor_urb(urb, &dev->rx_submitted);
618 
619 		err = usb_submit_urb(urb, GFP_KERNEL);
620 		if (err) {
621 			usb_unanchor_urb(urb);
622 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
623 					  urb->transfer_dma);
624 			usb_free_urb(urb);
625 			break;
626 		}
627 
628 		/* Drop reference, USB core will take care of freeing it */
629 		usb_free_urb(urb);
630 	}
631 
632 	/* Did we submit any URBs */
633 	if (i == 0) {
634 		netdev_warn(netdev, "couldn't setup read URBs\n");
635 		return err;
636 	}
637 
638 	/* Warn if we've couldn't transmit all the URBs */
639 	if (i < MAX_RX_URBS)
640 		netdev_warn(netdev, "rx performance may be slow\n");
641 
642 	/* Setup and start interrupt URB */
643 	usb_fill_int_urb(dev->intr_urb, dev->udev,
644 			 usb_rcvintpipe(dev->udev, 1),
645 			 dev->intr_in_buffer,
646 			 INTR_IN_BUFFER_SIZE,
647 			 ems_usb_read_interrupt_callback, dev, 1);
648 
649 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
650 	if (err) {
651 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
652 
653 		return err;
654 	}
655 
656 	/* CPC-USB will transfer received message to host */
657 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
658 	if (err)
659 		goto failed;
660 
661 	/* CPC-USB will transfer CAN state changes to host */
662 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
663 	if (err)
664 		goto failed;
665 
666 	/* CPC-USB will transfer bus errors to host */
667 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
668 	if (err)
669 		goto failed;
670 
671 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
672 	if (err)
673 		goto failed;
674 
675 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
676 
677 	return 0;
678 
679 failed:
680 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
681 
682 	return err;
683 }
684 
685 static void unlink_all_urbs(struct ems_usb *dev)
686 {
687 	int i;
688 
689 	usb_unlink_urb(dev->intr_urb);
690 
691 	usb_kill_anchored_urbs(&dev->rx_submitted);
692 
693 	usb_kill_anchored_urbs(&dev->tx_submitted);
694 	atomic_set(&dev->active_tx_urbs, 0);
695 
696 	for (i = 0; i < MAX_TX_URBS; i++)
697 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
698 }
699 
700 static int ems_usb_open(struct net_device *netdev)
701 {
702 	struct ems_usb *dev = netdev_priv(netdev);
703 	int err;
704 
705 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
706 	if (err)
707 		return err;
708 
709 	/* common open */
710 	err = open_candev(netdev);
711 	if (err)
712 		return err;
713 
714 	/* finally start device */
715 	err = ems_usb_start(dev);
716 	if (err) {
717 		if (err == -ENODEV)
718 			netif_device_detach(dev->netdev);
719 
720 		netdev_warn(netdev, "couldn't start device: %d\n", err);
721 
722 		close_candev(netdev);
723 
724 		return err;
725 	}
726 
727 
728 	netif_start_queue(netdev);
729 
730 	return 0;
731 }
732 
733 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
734 {
735 	struct ems_usb *dev = netdev_priv(netdev);
736 	struct ems_tx_urb_context *context = NULL;
737 	struct net_device_stats *stats = &netdev->stats;
738 	struct can_frame *cf = (struct can_frame *)skb->data;
739 	struct ems_cpc_msg *msg;
740 	struct urb *urb;
741 	u8 *buf;
742 	int i, err;
743 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
744 			+ sizeof(struct cpc_can_msg);
745 
746 	if (can_dropped_invalid_skb(netdev, skb))
747 		return NETDEV_TX_OK;
748 
749 	/* create a URB, and a buffer for it, and copy the data to the URB */
750 	urb = usb_alloc_urb(0, GFP_ATOMIC);
751 	if (!urb) {
752 		netdev_err(netdev, "No memory left for URBs\n");
753 		goto nomem;
754 	}
755 
756 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
757 	if (!buf) {
758 		netdev_err(netdev, "No memory left for USB buffer\n");
759 		usb_free_urb(urb);
760 		goto nomem;
761 	}
762 
763 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
764 
765 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
766 	msg->msg.can_msg.length = cf->can_dlc;
767 
768 	if (cf->can_id & CAN_RTR_FLAG) {
769 		msg->type = cf->can_id & CAN_EFF_FLAG ?
770 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
771 
772 		msg->length = CPC_CAN_MSG_MIN_SIZE;
773 	} else {
774 		msg->type = cf->can_id & CAN_EFF_FLAG ?
775 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
776 
777 		for (i = 0; i < cf->can_dlc; i++)
778 			msg->msg.can_msg.msg[i] = cf->data[i];
779 
780 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
781 	}
782 
783 	for (i = 0; i < MAX_TX_URBS; i++) {
784 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
785 			context = &dev->tx_contexts[i];
786 			break;
787 		}
788 	}
789 
790 	/*
791 	 * May never happen! When this happens we'd more URBs in flight as
792 	 * allowed (MAX_TX_URBS).
793 	 */
794 	if (!context) {
795 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
796 		usb_free_urb(urb);
797 
798 		netdev_warn(netdev, "couldn't find free context\n");
799 
800 		return NETDEV_TX_BUSY;
801 	}
802 
803 	context->dev = dev;
804 	context->echo_index = i;
805 	context->dlc = cf->can_dlc;
806 
807 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
808 			  size, ems_usb_write_bulk_callback, context);
809 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
810 	usb_anchor_urb(urb, &dev->tx_submitted);
811 
812 	can_put_echo_skb(skb, netdev, context->echo_index);
813 
814 	atomic_inc(&dev->active_tx_urbs);
815 
816 	err = usb_submit_urb(urb, GFP_ATOMIC);
817 	if (unlikely(err)) {
818 		can_free_echo_skb(netdev, context->echo_index);
819 
820 		usb_unanchor_urb(urb);
821 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
822 		dev_kfree_skb(skb);
823 
824 		atomic_dec(&dev->active_tx_urbs);
825 
826 		if (err == -ENODEV) {
827 			netif_device_detach(netdev);
828 		} else {
829 			netdev_warn(netdev, "failed tx_urb %d\n", err);
830 
831 			stats->tx_dropped++;
832 		}
833 	} else {
834 		netdev->trans_start = jiffies;
835 
836 		/* Slow down tx path */
837 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
838 		    dev->free_slots < 5) {
839 			netif_stop_queue(netdev);
840 		}
841 	}
842 
843 	/*
844 	 * Release our reference to this URB, the USB core will eventually free
845 	 * it entirely.
846 	 */
847 	usb_free_urb(urb);
848 
849 	return NETDEV_TX_OK;
850 
851 nomem:
852 	dev_kfree_skb(skb);
853 	stats->tx_dropped++;
854 
855 	return NETDEV_TX_OK;
856 }
857 
858 static int ems_usb_close(struct net_device *netdev)
859 {
860 	struct ems_usb *dev = netdev_priv(netdev);
861 
862 	/* Stop polling */
863 	unlink_all_urbs(dev);
864 
865 	netif_stop_queue(netdev);
866 
867 	/* Set CAN controller to reset mode */
868 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
869 		netdev_warn(netdev, "couldn't stop device");
870 
871 	close_candev(netdev);
872 
873 	return 0;
874 }
875 
876 static const struct net_device_ops ems_usb_netdev_ops = {
877 	.ndo_open = ems_usb_open,
878 	.ndo_stop = ems_usb_close,
879 	.ndo_start_xmit = ems_usb_start_xmit,
880 	.ndo_change_mtu = can_change_mtu,
881 };
882 
883 static const struct can_bittiming_const ems_usb_bittiming_const = {
884 	.name = "ems_usb",
885 	.tseg1_min = 1,
886 	.tseg1_max = 16,
887 	.tseg2_min = 1,
888 	.tseg2_max = 8,
889 	.sjw_max = 4,
890 	.brp_min = 1,
891 	.brp_max = 64,
892 	.brp_inc = 1,
893 };
894 
895 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
896 {
897 	struct ems_usb *dev = netdev_priv(netdev);
898 
899 	switch (mode) {
900 	case CAN_MODE_START:
901 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
902 			netdev_warn(netdev, "couldn't start device");
903 
904 		if (netif_queue_stopped(netdev))
905 			netif_wake_queue(netdev);
906 		break;
907 
908 	default:
909 		return -EOPNOTSUPP;
910 	}
911 
912 	return 0;
913 }
914 
915 static int ems_usb_set_bittiming(struct net_device *netdev)
916 {
917 	struct ems_usb *dev = netdev_priv(netdev);
918 	struct can_bittiming *bt = &dev->can.bittiming;
919 	u8 btr0, btr1;
920 
921 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
922 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
923 		(((bt->phase_seg2 - 1) & 0x7) << 4);
924 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
925 		btr1 |= 0x80;
926 
927 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
928 
929 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
930 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
931 
932 	return ems_usb_command_msg(dev, &dev->active_params);
933 }
934 
935 static void init_params_sja1000(struct ems_cpc_msg *msg)
936 {
937 	struct cpc_sja1000_params *sja1000 =
938 		&msg->msg.can_params.cc_params.sja1000;
939 
940 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
941 	msg->length = sizeof(struct cpc_can_params);
942 	msg->msgid = 0;
943 
944 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
945 
946 	/* Acceptance filter open */
947 	sja1000->acc_code0 = 0x00;
948 	sja1000->acc_code1 = 0x00;
949 	sja1000->acc_code2 = 0x00;
950 	sja1000->acc_code3 = 0x00;
951 
952 	/* Acceptance filter open */
953 	sja1000->acc_mask0 = 0xFF;
954 	sja1000->acc_mask1 = 0xFF;
955 	sja1000->acc_mask2 = 0xFF;
956 	sja1000->acc_mask3 = 0xFF;
957 
958 	sja1000->btr0 = 0;
959 	sja1000->btr1 = 0;
960 
961 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
962 	sja1000->mode = SJA1000_MOD_RM;
963 }
964 
965 /*
966  * probe function for new CPC-USB devices
967  */
968 static int ems_usb_probe(struct usb_interface *intf,
969 			 const struct usb_device_id *id)
970 {
971 	struct net_device *netdev;
972 	struct ems_usb *dev;
973 	int i, err = -ENOMEM;
974 
975 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
976 	if (!netdev) {
977 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
978 		return -ENOMEM;
979 	}
980 
981 	dev = netdev_priv(netdev);
982 
983 	dev->udev = interface_to_usbdev(intf);
984 	dev->netdev = netdev;
985 
986 	dev->can.state = CAN_STATE_STOPPED;
987 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
988 	dev->can.bittiming_const = &ems_usb_bittiming_const;
989 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
990 	dev->can.do_set_mode = ems_usb_set_mode;
991 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
992 
993 	netdev->netdev_ops = &ems_usb_netdev_ops;
994 
995 	netdev->flags |= IFF_ECHO; /* we support local echo */
996 
997 	init_usb_anchor(&dev->rx_submitted);
998 
999 	init_usb_anchor(&dev->tx_submitted);
1000 	atomic_set(&dev->active_tx_urbs, 0);
1001 
1002 	for (i = 0; i < MAX_TX_URBS; i++)
1003 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1004 
1005 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1006 	if (!dev->intr_urb) {
1007 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1008 		goto cleanup_candev;
1009 	}
1010 
1011 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1012 	if (!dev->intr_in_buffer)
1013 		goto cleanup_intr_urb;
1014 
1015 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1016 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1017 	if (!dev->tx_msg_buffer)
1018 		goto cleanup_intr_in_buffer;
1019 
1020 	usb_set_intfdata(intf, dev);
1021 
1022 	SET_NETDEV_DEV(netdev, &intf->dev);
1023 
1024 	init_params_sja1000(&dev->active_params);
1025 
1026 	err = ems_usb_command_msg(dev, &dev->active_params);
1027 	if (err) {
1028 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1029 		goto cleanup_tx_msg_buffer;
1030 	}
1031 
1032 	err = register_candev(netdev);
1033 	if (err) {
1034 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1035 		goto cleanup_tx_msg_buffer;
1036 	}
1037 
1038 	return 0;
1039 
1040 cleanup_tx_msg_buffer:
1041 	kfree(dev->tx_msg_buffer);
1042 
1043 cleanup_intr_in_buffer:
1044 	kfree(dev->intr_in_buffer);
1045 
1046 cleanup_intr_urb:
1047 	usb_free_urb(dev->intr_urb);
1048 
1049 cleanup_candev:
1050 	free_candev(netdev);
1051 
1052 	return err;
1053 }
1054 
1055 /*
1056  * called by the usb core when the device is removed from the system
1057  */
1058 static void ems_usb_disconnect(struct usb_interface *intf)
1059 {
1060 	struct ems_usb *dev = usb_get_intfdata(intf);
1061 
1062 	usb_set_intfdata(intf, NULL);
1063 
1064 	if (dev) {
1065 		unregister_netdev(dev->netdev);
1066 		free_candev(dev->netdev);
1067 
1068 		unlink_all_urbs(dev);
1069 
1070 		usb_free_urb(dev->intr_urb);
1071 
1072 		kfree(dev->intr_in_buffer);
1073 	}
1074 }
1075 
1076 /* usb specific object needed to register this driver with the usb subsystem */
1077 static struct usb_driver ems_usb_driver = {
1078 	.name = "ems_usb",
1079 	.probe = ems_usb_probe,
1080 	.disconnect = ems_usb_disconnect,
1081 	.id_table = ems_usb_table,
1082 };
1083 
1084 module_usb_driver(ems_usb_driver);
1085