xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
4  *
5  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
6  */
7 #include <linux/ethtool.h>
8 #include <linux/signal.h>
9 #include <linux/slab.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/usb.h>
13 
14 #include <linux/can.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/error.h>
17 
18 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
19 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
20 MODULE_LICENSE("GPL v2");
21 
22 /* Control-Values for CPC_Control() Command Subject Selection */
23 #define CONTR_CAN_MESSAGE 0x04
24 #define CONTR_CAN_STATE   0x0C
25 #define CONTR_BUS_ERROR   0x1C
26 
27 /* Control Command Actions */
28 #define CONTR_CONT_OFF 0
29 #define CONTR_CONT_ON  1
30 #define CONTR_ONCE     2
31 
32 /* Messages from CPC to PC */
33 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
34 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
35 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
36 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
37 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
38 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
39 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
40 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
41 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
42 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
43 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
44 
45 /* Messages from the PC to the CPC interface  */
46 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
47 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
48 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
49 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
50 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
51 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
52 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
53 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
54 
55 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
56 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
57 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
58 
59 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
60 
61 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
62 
63 /* Overrun types */
64 #define CPC_OVR_EVENT_CAN       0x01
65 #define CPC_OVR_EVENT_CANSTATE  0x02
66 #define CPC_OVR_EVENT_BUSERROR  0x04
67 
68 /*
69  * If the CAN controller lost a message we indicate it with the highest bit
70  * set in the count field.
71  */
72 #define CPC_OVR_HW 0x80
73 
74 /* Size of the "struct ems_cpc_msg" without the union */
75 #define CPC_MSG_HEADER_LEN   11
76 #define CPC_CAN_MSG_MIN_SIZE 5
77 
78 /* Define these values to match your devices */
79 #define USB_CPCUSB_VENDOR_ID 0x12D6
80 
81 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
82 
83 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
84 #define SJA1000_MOD_NORMAL 0x00
85 #define SJA1000_MOD_RM     0x01
86 
87 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
88 #define SJA1000_ECC_SEG   0x1F
89 #define SJA1000_ECC_DIR   0x20
90 #define SJA1000_ECC_ERR   0x06
91 #define SJA1000_ECC_BIT   0x00
92 #define SJA1000_ECC_FORM  0x40
93 #define SJA1000_ECC_STUFF 0x80
94 #define SJA1000_ECC_MASK  0xc0
95 
96 /* Status register content */
97 #define SJA1000_SR_BS 0x80
98 #define SJA1000_SR_ES 0x40
99 
100 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
101 
102 /*
103  * The device actually uses a 16MHz clock to generate the CAN clock
104  * but it expects SJA1000 bit settings based on 8MHz (is internally
105  * converted).
106  */
107 #define EMS_USB_ARM7_CLOCK 8000000
108 
109 #define CPC_TX_QUEUE_TRIGGER_LOW	25
110 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
111 
112 /*
113  * CAN-Message representation in a CPC_MSG. Message object type is
114  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
115  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
116  */
117 struct cpc_can_msg {
118 	__le32 id;
119 	u8 length;
120 	u8 msg[8];
121 };
122 
123 /* Representation of the CAN parameters for the SJA1000 controller */
124 struct cpc_sja1000_params {
125 	u8 mode;
126 	u8 acc_code0;
127 	u8 acc_code1;
128 	u8 acc_code2;
129 	u8 acc_code3;
130 	u8 acc_mask0;
131 	u8 acc_mask1;
132 	u8 acc_mask2;
133 	u8 acc_mask3;
134 	u8 btr0;
135 	u8 btr1;
136 	u8 outp_contr;
137 };
138 
139 /* CAN params message representation */
140 struct cpc_can_params {
141 	u8 cc_type;
142 
143 	/* Will support M16C CAN controller in the future */
144 	union {
145 		struct cpc_sja1000_params sja1000;
146 	} cc_params;
147 };
148 
149 /* Structure for confirmed message handling */
150 struct cpc_confirm {
151 	u8 error; /* error code */
152 };
153 
154 /* Structure for overrun conditions */
155 struct cpc_overrun {
156 	u8 event;
157 	u8 count;
158 };
159 
160 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
161 struct cpc_sja1000_can_error {
162 	u8 ecc;
163 	u8 rxerr;
164 	u8 txerr;
165 };
166 
167 /* structure for CAN error conditions */
168 struct cpc_can_error {
169 	u8 ecode;
170 
171 	struct {
172 		u8 cc_type;
173 
174 		/* Other controllers may also provide error code capture regs */
175 		union {
176 			struct cpc_sja1000_can_error sja1000;
177 		} regs;
178 	} cc;
179 };
180 
181 /*
182  * Structure containing RX/TX error counter. This structure is used to request
183  * the values of the CAN controllers TX and RX error counter.
184  */
185 struct cpc_can_err_counter {
186 	u8 rx;
187 	u8 tx;
188 };
189 
190 /* Main message type used between library and application */
191 struct __packed ems_cpc_msg {
192 	u8 type;	/* type of message */
193 	u8 length;	/* length of data within union 'msg' */
194 	u8 msgid;	/* confirmation handle */
195 	__le32 ts_sec;	/* timestamp in seconds */
196 	__le32 ts_nsec;	/* timestamp in nano seconds */
197 
198 	union __packed {
199 		u8 generic[64];
200 		struct cpc_can_msg can_msg;
201 		struct cpc_can_params can_params;
202 		struct cpc_confirm confirmation;
203 		struct cpc_overrun overrun;
204 		struct cpc_can_error error;
205 		struct cpc_can_err_counter err_counter;
206 		u8 can_state;
207 	} msg;
208 };
209 
210 /*
211  * Table of devices that work with this driver
212  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
213  */
214 static struct usb_device_id ems_usb_table[] = {
215 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
216 	{} /* Terminating entry */
217 };
218 
219 MODULE_DEVICE_TABLE(usb, ems_usb_table);
220 
221 #define RX_BUFFER_SIZE      64
222 #define CPC_HEADER_SIZE     4
223 #define INTR_IN_BUFFER_SIZE 4
224 
225 #define MAX_RX_URBS 10
226 #define MAX_TX_URBS 10
227 
228 struct ems_usb;
229 
230 struct ems_tx_urb_context {
231 	struct ems_usb *dev;
232 
233 	u32 echo_index;
234 };
235 
236 struct ems_usb {
237 	struct can_priv can; /* must be the first member */
238 
239 	struct sk_buff *echo_skb[MAX_TX_URBS];
240 
241 	struct usb_device *udev;
242 	struct net_device *netdev;
243 
244 	atomic_t active_tx_urbs;
245 	struct usb_anchor tx_submitted;
246 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
247 
248 	struct usb_anchor rx_submitted;
249 
250 	struct urb *intr_urb;
251 
252 	u8 *tx_msg_buffer;
253 
254 	u8 *intr_in_buffer;
255 	unsigned int free_slots; /* remember number of available slots */
256 
257 	struct ems_cpc_msg active_params; /* active controller parameters */
258 	void *rxbuf[MAX_RX_URBS];
259 	dma_addr_t rxbuf_dma[MAX_RX_URBS];
260 };
261 
262 static void ems_usb_read_interrupt_callback(struct urb *urb)
263 {
264 	struct ems_usb *dev = urb->context;
265 	struct net_device *netdev = dev->netdev;
266 	int err;
267 
268 	if (!netif_device_present(netdev))
269 		return;
270 
271 	switch (urb->status) {
272 	case 0:
273 		dev->free_slots = dev->intr_in_buffer[1];
274 		if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
275 		    netif_queue_stopped(netdev))
276 			netif_wake_queue(netdev);
277 		break;
278 
279 	case -ECONNRESET: /* unlink */
280 	case -ENOENT:
281 	case -EPIPE:
282 	case -EPROTO:
283 	case -ESHUTDOWN:
284 		return;
285 
286 	default:
287 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
288 		break;
289 	}
290 
291 	err = usb_submit_urb(urb, GFP_ATOMIC);
292 
293 	if (err == -ENODEV)
294 		netif_device_detach(netdev);
295 	else if (err)
296 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
297 }
298 
299 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
300 {
301 	struct can_frame *cf;
302 	struct sk_buff *skb;
303 	int i;
304 	struct net_device_stats *stats = &dev->netdev->stats;
305 
306 	skb = alloc_can_skb(dev->netdev, &cf);
307 	if (skb == NULL)
308 		return;
309 
310 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
311 	cf->len = can_cc_dlc2len(msg->msg.can_msg.length & 0xF);
312 
313 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
314 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
315 		cf->can_id |= CAN_EFF_FLAG;
316 
317 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
318 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
319 		cf->can_id |= CAN_RTR_FLAG;
320 	} else {
321 		for (i = 0; i < cf->len; i++)
322 			cf->data[i] = msg->msg.can_msg.msg[i];
323 
324 		stats->rx_bytes += cf->len;
325 	}
326 	stats->rx_packets++;
327 
328 	netif_rx(skb);
329 }
330 
331 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
332 {
333 	struct can_frame *cf;
334 	struct sk_buff *skb;
335 	struct net_device_stats *stats = &dev->netdev->stats;
336 
337 	skb = alloc_can_err_skb(dev->netdev, &cf);
338 
339 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
340 		u8 state = msg->msg.can_state;
341 
342 		if (state & SJA1000_SR_BS) {
343 			dev->can.state = CAN_STATE_BUS_OFF;
344 			if (skb)
345 				cf->can_id |= CAN_ERR_BUSOFF;
346 
347 			dev->can.can_stats.bus_off++;
348 			can_bus_off(dev->netdev);
349 		} else if (state & SJA1000_SR_ES) {
350 			dev->can.state = CAN_STATE_ERROR_WARNING;
351 			dev->can.can_stats.error_warning++;
352 		} else {
353 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
354 			dev->can.can_stats.error_passive++;
355 		}
356 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
357 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
358 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
359 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
360 
361 		/* bus error interrupt */
362 		dev->can.can_stats.bus_error++;
363 
364 		if (skb) {
365 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
366 
367 			switch (ecc & SJA1000_ECC_MASK) {
368 			case SJA1000_ECC_BIT:
369 				cf->data[2] |= CAN_ERR_PROT_BIT;
370 				break;
371 			case SJA1000_ECC_FORM:
372 				cf->data[2] |= CAN_ERR_PROT_FORM;
373 				break;
374 			case SJA1000_ECC_STUFF:
375 				cf->data[2] |= CAN_ERR_PROT_STUFF;
376 				break;
377 			default:
378 				cf->data[3] = ecc & SJA1000_ECC_SEG;
379 				break;
380 			}
381 		}
382 
383 		/* Error occurred during transmission? */
384 		if ((ecc & SJA1000_ECC_DIR) == 0) {
385 			stats->tx_errors++;
386 			if (skb)
387 				cf->data[2] |= CAN_ERR_PROT_TX;
388 		} else {
389 			stats->rx_errors++;
390 		}
391 
392 		if (skb && (dev->can.state == CAN_STATE_ERROR_WARNING ||
393 			    dev->can.state == CAN_STATE_ERROR_PASSIVE)) {
394 			cf->can_id |= CAN_ERR_CRTL;
395 			cf->data[1] = (txerr > rxerr) ?
396 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
397 		}
398 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
399 		if (skb) {
400 			cf->can_id |= CAN_ERR_CRTL;
401 			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
402 		}
403 
404 		stats->rx_over_errors++;
405 		stats->rx_errors++;
406 	}
407 
408 	if (skb)
409 		netif_rx(skb);
410 }
411 
412 /*
413  * callback for bulk IN urb
414  */
415 static void ems_usb_read_bulk_callback(struct urb *urb)
416 {
417 	struct ems_usb *dev = urb->context;
418 	struct net_device *netdev;
419 	int retval;
420 
421 	netdev = dev->netdev;
422 
423 	if (!netif_device_present(netdev))
424 		return;
425 
426 	switch (urb->status) {
427 	case 0: /* success */
428 		break;
429 
430 	case -ENOENT:
431 		return;
432 
433 	default:
434 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
435 		goto resubmit_urb;
436 	}
437 
438 	if (urb->actual_length > CPC_HEADER_SIZE) {
439 		struct ems_cpc_msg *msg;
440 		u8 *ibuf = urb->transfer_buffer;
441 		u8 msg_count, start;
442 
443 		msg_count = ibuf[0] & ~0x80;
444 
445 		start = CPC_HEADER_SIZE;
446 
447 		while (msg_count) {
448 			msg = (struct ems_cpc_msg *)&ibuf[start];
449 
450 			switch (msg->type) {
451 			case CPC_MSG_TYPE_CAN_STATE:
452 				/* Process CAN state changes */
453 				ems_usb_rx_err(dev, msg);
454 				break;
455 
456 			case CPC_MSG_TYPE_CAN_FRAME:
457 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
458 			case CPC_MSG_TYPE_RTR_FRAME:
459 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
460 				ems_usb_rx_can_msg(dev, msg);
461 				break;
462 
463 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
464 				/* Process errorframe */
465 				ems_usb_rx_err(dev, msg);
466 				break;
467 
468 			case CPC_MSG_TYPE_OVERRUN:
469 				/* Message lost while receiving */
470 				ems_usb_rx_err(dev, msg);
471 				break;
472 			}
473 
474 			start += CPC_MSG_HEADER_LEN + msg->length;
475 			msg_count--;
476 
477 			if (start > urb->transfer_buffer_length) {
478 				netdev_err(netdev, "format error\n");
479 				break;
480 			}
481 		}
482 	}
483 
484 resubmit_urb:
485 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
486 			  urb->transfer_buffer, RX_BUFFER_SIZE,
487 			  ems_usb_read_bulk_callback, dev);
488 
489 	retval = usb_submit_urb(urb, GFP_ATOMIC);
490 
491 	if (retval == -ENODEV)
492 		netif_device_detach(netdev);
493 	else if (retval)
494 		netdev_err(netdev,
495 			   "failed resubmitting read bulk urb: %d\n", retval);
496 }
497 
498 /*
499  * callback for bulk IN urb
500  */
501 static void ems_usb_write_bulk_callback(struct urb *urb)
502 {
503 	struct ems_tx_urb_context *context = urb->context;
504 	struct ems_usb *dev;
505 	struct net_device *netdev;
506 
507 	BUG_ON(!context);
508 
509 	dev = context->dev;
510 	netdev = dev->netdev;
511 
512 	/* free up our allocated buffer */
513 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
514 			  urb->transfer_buffer, urb->transfer_dma);
515 
516 	atomic_dec(&dev->active_tx_urbs);
517 
518 	if (!netif_device_present(netdev))
519 		return;
520 
521 	if (urb->status)
522 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
523 
524 	netif_trans_update(netdev);
525 
526 	/* transmission complete interrupt */
527 	netdev->stats.tx_packets++;
528 	netdev->stats.tx_bytes += can_get_echo_skb(netdev, context->echo_index,
529 						   NULL);
530 
531 	/* Release context */
532 	context->echo_index = MAX_TX_URBS;
533 
534 }
535 
536 /*
537  * Send the given CPC command synchronously
538  */
539 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
540 {
541 	int actual_length;
542 
543 	/* Copy payload */
544 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
545 	       msg->length + CPC_MSG_HEADER_LEN);
546 
547 	/* Clear header */
548 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
549 
550 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
551 			    &dev->tx_msg_buffer[0],
552 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
553 			    &actual_length, 1000);
554 }
555 
556 /*
557  * Change CAN controllers' mode register
558  */
559 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
560 {
561 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
562 
563 	return ems_usb_command_msg(dev, &dev->active_params);
564 }
565 
566 /*
567  * Send a CPC_Control command to change behaviour when interface receives a CAN
568  * message, bus error or CAN state changed notifications.
569  */
570 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
571 {
572 	struct ems_cpc_msg cmd;
573 
574 	cmd.type = CPC_CMD_TYPE_CONTROL;
575 	cmd.length = CPC_MSG_HEADER_LEN + 1;
576 
577 	cmd.msgid = 0;
578 
579 	cmd.msg.generic[0] = val;
580 
581 	return ems_usb_command_msg(dev, &cmd);
582 }
583 
584 /*
585  * Start interface
586  */
587 static int ems_usb_start(struct ems_usb *dev)
588 {
589 	struct net_device *netdev = dev->netdev;
590 	int err, i;
591 
592 	dev->intr_in_buffer[0] = 0;
593 	dev->free_slots = 50; /* initial size */
594 
595 	for (i = 0; i < MAX_RX_URBS; i++) {
596 		struct urb *urb = NULL;
597 		u8 *buf = NULL;
598 		dma_addr_t buf_dma;
599 
600 		/* create a URB, and a buffer for it */
601 		urb = usb_alloc_urb(0, GFP_KERNEL);
602 		if (!urb) {
603 			err = -ENOMEM;
604 			break;
605 		}
606 
607 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
608 					 &buf_dma);
609 		if (!buf) {
610 			netdev_err(netdev, "No memory left for USB buffer\n");
611 			usb_free_urb(urb);
612 			err = -ENOMEM;
613 			break;
614 		}
615 
616 		urb->transfer_dma = buf_dma;
617 
618 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
619 				  buf, RX_BUFFER_SIZE,
620 				  ems_usb_read_bulk_callback, dev);
621 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
622 		usb_anchor_urb(urb, &dev->rx_submitted);
623 
624 		err = usb_submit_urb(urb, GFP_KERNEL);
625 		if (err) {
626 			usb_unanchor_urb(urb);
627 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
628 					  urb->transfer_dma);
629 			usb_free_urb(urb);
630 			break;
631 		}
632 
633 		dev->rxbuf[i] = buf;
634 		dev->rxbuf_dma[i] = buf_dma;
635 
636 		/* Drop reference, USB core will take care of freeing it */
637 		usb_free_urb(urb);
638 	}
639 
640 	/* Did we submit any URBs */
641 	if (i == 0) {
642 		netdev_warn(netdev, "couldn't setup read URBs\n");
643 		return err;
644 	}
645 
646 	/* Warn if we've couldn't transmit all the URBs */
647 	if (i < MAX_RX_URBS)
648 		netdev_warn(netdev, "rx performance may be slow\n");
649 
650 	/* Setup and start interrupt URB */
651 	usb_fill_int_urb(dev->intr_urb, dev->udev,
652 			 usb_rcvintpipe(dev->udev, 1),
653 			 dev->intr_in_buffer,
654 			 INTR_IN_BUFFER_SIZE,
655 			 ems_usb_read_interrupt_callback, dev, 1);
656 
657 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
658 	if (err) {
659 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
660 
661 		return err;
662 	}
663 
664 	/* CPC-USB will transfer received message to host */
665 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
666 	if (err)
667 		goto failed;
668 
669 	/* CPC-USB will transfer CAN state changes to host */
670 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
671 	if (err)
672 		goto failed;
673 
674 	/* CPC-USB will transfer bus errors to host */
675 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
676 	if (err)
677 		goto failed;
678 
679 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
680 	if (err)
681 		goto failed;
682 
683 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
684 
685 	return 0;
686 
687 failed:
688 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
689 
690 	return err;
691 }
692 
693 static void unlink_all_urbs(struct ems_usb *dev)
694 {
695 	int i;
696 
697 	usb_unlink_urb(dev->intr_urb);
698 
699 	usb_kill_anchored_urbs(&dev->rx_submitted);
700 
701 	for (i = 0; i < MAX_RX_URBS; ++i)
702 		usb_free_coherent(dev->udev, RX_BUFFER_SIZE,
703 				  dev->rxbuf[i], dev->rxbuf_dma[i]);
704 
705 	usb_kill_anchored_urbs(&dev->tx_submitted);
706 	atomic_set(&dev->active_tx_urbs, 0);
707 
708 	for (i = 0; i < MAX_TX_URBS; i++)
709 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
710 }
711 
712 static int ems_usb_open(struct net_device *netdev)
713 {
714 	struct ems_usb *dev = netdev_priv(netdev);
715 	int err;
716 
717 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
718 	if (err)
719 		return err;
720 
721 	/* common open */
722 	err = open_candev(netdev);
723 	if (err)
724 		return err;
725 
726 	/* finally start device */
727 	err = ems_usb_start(dev);
728 	if (err) {
729 		if (err == -ENODEV)
730 			netif_device_detach(dev->netdev);
731 
732 		netdev_warn(netdev, "couldn't start device: %d\n", err);
733 
734 		close_candev(netdev);
735 
736 		return err;
737 	}
738 
739 
740 	netif_start_queue(netdev);
741 
742 	return 0;
743 }
744 
745 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
746 {
747 	struct ems_usb *dev = netdev_priv(netdev);
748 	struct ems_tx_urb_context *context = NULL;
749 	struct net_device_stats *stats = &netdev->stats;
750 	struct can_frame *cf = (struct can_frame *)skb->data;
751 	struct ems_cpc_msg *msg;
752 	struct urb *urb;
753 	u8 *buf;
754 	int i, err;
755 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
756 			+ sizeof(struct cpc_can_msg);
757 
758 	if (can_dev_dropped_skb(netdev, skb))
759 		return NETDEV_TX_OK;
760 
761 	/* create a URB, and a buffer for it, and copy the data to the URB */
762 	urb = usb_alloc_urb(0, GFP_ATOMIC);
763 	if (!urb)
764 		goto nomem;
765 
766 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
767 	if (!buf) {
768 		netdev_err(netdev, "No memory left for USB buffer\n");
769 		usb_free_urb(urb);
770 		goto nomem;
771 	}
772 
773 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
774 
775 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
776 	msg->msg.can_msg.length = cf->len;
777 
778 	if (cf->can_id & CAN_RTR_FLAG) {
779 		msg->type = cf->can_id & CAN_EFF_FLAG ?
780 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
781 
782 		msg->length = CPC_CAN_MSG_MIN_SIZE;
783 	} else {
784 		msg->type = cf->can_id & CAN_EFF_FLAG ?
785 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
786 
787 		for (i = 0; i < cf->len; i++)
788 			msg->msg.can_msg.msg[i] = cf->data[i];
789 
790 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->len;
791 	}
792 
793 	for (i = 0; i < MAX_TX_URBS; i++) {
794 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
795 			context = &dev->tx_contexts[i];
796 			break;
797 		}
798 	}
799 
800 	/*
801 	 * May never happen! When this happens we'd more URBs in flight as
802 	 * allowed (MAX_TX_URBS).
803 	 */
804 	if (!context) {
805 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
806 		usb_free_urb(urb);
807 
808 		netdev_warn(netdev, "couldn't find free context\n");
809 
810 		return NETDEV_TX_BUSY;
811 	}
812 
813 	context->dev = dev;
814 	context->echo_index = i;
815 
816 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
817 			  size, ems_usb_write_bulk_callback, context);
818 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
819 	usb_anchor_urb(urb, &dev->tx_submitted);
820 
821 	can_put_echo_skb(skb, netdev, context->echo_index, 0);
822 
823 	atomic_inc(&dev->active_tx_urbs);
824 
825 	err = usb_submit_urb(urb, GFP_ATOMIC);
826 	if (unlikely(err)) {
827 		can_free_echo_skb(netdev, context->echo_index, NULL);
828 
829 		usb_unanchor_urb(urb);
830 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
831 
832 		atomic_dec(&dev->active_tx_urbs);
833 
834 		if (err == -ENODEV) {
835 			netif_device_detach(netdev);
836 		} else {
837 			netdev_warn(netdev, "failed tx_urb %d\n", err);
838 
839 			stats->tx_dropped++;
840 		}
841 	} else {
842 		netif_trans_update(netdev);
843 
844 		/* Slow down tx path */
845 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
846 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
847 			netif_stop_queue(netdev);
848 		}
849 	}
850 
851 	/*
852 	 * Release our reference to this URB, the USB core will eventually free
853 	 * it entirely.
854 	 */
855 	usb_free_urb(urb);
856 
857 	return NETDEV_TX_OK;
858 
859 nomem:
860 	dev_kfree_skb(skb);
861 	stats->tx_dropped++;
862 
863 	return NETDEV_TX_OK;
864 }
865 
866 static int ems_usb_close(struct net_device *netdev)
867 {
868 	struct ems_usb *dev = netdev_priv(netdev);
869 
870 	/* Stop polling */
871 	unlink_all_urbs(dev);
872 
873 	netif_stop_queue(netdev);
874 
875 	/* Set CAN controller to reset mode */
876 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
877 		netdev_warn(netdev, "couldn't stop device");
878 
879 	close_candev(netdev);
880 
881 	return 0;
882 }
883 
884 static const struct net_device_ops ems_usb_netdev_ops = {
885 	.ndo_open = ems_usb_open,
886 	.ndo_stop = ems_usb_close,
887 	.ndo_start_xmit = ems_usb_start_xmit,
888 	.ndo_change_mtu = can_change_mtu,
889 };
890 
891 static const struct ethtool_ops ems_usb_ethtool_ops = {
892 	.get_ts_info = ethtool_op_get_ts_info,
893 };
894 
895 static const struct can_bittiming_const ems_usb_bittiming_const = {
896 	.name = KBUILD_MODNAME,
897 	.tseg1_min = 1,
898 	.tseg1_max = 16,
899 	.tseg2_min = 1,
900 	.tseg2_max = 8,
901 	.sjw_max = 4,
902 	.brp_min = 1,
903 	.brp_max = 64,
904 	.brp_inc = 1,
905 };
906 
907 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
908 {
909 	struct ems_usb *dev = netdev_priv(netdev);
910 
911 	switch (mode) {
912 	case CAN_MODE_START:
913 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
914 			netdev_warn(netdev, "couldn't start device");
915 
916 		if (netif_queue_stopped(netdev))
917 			netif_wake_queue(netdev);
918 		break;
919 
920 	default:
921 		return -EOPNOTSUPP;
922 	}
923 
924 	return 0;
925 }
926 
927 static int ems_usb_set_bittiming(struct net_device *netdev)
928 {
929 	struct ems_usb *dev = netdev_priv(netdev);
930 	struct can_bittiming *bt = &dev->can.bittiming;
931 	u8 btr0, btr1;
932 
933 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
934 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
935 		(((bt->phase_seg2 - 1) & 0x7) << 4);
936 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
937 		btr1 |= 0x80;
938 
939 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
940 
941 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
942 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
943 
944 	return ems_usb_command_msg(dev, &dev->active_params);
945 }
946 
947 static void init_params_sja1000(struct ems_cpc_msg *msg)
948 {
949 	struct cpc_sja1000_params *sja1000 =
950 		&msg->msg.can_params.cc_params.sja1000;
951 
952 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
953 	msg->length = sizeof(struct cpc_can_params);
954 	msg->msgid = 0;
955 
956 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
957 
958 	/* Acceptance filter open */
959 	sja1000->acc_code0 = 0x00;
960 	sja1000->acc_code1 = 0x00;
961 	sja1000->acc_code2 = 0x00;
962 	sja1000->acc_code3 = 0x00;
963 
964 	/* Acceptance filter open */
965 	sja1000->acc_mask0 = 0xFF;
966 	sja1000->acc_mask1 = 0xFF;
967 	sja1000->acc_mask2 = 0xFF;
968 	sja1000->acc_mask3 = 0xFF;
969 
970 	sja1000->btr0 = 0;
971 	sja1000->btr1 = 0;
972 
973 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
974 	sja1000->mode = SJA1000_MOD_RM;
975 }
976 
977 /*
978  * probe function for new CPC-USB devices
979  */
980 static int ems_usb_probe(struct usb_interface *intf,
981 			 const struct usb_device_id *id)
982 {
983 	struct net_device *netdev;
984 	struct ems_usb *dev;
985 	int i, err = -ENOMEM;
986 
987 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
988 	if (!netdev) {
989 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
990 		return -ENOMEM;
991 	}
992 
993 	dev = netdev_priv(netdev);
994 
995 	dev->udev = interface_to_usbdev(intf);
996 	dev->netdev = netdev;
997 
998 	dev->can.state = CAN_STATE_STOPPED;
999 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1000 	dev->can.bittiming_const = &ems_usb_bittiming_const;
1001 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
1002 	dev->can.do_set_mode = ems_usb_set_mode;
1003 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1004 
1005 	netdev->netdev_ops = &ems_usb_netdev_ops;
1006 	netdev->ethtool_ops = &ems_usb_ethtool_ops;
1007 
1008 	netdev->flags |= IFF_ECHO; /* we support local echo */
1009 
1010 	init_usb_anchor(&dev->rx_submitted);
1011 
1012 	init_usb_anchor(&dev->tx_submitted);
1013 	atomic_set(&dev->active_tx_urbs, 0);
1014 
1015 	for (i = 0; i < MAX_TX_URBS; i++)
1016 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1017 
1018 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1019 	if (!dev->intr_urb)
1020 		goto cleanup_candev;
1021 
1022 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1023 	if (!dev->intr_in_buffer)
1024 		goto cleanup_intr_urb;
1025 
1026 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1027 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1028 	if (!dev->tx_msg_buffer)
1029 		goto cleanup_intr_in_buffer;
1030 
1031 	usb_set_intfdata(intf, dev);
1032 
1033 	SET_NETDEV_DEV(netdev, &intf->dev);
1034 
1035 	init_params_sja1000(&dev->active_params);
1036 
1037 	err = ems_usb_command_msg(dev, &dev->active_params);
1038 	if (err) {
1039 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1040 		goto cleanup_tx_msg_buffer;
1041 	}
1042 
1043 	err = register_candev(netdev);
1044 	if (err) {
1045 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1046 		goto cleanup_tx_msg_buffer;
1047 	}
1048 
1049 	return 0;
1050 
1051 cleanup_tx_msg_buffer:
1052 	kfree(dev->tx_msg_buffer);
1053 
1054 cleanup_intr_in_buffer:
1055 	kfree(dev->intr_in_buffer);
1056 
1057 cleanup_intr_urb:
1058 	usb_free_urb(dev->intr_urb);
1059 
1060 cleanup_candev:
1061 	free_candev(netdev);
1062 
1063 	return err;
1064 }
1065 
1066 /*
1067  * called by the usb core when the device is removed from the system
1068  */
1069 static void ems_usb_disconnect(struct usb_interface *intf)
1070 {
1071 	struct ems_usb *dev = usb_get_intfdata(intf);
1072 
1073 	usb_set_intfdata(intf, NULL);
1074 
1075 	if (dev) {
1076 		unregister_netdev(dev->netdev);
1077 
1078 		unlink_all_urbs(dev);
1079 
1080 		usb_free_urb(dev->intr_urb);
1081 
1082 		kfree(dev->intr_in_buffer);
1083 		kfree(dev->tx_msg_buffer);
1084 
1085 		free_candev(dev->netdev);
1086 	}
1087 }
1088 
1089 /* usb specific object needed to register this driver with the usb subsystem */
1090 static struct usb_driver ems_usb_driver = {
1091 	.name = KBUILD_MODNAME,
1092 	.probe = ems_usb_probe,
1093 	.disconnect = ems_usb_disconnect,
1094 	.id_table = ems_usb_table,
1095 };
1096 
1097 module_usb_driver(ems_usb_driver);
1098