xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 5b828263)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
4  *
5  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
6  */
7 #include <linux/signal.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/netdevice.h>
11 #include <linux/usb.h>
12 
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/error.h>
16 
17 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
18 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
19 MODULE_LICENSE("GPL v2");
20 
21 /* Control-Values for CPC_Control() Command Subject Selection */
22 #define CONTR_CAN_MESSAGE 0x04
23 #define CONTR_CAN_STATE   0x0C
24 #define CONTR_BUS_ERROR   0x1C
25 
26 /* Control Command Actions */
27 #define CONTR_CONT_OFF 0
28 #define CONTR_CONT_ON  1
29 #define CONTR_ONCE     2
30 
31 /* Messages from CPC to PC */
32 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
33 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
34 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
35 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
36 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
37 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
38 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
39 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
40 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
41 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
42 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
43 
44 /* Messages from the PC to the CPC interface  */
45 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
46 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
47 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
48 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
49 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
50 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
51 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
52 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
53 
54 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
55 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
56 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
57 
58 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
59 
60 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
61 
62 /* Overrun types */
63 #define CPC_OVR_EVENT_CAN       0x01
64 #define CPC_OVR_EVENT_CANSTATE  0x02
65 #define CPC_OVR_EVENT_BUSERROR  0x04
66 
67 /*
68  * If the CAN controller lost a message we indicate it with the highest bit
69  * set in the count field.
70  */
71 #define CPC_OVR_HW 0x80
72 
73 /* Size of the "struct ems_cpc_msg" without the union */
74 #define CPC_MSG_HEADER_LEN   11
75 #define CPC_CAN_MSG_MIN_SIZE 5
76 
77 /* Define these values to match your devices */
78 #define USB_CPCUSB_VENDOR_ID 0x12D6
79 
80 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
81 
82 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
83 #define SJA1000_MOD_NORMAL 0x00
84 #define SJA1000_MOD_RM     0x01
85 
86 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
87 #define SJA1000_ECC_SEG   0x1F
88 #define SJA1000_ECC_DIR   0x20
89 #define SJA1000_ECC_ERR   0x06
90 #define SJA1000_ECC_BIT   0x00
91 #define SJA1000_ECC_FORM  0x40
92 #define SJA1000_ECC_STUFF 0x80
93 #define SJA1000_ECC_MASK  0xc0
94 
95 /* Status register content */
96 #define SJA1000_SR_BS 0x80
97 #define SJA1000_SR_ES 0x40
98 
99 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
100 
101 /*
102  * The device actually uses a 16MHz clock to generate the CAN clock
103  * but it expects SJA1000 bit settings based on 8MHz (is internally
104  * converted).
105  */
106 #define EMS_USB_ARM7_CLOCK 8000000
107 
108 #define CPC_TX_QUEUE_TRIGGER_LOW	25
109 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
110 
111 /*
112  * CAN-Message representation in a CPC_MSG. Message object type is
113  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
114  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
115  */
116 struct cpc_can_msg {
117 	__le32 id;
118 	u8 length;
119 	u8 msg[8];
120 };
121 
122 /* Representation of the CAN parameters for the SJA1000 controller */
123 struct cpc_sja1000_params {
124 	u8 mode;
125 	u8 acc_code0;
126 	u8 acc_code1;
127 	u8 acc_code2;
128 	u8 acc_code3;
129 	u8 acc_mask0;
130 	u8 acc_mask1;
131 	u8 acc_mask2;
132 	u8 acc_mask3;
133 	u8 btr0;
134 	u8 btr1;
135 	u8 outp_contr;
136 };
137 
138 /* CAN params message representation */
139 struct cpc_can_params {
140 	u8 cc_type;
141 
142 	/* Will support M16C CAN controller in the future */
143 	union {
144 		struct cpc_sja1000_params sja1000;
145 	} cc_params;
146 };
147 
148 /* Structure for confirmed message handling */
149 struct cpc_confirm {
150 	u8 error; /* error code */
151 };
152 
153 /* Structure for overrun conditions */
154 struct cpc_overrun {
155 	u8 event;
156 	u8 count;
157 };
158 
159 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
160 struct cpc_sja1000_can_error {
161 	u8 ecc;
162 	u8 rxerr;
163 	u8 txerr;
164 };
165 
166 /* structure for CAN error conditions */
167 struct cpc_can_error {
168 	u8 ecode;
169 
170 	struct {
171 		u8 cc_type;
172 
173 		/* Other controllers may also provide error code capture regs */
174 		union {
175 			struct cpc_sja1000_can_error sja1000;
176 		} regs;
177 	} cc;
178 };
179 
180 /*
181  * Structure containing RX/TX error counter. This structure is used to request
182  * the values of the CAN controllers TX and RX error counter.
183  */
184 struct cpc_can_err_counter {
185 	u8 rx;
186 	u8 tx;
187 };
188 
189 /* Main message type used between library and application */
190 struct __packed ems_cpc_msg {
191 	u8 type;	/* type of message */
192 	u8 length;	/* length of data within union 'msg' */
193 	u8 msgid;	/* confirmation handle */
194 	__le32 ts_sec;	/* timestamp in seconds */
195 	__le32 ts_nsec;	/* timestamp in nano seconds */
196 
197 	union {
198 		u8 generic[64];
199 		struct cpc_can_msg can_msg;
200 		struct cpc_can_params can_params;
201 		struct cpc_confirm confirmation;
202 		struct cpc_overrun overrun;
203 		struct cpc_can_error error;
204 		struct cpc_can_err_counter err_counter;
205 		u8 can_state;
206 	} msg;
207 };
208 
209 /*
210  * Table of devices that work with this driver
211  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
212  */
213 static struct usb_device_id ems_usb_table[] = {
214 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
215 	{} /* Terminating entry */
216 };
217 
218 MODULE_DEVICE_TABLE(usb, ems_usb_table);
219 
220 #define RX_BUFFER_SIZE      64
221 #define CPC_HEADER_SIZE     4
222 #define INTR_IN_BUFFER_SIZE 4
223 
224 #define MAX_RX_URBS 10
225 #define MAX_TX_URBS 10
226 
227 struct ems_usb;
228 
229 struct ems_tx_urb_context {
230 	struct ems_usb *dev;
231 
232 	u32 echo_index;
233 };
234 
235 struct ems_usb {
236 	struct can_priv can; /* must be the first member */
237 
238 	struct sk_buff *echo_skb[MAX_TX_URBS];
239 
240 	struct usb_device *udev;
241 	struct net_device *netdev;
242 
243 	atomic_t active_tx_urbs;
244 	struct usb_anchor tx_submitted;
245 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
246 
247 	struct usb_anchor rx_submitted;
248 
249 	struct urb *intr_urb;
250 
251 	u8 *tx_msg_buffer;
252 
253 	u8 *intr_in_buffer;
254 	unsigned int free_slots; /* remember number of available slots */
255 
256 	struct ems_cpc_msg active_params; /* active controller parameters */
257 	void *rxbuf[MAX_RX_URBS];
258 	dma_addr_t rxbuf_dma[MAX_RX_URBS];
259 };
260 
261 static void ems_usb_read_interrupt_callback(struct urb *urb)
262 {
263 	struct ems_usb *dev = urb->context;
264 	struct net_device *netdev = dev->netdev;
265 	int err;
266 
267 	if (!netif_device_present(netdev))
268 		return;
269 
270 	switch (urb->status) {
271 	case 0:
272 		dev->free_slots = dev->intr_in_buffer[1];
273 		if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
274 		    netif_queue_stopped(netdev))
275 			netif_wake_queue(netdev);
276 		break;
277 
278 	case -ECONNRESET: /* unlink */
279 	case -ENOENT:
280 	case -EPIPE:
281 	case -EPROTO:
282 	case -ESHUTDOWN:
283 		return;
284 
285 	default:
286 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
287 		break;
288 	}
289 
290 	err = usb_submit_urb(urb, GFP_ATOMIC);
291 
292 	if (err == -ENODEV)
293 		netif_device_detach(netdev);
294 	else if (err)
295 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
296 }
297 
298 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
299 {
300 	struct can_frame *cf;
301 	struct sk_buff *skb;
302 	int i;
303 	struct net_device_stats *stats = &dev->netdev->stats;
304 
305 	skb = alloc_can_skb(dev->netdev, &cf);
306 	if (skb == NULL)
307 		return;
308 
309 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
310 	cf->len = can_cc_dlc2len(msg->msg.can_msg.length & 0xF);
311 
312 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
313 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
314 		cf->can_id |= CAN_EFF_FLAG;
315 
316 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
317 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
318 		cf->can_id |= CAN_RTR_FLAG;
319 	} else {
320 		for (i = 0; i < cf->len; i++)
321 			cf->data[i] = msg->msg.can_msg.msg[i];
322 
323 		stats->rx_bytes += cf->len;
324 	}
325 	stats->rx_packets++;
326 
327 	netif_rx(skb);
328 }
329 
330 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
331 {
332 	struct can_frame *cf;
333 	struct sk_buff *skb;
334 	struct net_device_stats *stats = &dev->netdev->stats;
335 
336 	skb = alloc_can_err_skb(dev->netdev, &cf);
337 	if (skb == NULL)
338 		return;
339 
340 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
341 		u8 state = msg->msg.can_state;
342 
343 		if (state & SJA1000_SR_BS) {
344 			dev->can.state = CAN_STATE_BUS_OFF;
345 			cf->can_id |= CAN_ERR_BUSOFF;
346 
347 			dev->can.can_stats.bus_off++;
348 			can_bus_off(dev->netdev);
349 		} else if (state & SJA1000_SR_ES) {
350 			dev->can.state = CAN_STATE_ERROR_WARNING;
351 			dev->can.can_stats.error_warning++;
352 		} else {
353 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
354 			dev->can.can_stats.error_passive++;
355 		}
356 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
357 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
358 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
359 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
360 
361 		/* bus error interrupt */
362 		dev->can.can_stats.bus_error++;
363 		stats->rx_errors++;
364 
365 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
366 
367 		switch (ecc & SJA1000_ECC_MASK) {
368 		case SJA1000_ECC_BIT:
369 			cf->data[2] |= CAN_ERR_PROT_BIT;
370 			break;
371 		case SJA1000_ECC_FORM:
372 			cf->data[2] |= CAN_ERR_PROT_FORM;
373 			break;
374 		case SJA1000_ECC_STUFF:
375 			cf->data[2] |= CAN_ERR_PROT_STUFF;
376 			break;
377 		default:
378 			cf->data[3] = ecc & SJA1000_ECC_SEG;
379 			break;
380 		}
381 
382 		/* Error occurred during transmission? */
383 		if ((ecc & SJA1000_ECC_DIR) == 0)
384 			cf->data[2] |= CAN_ERR_PROT_TX;
385 
386 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
387 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
388 			cf->can_id |= CAN_ERR_CRTL;
389 			cf->data[1] = (txerr > rxerr) ?
390 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
391 		}
392 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
393 		cf->can_id |= CAN_ERR_CRTL;
394 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
395 
396 		stats->rx_over_errors++;
397 		stats->rx_errors++;
398 	}
399 
400 	netif_rx(skb);
401 }
402 
403 /*
404  * callback for bulk IN urb
405  */
406 static void ems_usb_read_bulk_callback(struct urb *urb)
407 {
408 	struct ems_usb *dev = urb->context;
409 	struct net_device *netdev;
410 	int retval;
411 
412 	netdev = dev->netdev;
413 
414 	if (!netif_device_present(netdev))
415 		return;
416 
417 	switch (urb->status) {
418 	case 0: /* success */
419 		break;
420 
421 	case -ENOENT:
422 		return;
423 
424 	default:
425 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
426 		goto resubmit_urb;
427 	}
428 
429 	if (urb->actual_length > CPC_HEADER_SIZE) {
430 		struct ems_cpc_msg *msg;
431 		u8 *ibuf = urb->transfer_buffer;
432 		u8 msg_count, start;
433 
434 		msg_count = ibuf[0] & ~0x80;
435 
436 		start = CPC_HEADER_SIZE;
437 
438 		while (msg_count) {
439 			msg = (struct ems_cpc_msg *)&ibuf[start];
440 
441 			switch (msg->type) {
442 			case CPC_MSG_TYPE_CAN_STATE:
443 				/* Process CAN state changes */
444 				ems_usb_rx_err(dev, msg);
445 				break;
446 
447 			case CPC_MSG_TYPE_CAN_FRAME:
448 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
449 			case CPC_MSG_TYPE_RTR_FRAME:
450 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
451 				ems_usb_rx_can_msg(dev, msg);
452 				break;
453 
454 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
455 				/* Process errorframe */
456 				ems_usb_rx_err(dev, msg);
457 				break;
458 
459 			case CPC_MSG_TYPE_OVERRUN:
460 				/* Message lost while receiving */
461 				ems_usb_rx_err(dev, msg);
462 				break;
463 			}
464 
465 			start += CPC_MSG_HEADER_LEN + msg->length;
466 			msg_count--;
467 
468 			if (start > urb->transfer_buffer_length) {
469 				netdev_err(netdev, "format error\n");
470 				break;
471 			}
472 		}
473 	}
474 
475 resubmit_urb:
476 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
477 			  urb->transfer_buffer, RX_BUFFER_SIZE,
478 			  ems_usb_read_bulk_callback, dev);
479 
480 	retval = usb_submit_urb(urb, GFP_ATOMIC);
481 
482 	if (retval == -ENODEV)
483 		netif_device_detach(netdev);
484 	else if (retval)
485 		netdev_err(netdev,
486 			   "failed resubmitting read bulk urb: %d\n", retval);
487 }
488 
489 /*
490  * callback for bulk IN urb
491  */
492 static void ems_usb_write_bulk_callback(struct urb *urb)
493 {
494 	struct ems_tx_urb_context *context = urb->context;
495 	struct ems_usb *dev;
496 	struct net_device *netdev;
497 
498 	BUG_ON(!context);
499 
500 	dev = context->dev;
501 	netdev = dev->netdev;
502 
503 	/* free up our allocated buffer */
504 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
505 			  urb->transfer_buffer, urb->transfer_dma);
506 
507 	atomic_dec(&dev->active_tx_urbs);
508 
509 	if (!netif_device_present(netdev))
510 		return;
511 
512 	if (urb->status)
513 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
514 
515 	netif_trans_update(netdev);
516 
517 	/* transmission complete interrupt */
518 	netdev->stats.tx_packets++;
519 	netdev->stats.tx_bytes += can_get_echo_skb(netdev, context->echo_index,
520 						   NULL);
521 
522 	/* Release context */
523 	context->echo_index = MAX_TX_URBS;
524 
525 }
526 
527 /*
528  * Send the given CPC command synchronously
529  */
530 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
531 {
532 	int actual_length;
533 
534 	/* Copy payload */
535 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
536 	       msg->length + CPC_MSG_HEADER_LEN);
537 
538 	/* Clear header */
539 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
540 
541 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
542 			    &dev->tx_msg_buffer[0],
543 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
544 			    &actual_length, 1000);
545 }
546 
547 /*
548  * Change CAN controllers' mode register
549  */
550 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
551 {
552 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
553 
554 	return ems_usb_command_msg(dev, &dev->active_params);
555 }
556 
557 /*
558  * Send a CPC_Control command to change behaviour when interface receives a CAN
559  * message, bus error or CAN state changed notifications.
560  */
561 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
562 {
563 	struct ems_cpc_msg cmd;
564 
565 	cmd.type = CPC_CMD_TYPE_CONTROL;
566 	cmd.length = CPC_MSG_HEADER_LEN + 1;
567 
568 	cmd.msgid = 0;
569 
570 	cmd.msg.generic[0] = val;
571 
572 	return ems_usb_command_msg(dev, &cmd);
573 }
574 
575 /*
576  * Start interface
577  */
578 static int ems_usb_start(struct ems_usb *dev)
579 {
580 	struct net_device *netdev = dev->netdev;
581 	int err, i;
582 
583 	dev->intr_in_buffer[0] = 0;
584 	dev->free_slots = 50; /* initial size */
585 
586 	for (i = 0; i < MAX_RX_URBS; i++) {
587 		struct urb *urb = NULL;
588 		u8 *buf = NULL;
589 		dma_addr_t buf_dma;
590 
591 		/* create a URB, and a buffer for it */
592 		urb = usb_alloc_urb(0, GFP_KERNEL);
593 		if (!urb) {
594 			err = -ENOMEM;
595 			break;
596 		}
597 
598 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
599 					 &buf_dma);
600 		if (!buf) {
601 			netdev_err(netdev, "No memory left for USB buffer\n");
602 			usb_free_urb(urb);
603 			err = -ENOMEM;
604 			break;
605 		}
606 
607 		urb->transfer_dma = buf_dma;
608 
609 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
610 				  buf, RX_BUFFER_SIZE,
611 				  ems_usb_read_bulk_callback, dev);
612 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
613 		usb_anchor_urb(urb, &dev->rx_submitted);
614 
615 		err = usb_submit_urb(urb, GFP_KERNEL);
616 		if (err) {
617 			usb_unanchor_urb(urb);
618 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
619 					  urb->transfer_dma);
620 			usb_free_urb(urb);
621 			break;
622 		}
623 
624 		dev->rxbuf[i] = buf;
625 		dev->rxbuf_dma[i] = buf_dma;
626 
627 		/* Drop reference, USB core will take care of freeing it */
628 		usb_free_urb(urb);
629 	}
630 
631 	/* Did we submit any URBs */
632 	if (i == 0) {
633 		netdev_warn(netdev, "couldn't setup read URBs\n");
634 		return err;
635 	}
636 
637 	/* Warn if we've couldn't transmit all the URBs */
638 	if (i < MAX_RX_URBS)
639 		netdev_warn(netdev, "rx performance may be slow\n");
640 
641 	/* Setup and start interrupt URB */
642 	usb_fill_int_urb(dev->intr_urb, dev->udev,
643 			 usb_rcvintpipe(dev->udev, 1),
644 			 dev->intr_in_buffer,
645 			 INTR_IN_BUFFER_SIZE,
646 			 ems_usb_read_interrupt_callback, dev, 1);
647 
648 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
649 	if (err) {
650 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
651 
652 		return err;
653 	}
654 
655 	/* CPC-USB will transfer received message to host */
656 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
657 	if (err)
658 		goto failed;
659 
660 	/* CPC-USB will transfer CAN state changes to host */
661 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
662 	if (err)
663 		goto failed;
664 
665 	/* CPC-USB will transfer bus errors to host */
666 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
667 	if (err)
668 		goto failed;
669 
670 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
671 	if (err)
672 		goto failed;
673 
674 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
675 
676 	return 0;
677 
678 failed:
679 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
680 
681 	return err;
682 }
683 
684 static void unlink_all_urbs(struct ems_usb *dev)
685 {
686 	int i;
687 
688 	usb_unlink_urb(dev->intr_urb);
689 
690 	usb_kill_anchored_urbs(&dev->rx_submitted);
691 
692 	for (i = 0; i < MAX_RX_URBS; ++i)
693 		usb_free_coherent(dev->udev, RX_BUFFER_SIZE,
694 				  dev->rxbuf[i], dev->rxbuf_dma[i]);
695 
696 	usb_kill_anchored_urbs(&dev->tx_submitted);
697 	atomic_set(&dev->active_tx_urbs, 0);
698 
699 	for (i = 0; i < MAX_TX_URBS; i++)
700 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
701 }
702 
703 static int ems_usb_open(struct net_device *netdev)
704 {
705 	struct ems_usb *dev = netdev_priv(netdev);
706 	int err;
707 
708 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
709 	if (err)
710 		return err;
711 
712 	/* common open */
713 	err = open_candev(netdev);
714 	if (err)
715 		return err;
716 
717 	/* finally start device */
718 	err = ems_usb_start(dev);
719 	if (err) {
720 		if (err == -ENODEV)
721 			netif_device_detach(dev->netdev);
722 
723 		netdev_warn(netdev, "couldn't start device: %d\n", err);
724 
725 		close_candev(netdev);
726 
727 		return err;
728 	}
729 
730 
731 	netif_start_queue(netdev);
732 
733 	return 0;
734 }
735 
736 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
737 {
738 	struct ems_usb *dev = netdev_priv(netdev);
739 	struct ems_tx_urb_context *context = NULL;
740 	struct net_device_stats *stats = &netdev->stats;
741 	struct can_frame *cf = (struct can_frame *)skb->data;
742 	struct ems_cpc_msg *msg;
743 	struct urb *urb;
744 	u8 *buf;
745 	int i, err;
746 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
747 			+ sizeof(struct cpc_can_msg);
748 
749 	if (can_dropped_invalid_skb(netdev, skb))
750 		return NETDEV_TX_OK;
751 
752 	/* create a URB, and a buffer for it, and copy the data to the URB */
753 	urb = usb_alloc_urb(0, GFP_ATOMIC);
754 	if (!urb)
755 		goto nomem;
756 
757 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
758 	if (!buf) {
759 		netdev_err(netdev, "No memory left for USB buffer\n");
760 		usb_free_urb(urb);
761 		goto nomem;
762 	}
763 
764 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
765 
766 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
767 	msg->msg.can_msg.length = cf->len;
768 
769 	if (cf->can_id & CAN_RTR_FLAG) {
770 		msg->type = cf->can_id & CAN_EFF_FLAG ?
771 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
772 
773 		msg->length = CPC_CAN_MSG_MIN_SIZE;
774 	} else {
775 		msg->type = cf->can_id & CAN_EFF_FLAG ?
776 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
777 
778 		for (i = 0; i < cf->len; i++)
779 			msg->msg.can_msg.msg[i] = cf->data[i];
780 
781 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->len;
782 	}
783 
784 	for (i = 0; i < MAX_TX_URBS; i++) {
785 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
786 			context = &dev->tx_contexts[i];
787 			break;
788 		}
789 	}
790 
791 	/*
792 	 * May never happen! When this happens we'd more URBs in flight as
793 	 * allowed (MAX_TX_URBS).
794 	 */
795 	if (!context) {
796 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
797 		usb_free_urb(urb);
798 
799 		netdev_warn(netdev, "couldn't find free context\n");
800 
801 		return NETDEV_TX_BUSY;
802 	}
803 
804 	context->dev = dev;
805 	context->echo_index = i;
806 
807 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
808 			  size, ems_usb_write_bulk_callback, context);
809 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
810 	usb_anchor_urb(urb, &dev->tx_submitted);
811 
812 	can_put_echo_skb(skb, netdev, context->echo_index, 0);
813 
814 	atomic_inc(&dev->active_tx_urbs);
815 
816 	err = usb_submit_urb(urb, GFP_ATOMIC);
817 	if (unlikely(err)) {
818 		can_free_echo_skb(netdev, context->echo_index, NULL);
819 
820 		usb_unanchor_urb(urb);
821 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
822 
823 		atomic_dec(&dev->active_tx_urbs);
824 
825 		if (err == -ENODEV) {
826 			netif_device_detach(netdev);
827 		} else {
828 			netdev_warn(netdev, "failed tx_urb %d\n", err);
829 
830 			stats->tx_dropped++;
831 		}
832 	} else {
833 		netif_trans_update(netdev);
834 
835 		/* Slow down tx path */
836 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
837 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
838 			netif_stop_queue(netdev);
839 		}
840 	}
841 
842 	/*
843 	 * Release our reference to this URB, the USB core will eventually free
844 	 * it entirely.
845 	 */
846 	usb_free_urb(urb);
847 
848 	return NETDEV_TX_OK;
849 
850 nomem:
851 	dev_kfree_skb(skb);
852 	stats->tx_dropped++;
853 
854 	return NETDEV_TX_OK;
855 }
856 
857 static int ems_usb_close(struct net_device *netdev)
858 {
859 	struct ems_usb *dev = netdev_priv(netdev);
860 
861 	/* Stop polling */
862 	unlink_all_urbs(dev);
863 
864 	netif_stop_queue(netdev);
865 
866 	/* Set CAN controller to reset mode */
867 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
868 		netdev_warn(netdev, "couldn't stop device");
869 
870 	close_candev(netdev);
871 
872 	return 0;
873 }
874 
875 static const struct net_device_ops ems_usb_netdev_ops = {
876 	.ndo_open = ems_usb_open,
877 	.ndo_stop = ems_usb_close,
878 	.ndo_start_xmit = ems_usb_start_xmit,
879 	.ndo_change_mtu = can_change_mtu,
880 };
881 
882 static const struct can_bittiming_const ems_usb_bittiming_const = {
883 	.name = "ems_usb",
884 	.tseg1_min = 1,
885 	.tseg1_max = 16,
886 	.tseg2_min = 1,
887 	.tseg2_max = 8,
888 	.sjw_max = 4,
889 	.brp_min = 1,
890 	.brp_max = 64,
891 	.brp_inc = 1,
892 };
893 
894 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
895 {
896 	struct ems_usb *dev = netdev_priv(netdev);
897 
898 	switch (mode) {
899 	case CAN_MODE_START:
900 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
901 			netdev_warn(netdev, "couldn't start device");
902 
903 		if (netif_queue_stopped(netdev))
904 			netif_wake_queue(netdev);
905 		break;
906 
907 	default:
908 		return -EOPNOTSUPP;
909 	}
910 
911 	return 0;
912 }
913 
914 static int ems_usb_set_bittiming(struct net_device *netdev)
915 {
916 	struct ems_usb *dev = netdev_priv(netdev);
917 	struct can_bittiming *bt = &dev->can.bittiming;
918 	u8 btr0, btr1;
919 
920 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
921 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
922 		(((bt->phase_seg2 - 1) & 0x7) << 4);
923 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
924 		btr1 |= 0x80;
925 
926 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
927 
928 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
929 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
930 
931 	return ems_usb_command_msg(dev, &dev->active_params);
932 }
933 
934 static void init_params_sja1000(struct ems_cpc_msg *msg)
935 {
936 	struct cpc_sja1000_params *sja1000 =
937 		&msg->msg.can_params.cc_params.sja1000;
938 
939 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
940 	msg->length = sizeof(struct cpc_can_params);
941 	msg->msgid = 0;
942 
943 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
944 
945 	/* Acceptance filter open */
946 	sja1000->acc_code0 = 0x00;
947 	sja1000->acc_code1 = 0x00;
948 	sja1000->acc_code2 = 0x00;
949 	sja1000->acc_code3 = 0x00;
950 
951 	/* Acceptance filter open */
952 	sja1000->acc_mask0 = 0xFF;
953 	sja1000->acc_mask1 = 0xFF;
954 	sja1000->acc_mask2 = 0xFF;
955 	sja1000->acc_mask3 = 0xFF;
956 
957 	sja1000->btr0 = 0;
958 	sja1000->btr1 = 0;
959 
960 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
961 	sja1000->mode = SJA1000_MOD_RM;
962 }
963 
964 /*
965  * probe function for new CPC-USB devices
966  */
967 static int ems_usb_probe(struct usb_interface *intf,
968 			 const struct usb_device_id *id)
969 {
970 	struct net_device *netdev;
971 	struct ems_usb *dev;
972 	int i, err = -ENOMEM;
973 
974 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
975 	if (!netdev) {
976 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
977 		return -ENOMEM;
978 	}
979 
980 	dev = netdev_priv(netdev);
981 
982 	dev->udev = interface_to_usbdev(intf);
983 	dev->netdev = netdev;
984 
985 	dev->can.state = CAN_STATE_STOPPED;
986 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
987 	dev->can.bittiming_const = &ems_usb_bittiming_const;
988 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
989 	dev->can.do_set_mode = ems_usb_set_mode;
990 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
991 
992 	netdev->netdev_ops = &ems_usb_netdev_ops;
993 
994 	netdev->flags |= IFF_ECHO; /* we support local echo */
995 
996 	init_usb_anchor(&dev->rx_submitted);
997 
998 	init_usb_anchor(&dev->tx_submitted);
999 	atomic_set(&dev->active_tx_urbs, 0);
1000 
1001 	for (i = 0; i < MAX_TX_URBS; i++)
1002 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1003 
1004 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1005 	if (!dev->intr_urb)
1006 		goto cleanup_candev;
1007 
1008 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1009 	if (!dev->intr_in_buffer)
1010 		goto cleanup_intr_urb;
1011 
1012 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1013 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1014 	if (!dev->tx_msg_buffer)
1015 		goto cleanup_intr_in_buffer;
1016 
1017 	usb_set_intfdata(intf, dev);
1018 
1019 	SET_NETDEV_DEV(netdev, &intf->dev);
1020 
1021 	init_params_sja1000(&dev->active_params);
1022 
1023 	err = ems_usb_command_msg(dev, &dev->active_params);
1024 	if (err) {
1025 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1026 		goto cleanup_tx_msg_buffer;
1027 	}
1028 
1029 	err = register_candev(netdev);
1030 	if (err) {
1031 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1032 		goto cleanup_tx_msg_buffer;
1033 	}
1034 
1035 	return 0;
1036 
1037 cleanup_tx_msg_buffer:
1038 	kfree(dev->tx_msg_buffer);
1039 
1040 cleanup_intr_in_buffer:
1041 	kfree(dev->intr_in_buffer);
1042 
1043 cleanup_intr_urb:
1044 	usb_free_urb(dev->intr_urb);
1045 
1046 cleanup_candev:
1047 	free_candev(netdev);
1048 
1049 	return err;
1050 }
1051 
1052 /*
1053  * called by the usb core when the device is removed from the system
1054  */
1055 static void ems_usb_disconnect(struct usb_interface *intf)
1056 {
1057 	struct ems_usb *dev = usb_get_intfdata(intf);
1058 
1059 	usb_set_intfdata(intf, NULL);
1060 
1061 	if (dev) {
1062 		unregister_netdev(dev->netdev);
1063 
1064 		unlink_all_urbs(dev);
1065 
1066 		usb_free_urb(dev->intr_urb);
1067 
1068 		kfree(dev->intr_in_buffer);
1069 		kfree(dev->tx_msg_buffer);
1070 
1071 		free_candev(dev->netdev);
1072 	}
1073 }
1074 
1075 /* usb specific object needed to register this driver with the usb subsystem */
1076 static struct usb_driver ems_usb_driver = {
1077 	.name = "ems_usb",
1078 	.probe = ems_usb_probe,
1079 	.disconnect = ems_usb_disconnect,
1080 	.id_table = ems_usb_table,
1081 };
1082 
1083 module_usb_driver(ems_usb_driver);
1084