xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 6ee73861)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/usb.h>
25 
26 #include <linux/can.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 
30 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32 MODULE_LICENSE("GPL v2");
33 
34 /* Control-Values for CPC_Control() Command Subject Selection */
35 #define CONTR_CAN_MESSAGE 0x04
36 #define CONTR_CAN_STATE   0x0C
37 #define CONTR_BUS_ERROR   0x1C
38 
39 /* Control Command Actions */
40 #define CONTR_CONT_OFF 0
41 #define CONTR_CONT_ON  1
42 #define CONTR_ONCE     2
43 
44 /* Messages from CPC to PC */
45 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56 
57 /* Messages from the PC to the CPC interface  */
58 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66 
67 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70 
71 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72 
73 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74 
75 /* Overrun types */
76 #define CPC_OVR_EVENT_CAN       0x01
77 #define CPC_OVR_EVENT_CANSTATE  0x02
78 #define CPC_OVR_EVENT_BUSERROR  0x04
79 
80 /*
81  * If the CAN controller lost a message we indicate it with the highest bit
82  * set in the count field.
83  */
84 #define CPC_OVR_HW 0x80
85 
86 /* Size of the "struct ems_cpc_msg" without the union */
87 #define CPC_MSG_HEADER_LEN   11
88 #define CPC_CAN_MSG_MIN_SIZE 5
89 
90 /* Define these values to match your devices */
91 #define USB_CPCUSB_VENDOR_ID 0x12D6
92 
93 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94 
95 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
96 #define SJA1000_MOD_NORMAL 0x00
97 #define SJA1000_MOD_RM     0x01
98 
99 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
100 #define SJA1000_ECC_SEG   0x1F
101 #define SJA1000_ECC_DIR   0x20
102 #define SJA1000_ECC_ERR   0x06
103 #define SJA1000_ECC_BIT   0x00
104 #define SJA1000_ECC_FORM  0x40
105 #define SJA1000_ECC_STUFF 0x80
106 #define SJA1000_ECC_MASK  0xc0
107 
108 /* Status register content */
109 #define SJA1000_SR_BS 0x80
110 #define SJA1000_SR_ES 0x40
111 
112 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113 
114 /*
115  * The device actually uses a 16MHz clock to generate the CAN clock
116  * but it expects SJA1000 bit settings based on 8MHz (is internally
117  * converted).
118  */
119 #define EMS_USB_ARM7_CLOCK 8000000
120 
121 /*
122  * CAN-Message representation in a CPC_MSG. Message object type is
123  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125  */
126 struct cpc_can_msg {
127 	u32 id;
128 	u8 length;
129 	u8 msg[8];
130 };
131 
132 /* Representation of the CAN parameters for the SJA1000 controller */
133 struct cpc_sja1000_params {
134 	u8 mode;
135 	u8 acc_code0;
136 	u8 acc_code1;
137 	u8 acc_code2;
138 	u8 acc_code3;
139 	u8 acc_mask0;
140 	u8 acc_mask1;
141 	u8 acc_mask2;
142 	u8 acc_mask3;
143 	u8 btr0;
144 	u8 btr1;
145 	u8 outp_contr;
146 };
147 
148 /* CAN params message representation */
149 struct cpc_can_params {
150 	u8 cc_type;
151 
152 	/* Will support M16C CAN controller in the future */
153 	union {
154 		struct cpc_sja1000_params sja1000;
155 	} cc_params;
156 };
157 
158 /* Structure for confirmed message handling */
159 struct cpc_confirm {
160 	u8 error; /* error code */
161 };
162 
163 /* Structure for overrun conditions */
164 struct cpc_overrun {
165 	u8 event;
166 	u8 count;
167 };
168 
169 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
170 struct cpc_sja1000_can_error {
171 	u8 ecc;
172 	u8 rxerr;
173 	u8 txerr;
174 };
175 
176 /* structure for CAN error conditions */
177 struct cpc_can_error {
178 	u8 ecode;
179 
180 	struct {
181 		u8 cc_type;
182 
183 		/* Other controllers may also provide error code capture regs */
184 		union {
185 			struct cpc_sja1000_can_error sja1000;
186 		} regs;
187 	} cc;
188 };
189 
190 /*
191  * Structure containing RX/TX error counter. This structure is used to request
192  * the values of the CAN controllers TX and RX error counter.
193  */
194 struct cpc_can_err_counter {
195 	u8 rx;
196 	u8 tx;
197 };
198 
199 /* Main message type used between library and application */
200 struct __attribute__ ((packed)) ems_cpc_msg {
201 	u8 type;	/* type of message */
202 	u8 length;	/* length of data within union 'msg' */
203 	u8 msgid;	/* confirmation handle */
204 	u32 ts_sec;	/* timestamp in seconds */
205 	u32 ts_nsec;	/* timestamp in nano seconds */
206 
207 	union {
208 		u8 generic[64];
209 		struct cpc_can_msg can_msg;
210 		struct cpc_can_params can_params;
211 		struct cpc_confirm confirmation;
212 		struct cpc_overrun overrun;
213 		struct cpc_can_error error;
214 		struct cpc_can_err_counter err_counter;
215 		u8 can_state;
216 	} msg;
217 };
218 
219 /*
220  * Table of devices that work with this driver
221  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222  */
223 static struct usb_device_id ems_usb_table[] = {
224 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225 	{} /* Terminating entry */
226 };
227 
228 MODULE_DEVICE_TABLE(usb, ems_usb_table);
229 
230 #define RX_BUFFER_SIZE      64
231 #define CPC_HEADER_SIZE     4
232 #define INTR_IN_BUFFER_SIZE 4
233 
234 #define MAX_RX_URBS 10
235 #define MAX_TX_URBS CAN_ECHO_SKB_MAX
236 
237 struct ems_usb;
238 
239 struct ems_tx_urb_context {
240 	struct ems_usb *dev;
241 
242 	u32 echo_index;
243 	u8 dlc;
244 };
245 
246 struct ems_usb {
247 	struct can_priv can; /* must be the first member */
248 	int open_time;
249 
250 	struct sk_buff *echo_skb[MAX_TX_URBS];
251 
252 	struct usb_device *udev;
253 	struct net_device *netdev;
254 
255 	atomic_t active_tx_urbs;
256 	struct usb_anchor tx_submitted;
257 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
258 
259 	struct usb_anchor rx_submitted;
260 
261 	struct urb *intr_urb;
262 
263 	u8 *tx_msg_buffer;
264 
265 	u8 *intr_in_buffer;
266 	unsigned int free_slots; /* remember number of available slots */
267 
268 	struct ems_cpc_msg active_params; /* active controller parameters */
269 };
270 
271 static void ems_usb_read_interrupt_callback(struct urb *urb)
272 {
273 	struct ems_usb *dev = urb->context;
274 	struct net_device *netdev = dev->netdev;
275 	int err;
276 
277 	if (!netif_device_present(netdev))
278 		return;
279 
280 	switch (urb->status) {
281 	case 0:
282 		dev->free_slots = dev->intr_in_buffer[1];
283 		break;
284 
285 	case -ECONNRESET: /* unlink */
286 	case -ENOENT:
287 	case -ESHUTDOWN:
288 		return;
289 
290 	default:
291 		dev_info(netdev->dev.parent, "Rx interrupt aborted %d\n",
292 			 urb->status);
293 		break;
294 	}
295 
296 	err = usb_submit_urb(urb, GFP_ATOMIC);
297 
298 	if (err == -ENODEV)
299 		netif_device_detach(netdev);
300 	else if (err)
301 		dev_err(netdev->dev.parent,
302 			"failed resubmitting intr urb: %d\n", err);
303 
304 	return;
305 }
306 
307 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
308 {
309 	struct can_frame *cf;
310 	struct sk_buff *skb;
311 	int i;
312 	struct net_device_stats *stats = &dev->netdev->stats;
313 
314 	skb = netdev_alloc_skb(dev->netdev, sizeof(struct can_frame));
315 	if (skb == NULL)
316 		return;
317 
318 	skb->protocol = htons(ETH_P_CAN);
319 
320 	cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
321 
322 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
323 	cf->can_dlc = min_t(u8, msg->msg.can_msg.length, 8);
324 
325 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME
326 	    || msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
327 		cf->can_id |= CAN_EFF_FLAG;
328 
329 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME
330 	    || msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
331 		cf->can_id |= CAN_RTR_FLAG;
332 	} else {
333 		for (i = 0; i < cf->can_dlc; i++)
334 			cf->data[i] = msg->msg.can_msg.msg[i];
335 	}
336 
337 	netif_rx(skb);
338 
339 	stats->rx_packets++;
340 	stats->rx_bytes += cf->can_dlc;
341 }
342 
343 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
344 {
345 	struct can_frame *cf;
346 	struct sk_buff *skb;
347 	struct net_device_stats *stats = &dev->netdev->stats;
348 
349 	skb = netdev_alloc_skb(dev->netdev, sizeof(struct can_frame));
350 	if (skb == NULL)
351 		return;
352 
353 	skb->protocol = htons(ETH_P_CAN);
354 
355 	cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
356 	memset(cf, 0, sizeof(struct can_frame));
357 
358 	cf->can_id = CAN_ERR_FLAG;
359 	cf->can_dlc = CAN_ERR_DLC;
360 
361 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
362 		u8 state = msg->msg.can_state;
363 
364 		if (state & SJA1000_SR_BS) {
365 			dev->can.state = CAN_STATE_BUS_OFF;
366 			cf->can_id |= CAN_ERR_BUSOFF;
367 
368 			can_bus_off(dev->netdev);
369 		} else if (state & SJA1000_SR_ES) {
370 			dev->can.state = CAN_STATE_ERROR_WARNING;
371 			dev->can.can_stats.error_warning++;
372 		} else {
373 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
374 			dev->can.can_stats.error_passive++;
375 		}
376 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
377 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
378 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
379 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
380 
381 		/* bus error interrupt */
382 		dev->can.can_stats.bus_error++;
383 		stats->rx_errors++;
384 
385 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
386 
387 		switch (ecc & SJA1000_ECC_MASK) {
388 		case SJA1000_ECC_BIT:
389 			cf->data[2] |= CAN_ERR_PROT_BIT;
390 			break;
391 		case SJA1000_ECC_FORM:
392 			cf->data[2] |= CAN_ERR_PROT_FORM;
393 			break;
394 		case SJA1000_ECC_STUFF:
395 			cf->data[2] |= CAN_ERR_PROT_STUFF;
396 			break;
397 		default:
398 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
399 			cf->data[3] = ecc & SJA1000_ECC_SEG;
400 			break;
401 		}
402 
403 		/* Error occured during transmission? */
404 		if ((ecc & SJA1000_ECC_DIR) == 0)
405 			cf->data[2] |= CAN_ERR_PROT_TX;
406 
407 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
408 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
409 			cf->data[1] = (txerr > rxerr) ?
410 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
411 		}
412 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
413 		cf->can_id |= CAN_ERR_CRTL;
414 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
415 
416 		stats->rx_over_errors++;
417 		stats->rx_errors++;
418 	}
419 
420 	netif_rx(skb);
421 
422 	stats->rx_packets++;
423 	stats->rx_bytes += cf->can_dlc;
424 }
425 
426 /*
427  * callback for bulk IN urb
428  */
429 static void ems_usb_read_bulk_callback(struct urb *urb)
430 {
431 	struct ems_usb *dev = urb->context;
432 	struct net_device *netdev;
433 	int retval;
434 
435 	netdev = dev->netdev;
436 
437 	if (!netif_device_present(netdev))
438 		return;
439 
440 	switch (urb->status) {
441 	case 0: /* success */
442 		break;
443 
444 	case -ENOENT:
445 		return;
446 
447 	default:
448 		dev_info(netdev->dev.parent, "Rx URB aborted (%d)\n",
449 			 urb->status);
450 		goto resubmit_urb;
451 	}
452 
453 	if (urb->actual_length > CPC_HEADER_SIZE) {
454 		struct ems_cpc_msg *msg;
455 		u8 *ibuf = urb->transfer_buffer;
456 		u8 msg_count, again, start;
457 
458 		msg_count = ibuf[0] & ~0x80;
459 		again = ibuf[0] & 0x80;
460 
461 		start = CPC_HEADER_SIZE;
462 
463 		while (msg_count) {
464 			msg = (struct ems_cpc_msg *)&ibuf[start];
465 
466 			switch (msg->type) {
467 			case CPC_MSG_TYPE_CAN_STATE:
468 				/* Process CAN state changes */
469 				ems_usb_rx_err(dev, msg);
470 				break;
471 
472 			case CPC_MSG_TYPE_CAN_FRAME:
473 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
474 			case CPC_MSG_TYPE_RTR_FRAME:
475 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
476 				ems_usb_rx_can_msg(dev, msg);
477 				break;
478 
479 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
480 				/* Process errorframe */
481 				ems_usb_rx_err(dev, msg);
482 				break;
483 
484 			case CPC_MSG_TYPE_OVERRUN:
485 				/* Message lost while receiving */
486 				ems_usb_rx_err(dev, msg);
487 				break;
488 			}
489 
490 			start += CPC_MSG_HEADER_LEN + msg->length;
491 			msg_count--;
492 
493 			if (start > urb->transfer_buffer_length) {
494 				dev_err(netdev->dev.parent, "format error\n");
495 				break;
496 			}
497 		}
498 	}
499 
500 resubmit_urb:
501 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
502 			  urb->transfer_buffer, RX_BUFFER_SIZE,
503 			  ems_usb_read_bulk_callback, dev);
504 
505 	retval = usb_submit_urb(urb, GFP_ATOMIC);
506 
507 	if (retval == -ENODEV)
508 		netif_device_detach(netdev);
509 	else if (retval)
510 		dev_err(netdev->dev.parent,
511 			"failed resubmitting read bulk urb: %d\n", retval);
512 
513 	return;
514 }
515 
516 /*
517  * callback for bulk IN urb
518  */
519 static void ems_usb_write_bulk_callback(struct urb *urb)
520 {
521 	struct ems_tx_urb_context *context = urb->context;
522 	struct ems_usb *dev;
523 	struct net_device *netdev;
524 
525 	BUG_ON(!context);
526 
527 	dev = context->dev;
528 	netdev = dev->netdev;
529 
530 	/* free up our allocated buffer */
531 	usb_buffer_free(urb->dev, urb->transfer_buffer_length,
532 			urb->transfer_buffer, urb->transfer_dma);
533 
534 	atomic_dec(&dev->active_tx_urbs);
535 
536 	if (!netif_device_present(netdev))
537 		return;
538 
539 	if (urb->status)
540 		dev_info(netdev->dev.parent, "Tx URB aborted (%d)\n",
541 			 urb->status);
542 
543 	netdev->trans_start = jiffies;
544 
545 	/* transmission complete interrupt */
546 	netdev->stats.tx_packets++;
547 	netdev->stats.tx_bytes += context->dlc;
548 
549 	can_get_echo_skb(netdev, context->echo_index);
550 
551 	/* Release context */
552 	context->echo_index = MAX_TX_URBS;
553 
554 	if (netif_queue_stopped(netdev))
555 		netif_wake_queue(netdev);
556 }
557 
558 /*
559  * Send the given CPC command synchronously
560  */
561 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
562 {
563 	int actual_length;
564 
565 	/* Copy payload */
566 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
567 	       msg->length + CPC_MSG_HEADER_LEN);
568 
569 	/* Clear header */
570 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
571 
572 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
573 			    &dev->tx_msg_buffer[0],
574 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
575 			    &actual_length, 1000);
576 }
577 
578 /*
579  * Change CAN controllers' mode register
580  */
581 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
582 {
583 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
584 
585 	return ems_usb_command_msg(dev, &dev->active_params);
586 }
587 
588 /*
589  * Send a CPC_Control command to change behaviour when interface receives a CAN
590  * message, bus error or CAN state changed notifications.
591  */
592 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
593 {
594 	struct ems_cpc_msg cmd;
595 
596 	cmd.type = CPC_CMD_TYPE_CONTROL;
597 	cmd.length = CPC_MSG_HEADER_LEN + 1;
598 
599 	cmd.msgid = 0;
600 
601 	cmd.msg.generic[0] = val;
602 
603 	return ems_usb_command_msg(dev, &cmd);
604 }
605 
606 /*
607  * Start interface
608  */
609 static int ems_usb_start(struct ems_usb *dev)
610 {
611 	struct net_device *netdev = dev->netdev;
612 	int err, i;
613 
614 	dev->intr_in_buffer[0] = 0;
615 	dev->free_slots = 15; /* initial size */
616 
617 	for (i = 0; i < MAX_RX_URBS; i++) {
618 		struct urb *urb = NULL;
619 		u8 *buf = NULL;
620 
621 		/* create a URB, and a buffer for it */
622 		urb = usb_alloc_urb(0, GFP_KERNEL);
623 		if (!urb) {
624 			dev_err(netdev->dev.parent,
625 				"No memory left for URBs\n");
626 			return -ENOMEM;
627 		}
628 
629 		buf = usb_buffer_alloc(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
630 				       &urb->transfer_dma);
631 		if (!buf) {
632 			dev_err(netdev->dev.parent,
633 				"No memory left for USB buffer\n");
634 			usb_free_urb(urb);
635 			return -ENOMEM;
636 		}
637 
638 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
639 				  buf, RX_BUFFER_SIZE,
640 				  ems_usb_read_bulk_callback, dev);
641 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
642 		usb_anchor_urb(urb, &dev->rx_submitted);
643 
644 		err = usb_submit_urb(urb, GFP_KERNEL);
645 		if (err) {
646 			if (err == -ENODEV)
647 				netif_device_detach(dev->netdev);
648 
649 			usb_unanchor_urb(urb);
650 			usb_buffer_free(dev->udev, RX_BUFFER_SIZE, buf,
651 					urb->transfer_dma);
652 			break;
653 		}
654 
655 		/* Drop reference, USB core will take care of freeing it */
656 		usb_free_urb(urb);
657 	}
658 
659 	/* Did we submit any URBs */
660 	if (i == 0) {
661 		dev_warn(netdev->dev.parent, "couldn't setup read URBs\n");
662 		return err;
663 	}
664 
665 	/* Warn if we've couldn't transmit all the URBs */
666 	if (i < MAX_RX_URBS)
667 		dev_warn(netdev->dev.parent, "rx performance may be slow\n");
668 
669 	/* Setup and start interrupt URB */
670 	usb_fill_int_urb(dev->intr_urb, dev->udev,
671 			 usb_rcvintpipe(dev->udev, 1),
672 			 dev->intr_in_buffer,
673 			 INTR_IN_BUFFER_SIZE,
674 			 ems_usb_read_interrupt_callback, dev, 1);
675 
676 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
677 	if (err) {
678 		if (err == -ENODEV)
679 			netif_device_detach(dev->netdev);
680 
681 		dev_warn(netdev->dev.parent, "intr URB submit failed: %d\n",
682 			 err);
683 
684 		return err;
685 	}
686 
687 	/* CPC-USB will transfer received message to host */
688 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
689 	if (err)
690 		goto failed;
691 
692 	/* CPC-USB will transfer CAN state changes to host */
693 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
694 	if (err)
695 		goto failed;
696 
697 	/* CPC-USB will transfer bus errors to host */
698 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
699 	if (err)
700 		goto failed;
701 
702 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
703 	if (err)
704 		goto failed;
705 
706 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
707 
708 	return 0;
709 
710 failed:
711 	if (err == -ENODEV)
712 		netif_device_detach(dev->netdev);
713 
714 	dev_warn(netdev->dev.parent, "couldn't submit control: %d\n", err);
715 
716 	return err;
717 }
718 
719 static void unlink_all_urbs(struct ems_usb *dev)
720 {
721 	int i;
722 
723 	usb_unlink_urb(dev->intr_urb);
724 
725 	usb_kill_anchored_urbs(&dev->rx_submitted);
726 
727 	usb_kill_anchored_urbs(&dev->tx_submitted);
728 	atomic_set(&dev->active_tx_urbs, 0);
729 
730 	for (i = 0; i < MAX_TX_URBS; i++)
731 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
732 }
733 
734 static int ems_usb_open(struct net_device *netdev)
735 {
736 	struct ems_usb *dev = netdev_priv(netdev);
737 	int err;
738 
739 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
740 	if (err)
741 		return err;
742 
743 	/* common open */
744 	err = open_candev(netdev);
745 	if (err)
746 		return err;
747 
748 	/* finally start device */
749 	err = ems_usb_start(dev);
750 	if (err) {
751 		if (err == -ENODEV)
752 			netif_device_detach(dev->netdev);
753 
754 		dev_warn(netdev->dev.parent, "couldn't start device: %d\n",
755 			 err);
756 
757 		close_candev(netdev);
758 
759 		return err;
760 	}
761 
762 	dev->open_time = jiffies;
763 
764 	netif_start_queue(netdev);
765 
766 	return 0;
767 }
768 
769 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
770 {
771 	struct ems_usb *dev = netdev_priv(netdev);
772 	struct ems_tx_urb_context *context = NULL;
773 	struct net_device_stats *stats = &netdev->stats;
774 	struct can_frame *cf = (struct can_frame *)skb->data;
775 	struct ems_cpc_msg *msg;
776 	struct urb *urb;
777 	u8 *buf;
778 	int i, err;
779 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
780 			+ sizeof(struct cpc_can_msg);
781 
782 	/* create a URB, and a buffer for it, and copy the data to the URB */
783 	urb = usb_alloc_urb(0, GFP_ATOMIC);
784 	if (!urb) {
785 		dev_err(netdev->dev.parent, "No memory left for URBs\n");
786 		goto nomem;
787 	}
788 
789 	buf = usb_buffer_alloc(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
790 	if (!buf) {
791 		dev_err(netdev->dev.parent, "No memory left for USB buffer\n");
792 		usb_free_urb(urb);
793 		goto nomem;
794 	}
795 
796 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
797 
798 	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
799 	msg->msg.can_msg.length = cf->can_dlc;
800 
801 	if (cf->can_id & CAN_RTR_FLAG) {
802 		msg->type = cf->can_id & CAN_EFF_FLAG ?
803 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
804 
805 		msg->length = CPC_CAN_MSG_MIN_SIZE;
806 	} else {
807 		msg->type = cf->can_id & CAN_EFF_FLAG ?
808 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
809 
810 		for (i = 0; i < cf->can_dlc; i++)
811 			msg->msg.can_msg.msg[i] = cf->data[i];
812 
813 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
814 	}
815 
816 	/* Respect byte order */
817 	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
818 
819 	for (i = 0; i < MAX_TX_URBS; i++) {
820 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
821 			context = &dev->tx_contexts[i];
822 			break;
823 		}
824 	}
825 
826 	/*
827 	 * May never happen! When this happens we'd more URBs in flight as
828 	 * allowed (MAX_TX_URBS).
829 	 */
830 	if (!context) {
831 		usb_unanchor_urb(urb);
832 		usb_buffer_free(dev->udev, size, buf, urb->transfer_dma);
833 
834 		dev_warn(netdev->dev.parent, "couldn't find free context\n");
835 
836 		return NETDEV_TX_BUSY;
837 	}
838 
839 	context->dev = dev;
840 	context->echo_index = i;
841 	context->dlc = cf->can_dlc;
842 
843 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
844 			  size, ems_usb_write_bulk_callback, context);
845 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
846 	usb_anchor_urb(urb, &dev->tx_submitted);
847 
848 	can_put_echo_skb(skb, netdev, context->echo_index);
849 
850 	atomic_inc(&dev->active_tx_urbs);
851 
852 	err = usb_submit_urb(urb, GFP_ATOMIC);
853 	if (unlikely(err)) {
854 		can_free_echo_skb(netdev, context->echo_index);
855 
856 		usb_unanchor_urb(urb);
857 		usb_buffer_free(dev->udev, size, buf, urb->transfer_dma);
858 		dev_kfree_skb(skb);
859 
860 		atomic_dec(&dev->active_tx_urbs);
861 
862 		if (err == -ENODEV) {
863 			netif_device_detach(netdev);
864 		} else {
865 			dev_warn(netdev->dev.parent, "failed tx_urb %d\n", err);
866 
867 			stats->tx_dropped++;
868 		}
869 	} else {
870 		netdev->trans_start = jiffies;
871 
872 		/* Slow down tx path */
873 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
874 		    dev->free_slots < 5) {
875 			netif_stop_queue(netdev);
876 		}
877 	}
878 
879 	/*
880 	 * Release our reference to this URB, the USB core will eventually free
881 	 * it entirely.
882 	 */
883 	usb_free_urb(urb);
884 
885 	return NETDEV_TX_OK;
886 
887 nomem:
888 	if (skb)
889 		dev_kfree_skb(skb);
890 
891 	stats->tx_dropped++;
892 
893 	return NETDEV_TX_OK;
894 }
895 
896 static int ems_usb_close(struct net_device *netdev)
897 {
898 	struct ems_usb *dev = netdev_priv(netdev);
899 
900 	/* Stop polling */
901 	unlink_all_urbs(dev);
902 
903 	netif_stop_queue(netdev);
904 
905 	/* Set CAN controller to reset mode */
906 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
907 		dev_warn(netdev->dev.parent, "couldn't stop device");
908 
909 	close_candev(netdev);
910 
911 	dev->open_time = 0;
912 
913 	return 0;
914 }
915 
916 static const struct net_device_ops ems_usb_netdev_ops = {
917 	.ndo_open = ems_usb_open,
918 	.ndo_stop = ems_usb_close,
919 	.ndo_start_xmit = ems_usb_start_xmit,
920 };
921 
922 static struct can_bittiming_const ems_usb_bittiming_const = {
923 	.name = "ems_usb",
924 	.tseg1_min = 1,
925 	.tseg1_max = 16,
926 	.tseg2_min = 1,
927 	.tseg2_max = 8,
928 	.sjw_max = 4,
929 	.brp_min = 1,
930 	.brp_max = 64,
931 	.brp_inc = 1,
932 };
933 
934 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
935 {
936 	struct ems_usb *dev = netdev_priv(netdev);
937 
938 	if (!dev->open_time)
939 		return -EINVAL;
940 
941 	switch (mode) {
942 	case CAN_MODE_START:
943 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
944 			dev_warn(netdev->dev.parent, "couldn't start device");
945 
946 		if (netif_queue_stopped(netdev))
947 			netif_wake_queue(netdev);
948 		break;
949 
950 	default:
951 		return -EOPNOTSUPP;
952 	}
953 
954 	return 0;
955 }
956 
957 static int ems_usb_set_bittiming(struct net_device *netdev)
958 {
959 	struct ems_usb *dev = netdev_priv(netdev);
960 	struct can_bittiming *bt = &dev->can.bittiming;
961 	u8 btr0, btr1;
962 
963 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
964 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
965 		(((bt->phase_seg2 - 1) & 0x7) << 4);
966 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
967 		btr1 |= 0x80;
968 
969 	dev_info(netdev->dev.parent, "setting BTR0=0x%02x BTR1=0x%02x\n",
970 		 btr0, btr1);
971 
972 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
973 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
974 
975 	return ems_usb_command_msg(dev, &dev->active_params);
976 }
977 
978 static void init_params_sja1000(struct ems_cpc_msg *msg)
979 {
980 	struct cpc_sja1000_params *sja1000 =
981 		&msg->msg.can_params.cc_params.sja1000;
982 
983 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
984 	msg->length = sizeof(struct cpc_can_params);
985 	msg->msgid = 0;
986 
987 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
988 
989 	/* Acceptance filter open */
990 	sja1000->acc_code0 = 0x00;
991 	sja1000->acc_code1 = 0x00;
992 	sja1000->acc_code2 = 0x00;
993 	sja1000->acc_code3 = 0x00;
994 
995 	/* Acceptance filter open */
996 	sja1000->acc_mask0 = 0xFF;
997 	sja1000->acc_mask1 = 0xFF;
998 	sja1000->acc_mask2 = 0xFF;
999 	sja1000->acc_mask3 = 0xFF;
1000 
1001 	sja1000->btr0 = 0;
1002 	sja1000->btr1 = 0;
1003 
1004 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
1005 	sja1000->mode = SJA1000_MOD_RM;
1006 }
1007 
1008 /*
1009  * probe function for new CPC-USB devices
1010  */
1011 static int ems_usb_probe(struct usb_interface *intf,
1012 			 const struct usb_device_id *id)
1013 {
1014 	struct net_device *netdev;
1015 	struct ems_usb *dev;
1016 	int i, err = -ENOMEM;
1017 
1018 	netdev = alloc_candev(sizeof(struct ems_usb));
1019 	if (!netdev) {
1020 		dev_err(netdev->dev.parent, "Couldn't alloc candev\n");
1021 		return -ENOMEM;
1022 	}
1023 
1024 	dev = netdev_priv(netdev);
1025 
1026 	dev->udev = interface_to_usbdev(intf);
1027 	dev->netdev = netdev;
1028 
1029 	dev->can.state = CAN_STATE_STOPPED;
1030 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1031 	dev->can.bittiming_const = &ems_usb_bittiming_const;
1032 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
1033 	dev->can.do_set_mode = ems_usb_set_mode;
1034 
1035 	netdev->flags |= IFF_ECHO; /* we support local echo */
1036 
1037 	netdev->netdev_ops = &ems_usb_netdev_ops;
1038 
1039 	netdev->flags |= IFF_ECHO; /* we support local echo */
1040 
1041 	init_usb_anchor(&dev->rx_submitted);
1042 
1043 	init_usb_anchor(&dev->tx_submitted);
1044 	atomic_set(&dev->active_tx_urbs, 0);
1045 
1046 	for (i = 0; i < MAX_TX_URBS; i++)
1047 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1048 
1049 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1050 	if (!dev->intr_urb) {
1051 		dev_err(netdev->dev.parent, "Couldn't alloc intr URB\n");
1052 		goto cleanup_candev;
1053 	}
1054 
1055 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1056 	if (!dev->intr_in_buffer) {
1057 		dev_err(netdev->dev.parent, "Couldn't alloc Intr buffer\n");
1058 		goto cleanup_intr_urb;
1059 	}
1060 
1061 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1062 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1063 	if (!dev->tx_msg_buffer) {
1064 		dev_err(netdev->dev.parent, "Couldn't alloc Tx buffer\n");
1065 		goto cleanup_intr_in_buffer;
1066 	}
1067 
1068 	usb_set_intfdata(intf, dev);
1069 
1070 	SET_NETDEV_DEV(netdev, &intf->dev);
1071 
1072 	init_params_sja1000(&dev->active_params);
1073 
1074 	err = ems_usb_command_msg(dev, &dev->active_params);
1075 	if (err) {
1076 		dev_err(netdev->dev.parent,
1077 			"couldn't initialize controller: %d\n", err);
1078 		goto cleanup_tx_msg_buffer;
1079 	}
1080 
1081 	err = register_candev(netdev);
1082 	if (err) {
1083 		dev_err(netdev->dev.parent,
1084 			"couldn't register CAN device: %d\n", err);
1085 		goto cleanup_tx_msg_buffer;
1086 	}
1087 
1088 	return 0;
1089 
1090 cleanup_tx_msg_buffer:
1091 	kfree(dev->tx_msg_buffer);
1092 
1093 cleanup_intr_in_buffer:
1094 	kfree(dev->intr_in_buffer);
1095 
1096 cleanup_intr_urb:
1097 	usb_free_urb(dev->intr_urb);
1098 
1099 cleanup_candev:
1100 	free_candev(netdev);
1101 
1102 	return err;
1103 }
1104 
1105 /*
1106  * called by the usb core when the device is removed from the system
1107  */
1108 static void ems_usb_disconnect(struct usb_interface *intf)
1109 {
1110 	struct ems_usb *dev = usb_get_intfdata(intf);
1111 
1112 	usb_set_intfdata(intf, NULL);
1113 
1114 	if (dev) {
1115 		unregister_netdev(dev->netdev);
1116 		free_candev(dev->netdev);
1117 
1118 		unlink_all_urbs(dev);
1119 
1120 		usb_free_urb(dev->intr_urb);
1121 
1122 		kfree(dev->intr_in_buffer);
1123 	}
1124 }
1125 
1126 /* usb specific object needed to register this driver with the usb subsystem */
1127 static struct usb_driver ems_usb_driver = {
1128 	.name = "ems_usb",
1129 	.probe = ems_usb_probe,
1130 	.disconnect = ems_usb_disconnect,
1131 	.id_table = ems_usb_table,
1132 };
1133 
1134 static int __init ems_usb_init(void)
1135 {
1136 	int err;
1137 
1138 	printk(KERN_INFO "CPC-USB kernel driver loaded\n");
1139 
1140 	/* register this driver with the USB subsystem */
1141 	err = usb_register(&ems_usb_driver);
1142 
1143 	if (err) {
1144 		err("usb_register failed. Error number %d\n", err);
1145 		return err;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 static void __exit ems_usb_exit(void)
1152 {
1153 	/* deregister this driver with the USB subsystem */
1154 	usb_deregister(&ems_usb_driver);
1155 }
1156 
1157 module_init(ems_usb_init);
1158 module_exit(ems_usb_exit);
1159