xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 565d76cb)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/usb.h>
25 
26 #include <linux/can.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 
30 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32 MODULE_LICENSE("GPL v2");
33 
34 /* Control-Values for CPC_Control() Command Subject Selection */
35 #define CONTR_CAN_MESSAGE 0x04
36 #define CONTR_CAN_STATE   0x0C
37 #define CONTR_BUS_ERROR   0x1C
38 
39 /* Control Command Actions */
40 #define CONTR_CONT_OFF 0
41 #define CONTR_CONT_ON  1
42 #define CONTR_ONCE     2
43 
44 /* Messages from CPC to PC */
45 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56 
57 /* Messages from the PC to the CPC interface  */
58 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66 
67 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70 
71 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72 
73 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74 
75 /* Overrun types */
76 #define CPC_OVR_EVENT_CAN       0x01
77 #define CPC_OVR_EVENT_CANSTATE  0x02
78 #define CPC_OVR_EVENT_BUSERROR  0x04
79 
80 /*
81  * If the CAN controller lost a message we indicate it with the highest bit
82  * set in the count field.
83  */
84 #define CPC_OVR_HW 0x80
85 
86 /* Size of the "struct ems_cpc_msg" without the union */
87 #define CPC_MSG_HEADER_LEN   11
88 #define CPC_CAN_MSG_MIN_SIZE 5
89 
90 /* Define these values to match your devices */
91 #define USB_CPCUSB_VENDOR_ID 0x12D6
92 
93 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94 
95 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
96 #define SJA1000_MOD_NORMAL 0x00
97 #define SJA1000_MOD_RM     0x01
98 
99 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
100 #define SJA1000_ECC_SEG   0x1F
101 #define SJA1000_ECC_DIR   0x20
102 #define SJA1000_ECC_ERR   0x06
103 #define SJA1000_ECC_BIT   0x00
104 #define SJA1000_ECC_FORM  0x40
105 #define SJA1000_ECC_STUFF 0x80
106 #define SJA1000_ECC_MASK  0xc0
107 
108 /* Status register content */
109 #define SJA1000_SR_BS 0x80
110 #define SJA1000_SR_ES 0x40
111 
112 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113 
114 /*
115  * The device actually uses a 16MHz clock to generate the CAN clock
116  * but it expects SJA1000 bit settings based on 8MHz (is internally
117  * converted).
118  */
119 #define EMS_USB_ARM7_CLOCK 8000000
120 
121 /*
122  * CAN-Message representation in a CPC_MSG. Message object type is
123  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125  */
126 struct cpc_can_msg {
127 	u32 id;
128 	u8 length;
129 	u8 msg[8];
130 };
131 
132 /* Representation of the CAN parameters for the SJA1000 controller */
133 struct cpc_sja1000_params {
134 	u8 mode;
135 	u8 acc_code0;
136 	u8 acc_code1;
137 	u8 acc_code2;
138 	u8 acc_code3;
139 	u8 acc_mask0;
140 	u8 acc_mask1;
141 	u8 acc_mask2;
142 	u8 acc_mask3;
143 	u8 btr0;
144 	u8 btr1;
145 	u8 outp_contr;
146 };
147 
148 /* CAN params message representation */
149 struct cpc_can_params {
150 	u8 cc_type;
151 
152 	/* Will support M16C CAN controller in the future */
153 	union {
154 		struct cpc_sja1000_params sja1000;
155 	} cc_params;
156 };
157 
158 /* Structure for confirmed message handling */
159 struct cpc_confirm {
160 	u8 error; /* error code */
161 };
162 
163 /* Structure for overrun conditions */
164 struct cpc_overrun {
165 	u8 event;
166 	u8 count;
167 };
168 
169 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
170 struct cpc_sja1000_can_error {
171 	u8 ecc;
172 	u8 rxerr;
173 	u8 txerr;
174 };
175 
176 /* structure for CAN error conditions */
177 struct cpc_can_error {
178 	u8 ecode;
179 
180 	struct {
181 		u8 cc_type;
182 
183 		/* Other controllers may also provide error code capture regs */
184 		union {
185 			struct cpc_sja1000_can_error sja1000;
186 		} regs;
187 	} cc;
188 };
189 
190 /*
191  * Structure containing RX/TX error counter. This structure is used to request
192  * the values of the CAN controllers TX and RX error counter.
193  */
194 struct cpc_can_err_counter {
195 	u8 rx;
196 	u8 tx;
197 };
198 
199 /* Main message type used between library and application */
200 struct __packed ems_cpc_msg {
201 	u8 type;	/* type of message */
202 	u8 length;	/* length of data within union 'msg' */
203 	u8 msgid;	/* confirmation handle */
204 	u32 ts_sec;	/* timestamp in seconds */
205 	u32 ts_nsec;	/* timestamp in nano seconds */
206 
207 	union {
208 		u8 generic[64];
209 		struct cpc_can_msg can_msg;
210 		struct cpc_can_params can_params;
211 		struct cpc_confirm confirmation;
212 		struct cpc_overrun overrun;
213 		struct cpc_can_error error;
214 		struct cpc_can_err_counter err_counter;
215 		u8 can_state;
216 	} msg;
217 };
218 
219 /*
220  * Table of devices that work with this driver
221  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222  */
223 static struct usb_device_id ems_usb_table[] = {
224 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225 	{} /* Terminating entry */
226 };
227 
228 MODULE_DEVICE_TABLE(usb, ems_usb_table);
229 
230 #define RX_BUFFER_SIZE      64
231 #define CPC_HEADER_SIZE     4
232 #define INTR_IN_BUFFER_SIZE 4
233 
234 #define MAX_RX_URBS 10
235 #define MAX_TX_URBS 10
236 
237 struct ems_usb;
238 
239 struct ems_tx_urb_context {
240 	struct ems_usb *dev;
241 
242 	u32 echo_index;
243 	u8 dlc;
244 };
245 
246 struct ems_usb {
247 	struct can_priv can; /* must be the first member */
248 	int open_time;
249 
250 	struct sk_buff *echo_skb[MAX_TX_URBS];
251 
252 	struct usb_device *udev;
253 	struct net_device *netdev;
254 
255 	atomic_t active_tx_urbs;
256 	struct usb_anchor tx_submitted;
257 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
258 
259 	struct usb_anchor rx_submitted;
260 
261 	struct urb *intr_urb;
262 
263 	u8 *tx_msg_buffer;
264 
265 	u8 *intr_in_buffer;
266 	unsigned int free_slots; /* remember number of available slots */
267 
268 	struct ems_cpc_msg active_params; /* active controller parameters */
269 };
270 
271 static void ems_usb_read_interrupt_callback(struct urb *urb)
272 {
273 	struct ems_usb *dev = urb->context;
274 	struct net_device *netdev = dev->netdev;
275 	int err;
276 
277 	if (!netif_device_present(netdev))
278 		return;
279 
280 	switch (urb->status) {
281 	case 0:
282 		dev->free_slots = dev->intr_in_buffer[1];
283 		break;
284 
285 	case -ECONNRESET: /* unlink */
286 	case -ENOENT:
287 	case -ESHUTDOWN:
288 		return;
289 
290 	default:
291 		dev_info(netdev->dev.parent, "Rx interrupt aborted %d\n",
292 			 urb->status);
293 		break;
294 	}
295 
296 	err = usb_submit_urb(urb, GFP_ATOMIC);
297 
298 	if (err == -ENODEV)
299 		netif_device_detach(netdev);
300 	else if (err)
301 		dev_err(netdev->dev.parent,
302 			"failed resubmitting intr urb: %d\n", err);
303 }
304 
305 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
306 {
307 	struct can_frame *cf;
308 	struct sk_buff *skb;
309 	int i;
310 	struct net_device_stats *stats = &dev->netdev->stats;
311 
312 	skb = alloc_can_skb(dev->netdev, &cf);
313 	if (skb == NULL)
314 		return;
315 
316 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
317 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
318 
319 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
320 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
321 		cf->can_id |= CAN_EFF_FLAG;
322 
323 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
324 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
325 		cf->can_id |= CAN_RTR_FLAG;
326 	} else {
327 		for (i = 0; i < cf->can_dlc; i++)
328 			cf->data[i] = msg->msg.can_msg.msg[i];
329 	}
330 
331 	netif_rx(skb);
332 
333 	stats->rx_packets++;
334 	stats->rx_bytes += cf->can_dlc;
335 }
336 
337 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
338 {
339 	struct can_frame *cf;
340 	struct sk_buff *skb;
341 	struct net_device_stats *stats = &dev->netdev->stats;
342 
343 	skb = alloc_can_err_skb(dev->netdev, &cf);
344 	if (skb == NULL)
345 		return;
346 
347 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
348 		u8 state = msg->msg.can_state;
349 
350 		if (state & SJA1000_SR_BS) {
351 			dev->can.state = CAN_STATE_BUS_OFF;
352 			cf->can_id |= CAN_ERR_BUSOFF;
353 
354 			can_bus_off(dev->netdev);
355 		} else if (state & SJA1000_SR_ES) {
356 			dev->can.state = CAN_STATE_ERROR_WARNING;
357 			dev->can.can_stats.error_warning++;
358 		} else {
359 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
360 			dev->can.can_stats.error_passive++;
361 		}
362 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
363 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
364 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
365 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
366 
367 		/* bus error interrupt */
368 		dev->can.can_stats.bus_error++;
369 		stats->rx_errors++;
370 
371 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
372 
373 		switch (ecc & SJA1000_ECC_MASK) {
374 		case SJA1000_ECC_BIT:
375 			cf->data[2] |= CAN_ERR_PROT_BIT;
376 			break;
377 		case SJA1000_ECC_FORM:
378 			cf->data[2] |= CAN_ERR_PROT_FORM;
379 			break;
380 		case SJA1000_ECC_STUFF:
381 			cf->data[2] |= CAN_ERR_PROT_STUFF;
382 			break;
383 		default:
384 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
385 			cf->data[3] = ecc & SJA1000_ECC_SEG;
386 			break;
387 		}
388 
389 		/* Error occured during transmission? */
390 		if ((ecc & SJA1000_ECC_DIR) == 0)
391 			cf->data[2] |= CAN_ERR_PROT_TX;
392 
393 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
394 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
395 			cf->data[1] = (txerr > rxerr) ?
396 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
397 		}
398 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
399 		cf->can_id |= CAN_ERR_CRTL;
400 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
401 
402 		stats->rx_over_errors++;
403 		stats->rx_errors++;
404 	}
405 
406 	netif_rx(skb);
407 
408 	stats->rx_packets++;
409 	stats->rx_bytes += cf->can_dlc;
410 }
411 
412 /*
413  * callback for bulk IN urb
414  */
415 static void ems_usb_read_bulk_callback(struct urb *urb)
416 {
417 	struct ems_usb *dev = urb->context;
418 	struct net_device *netdev;
419 	int retval;
420 
421 	netdev = dev->netdev;
422 
423 	if (!netif_device_present(netdev))
424 		return;
425 
426 	switch (urb->status) {
427 	case 0: /* success */
428 		break;
429 
430 	case -ENOENT:
431 		return;
432 
433 	default:
434 		dev_info(netdev->dev.parent, "Rx URB aborted (%d)\n",
435 			 urb->status);
436 		goto resubmit_urb;
437 	}
438 
439 	if (urb->actual_length > CPC_HEADER_SIZE) {
440 		struct ems_cpc_msg *msg;
441 		u8 *ibuf = urb->transfer_buffer;
442 		u8 msg_count, again, start;
443 
444 		msg_count = ibuf[0] & ~0x80;
445 		again = ibuf[0] & 0x80;
446 
447 		start = CPC_HEADER_SIZE;
448 
449 		while (msg_count) {
450 			msg = (struct ems_cpc_msg *)&ibuf[start];
451 
452 			switch (msg->type) {
453 			case CPC_MSG_TYPE_CAN_STATE:
454 				/* Process CAN state changes */
455 				ems_usb_rx_err(dev, msg);
456 				break;
457 
458 			case CPC_MSG_TYPE_CAN_FRAME:
459 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
460 			case CPC_MSG_TYPE_RTR_FRAME:
461 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
462 				ems_usb_rx_can_msg(dev, msg);
463 				break;
464 
465 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
466 				/* Process errorframe */
467 				ems_usb_rx_err(dev, msg);
468 				break;
469 
470 			case CPC_MSG_TYPE_OVERRUN:
471 				/* Message lost while receiving */
472 				ems_usb_rx_err(dev, msg);
473 				break;
474 			}
475 
476 			start += CPC_MSG_HEADER_LEN + msg->length;
477 			msg_count--;
478 
479 			if (start > urb->transfer_buffer_length) {
480 				dev_err(netdev->dev.parent, "format error\n");
481 				break;
482 			}
483 		}
484 	}
485 
486 resubmit_urb:
487 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
488 			  urb->transfer_buffer, RX_BUFFER_SIZE,
489 			  ems_usb_read_bulk_callback, dev);
490 
491 	retval = usb_submit_urb(urb, GFP_ATOMIC);
492 
493 	if (retval == -ENODEV)
494 		netif_device_detach(netdev);
495 	else if (retval)
496 		dev_err(netdev->dev.parent,
497 			"failed resubmitting read bulk urb: %d\n", retval);
498 }
499 
500 /*
501  * callback for bulk IN urb
502  */
503 static void ems_usb_write_bulk_callback(struct urb *urb)
504 {
505 	struct ems_tx_urb_context *context = urb->context;
506 	struct ems_usb *dev;
507 	struct net_device *netdev;
508 
509 	BUG_ON(!context);
510 
511 	dev = context->dev;
512 	netdev = dev->netdev;
513 
514 	/* free up our allocated buffer */
515 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
516 			  urb->transfer_buffer, urb->transfer_dma);
517 
518 	atomic_dec(&dev->active_tx_urbs);
519 
520 	if (!netif_device_present(netdev))
521 		return;
522 
523 	if (urb->status)
524 		dev_info(netdev->dev.parent, "Tx URB aborted (%d)\n",
525 			 urb->status);
526 
527 	netdev->trans_start = jiffies;
528 
529 	/* transmission complete interrupt */
530 	netdev->stats.tx_packets++;
531 	netdev->stats.tx_bytes += context->dlc;
532 
533 	can_get_echo_skb(netdev, context->echo_index);
534 
535 	/* Release context */
536 	context->echo_index = MAX_TX_URBS;
537 
538 	if (netif_queue_stopped(netdev))
539 		netif_wake_queue(netdev);
540 }
541 
542 /*
543  * Send the given CPC command synchronously
544  */
545 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
546 {
547 	int actual_length;
548 
549 	/* Copy payload */
550 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
551 	       msg->length + CPC_MSG_HEADER_LEN);
552 
553 	/* Clear header */
554 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
555 
556 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
557 			    &dev->tx_msg_buffer[0],
558 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
559 			    &actual_length, 1000);
560 }
561 
562 /*
563  * Change CAN controllers' mode register
564  */
565 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
566 {
567 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
568 
569 	return ems_usb_command_msg(dev, &dev->active_params);
570 }
571 
572 /*
573  * Send a CPC_Control command to change behaviour when interface receives a CAN
574  * message, bus error or CAN state changed notifications.
575  */
576 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
577 {
578 	struct ems_cpc_msg cmd;
579 
580 	cmd.type = CPC_CMD_TYPE_CONTROL;
581 	cmd.length = CPC_MSG_HEADER_LEN + 1;
582 
583 	cmd.msgid = 0;
584 
585 	cmd.msg.generic[0] = val;
586 
587 	return ems_usb_command_msg(dev, &cmd);
588 }
589 
590 /*
591  * Start interface
592  */
593 static int ems_usb_start(struct ems_usb *dev)
594 {
595 	struct net_device *netdev = dev->netdev;
596 	int err, i;
597 
598 	dev->intr_in_buffer[0] = 0;
599 	dev->free_slots = 15; /* initial size */
600 
601 	for (i = 0; i < MAX_RX_URBS; i++) {
602 		struct urb *urb = NULL;
603 		u8 *buf = NULL;
604 
605 		/* create a URB, and a buffer for it */
606 		urb = usb_alloc_urb(0, GFP_KERNEL);
607 		if (!urb) {
608 			dev_err(netdev->dev.parent,
609 				"No memory left for URBs\n");
610 			return -ENOMEM;
611 		}
612 
613 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
614 					 &urb->transfer_dma);
615 		if (!buf) {
616 			dev_err(netdev->dev.parent,
617 				"No memory left for USB buffer\n");
618 			usb_free_urb(urb);
619 			return -ENOMEM;
620 		}
621 
622 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
623 				  buf, RX_BUFFER_SIZE,
624 				  ems_usb_read_bulk_callback, dev);
625 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
626 		usb_anchor_urb(urb, &dev->rx_submitted);
627 
628 		err = usb_submit_urb(urb, GFP_KERNEL);
629 		if (err) {
630 			if (err == -ENODEV)
631 				netif_device_detach(dev->netdev);
632 
633 			usb_unanchor_urb(urb);
634 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
635 					  urb->transfer_dma);
636 			break;
637 		}
638 
639 		/* Drop reference, USB core will take care of freeing it */
640 		usb_free_urb(urb);
641 	}
642 
643 	/* Did we submit any URBs */
644 	if (i == 0) {
645 		dev_warn(netdev->dev.parent, "couldn't setup read URBs\n");
646 		return err;
647 	}
648 
649 	/* Warn if we've couldn't transmit all the URBs */
650 	if (i < MAX_RX_URBS)
651 		dev_warn(netdev->dev.parent, "rx performance may be slow\n");
652 
653 	/* Setup and start interrupt URB */
654 	usb_fill_int_urb(dev->intr_urb, dev->udev,
655 			 usb_rcvintpipe(dev->udev, 1),
656 			 dev->intr_in_buffer,
657 			 INTR_IN_BUFFER_SIZE,
658 			 ems_usb_read_interrupt_callback, dev, 1);
659 
660 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
661 	if (err) {
662 		if (err == -ENODEV)
663 			netif_device_detach(dev->netdev);
664 
665 		dev_warn(netdev->dev.parent, "intr URB submit failed: %d\n",
666 			 err);
667 
668 		return err;
669 	}
670 
671 	/* CPC-USB will transfer received message to host */
672 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
673 	if (err)
674 		goto failed;
675 
676 	/* CPC-USB will transfer CAN state changes to host */
677 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
678 	if (err)
679 		goto failed;
680 
681 	/* CPC-USB will transfer bus errors to host */
682 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
683 	if (err)
684 		goto failed;
685 
686 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
687 	if (err)
688 		goto failed;
689 
690 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
691 
692 	return 0;
693 
694 failed:
695 	if (err == -ENODEV)
696 		netif_device_detach(dev->netdev);
697 
698 	dev_warn(netdev->dev.parent, "couldn't submit control: %d\n", err);
699 
700 	return err;
701 }
702 
703 static void unlink_all_urbs(struct ems_usb *dev)
704 {
705 	int i;
706 
707 	usb_unlink_urb(dev->intr_urb);
708 
709 	usb_kill_anchored_urbs(&dev->rx_submitted);
710 
711 	usb_kill_anchored_urbs(&dev->tx_submitted);
712 	atomic_set(&dev->active_tx_urbs, 0);
713 
714 	for (i = 0; i < MAX_TX_URBS; i++)
715 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
716 }
717 
718 static int ems_usb_open(struct net_device *netdev)
719 {
720 	struct ems_usb *dev = netdev_priv(netdev);
721 	int err;
722 
723 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
724 	if (err)
725 		return err;
726 
727 	/* common open */
728 	err = open_candev(netdev);
729 	if (err)
730 		return err;
731 
732 	/* finally start device */
733 	err = ems_usb_start(dev);
734 	if (err) {
735 		if (err == -ENODEV)
736 			netif_device_detach(dev->netdev);
737 
738 		dev_warn(netdev->dev.parent, "couldn't start device: %d\n",
739 			 err);
740 
741 		close_candev(netdev);
742 
743 		return err;
744 	}
745 
746 	dev->open_time = jiffies;
747 
748 	netif_start_queue(netdev);
749 
750 	return 0;
751 }
752 
753 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
754 {
755 	struct ems_usb *dev = netdev_priv(netdev);
756 	struct ems_tx_urb_context *context = NULL;
757 	struct net_device_stats *stats = &netdev->stats;
758 	struct can_frame *cf = (struct can_frame *)skb->data;
759 	struct ems_cpc_msg *msg;
760 	struct urb *urb;
761 	u8 *buf;
762 	int i, err;
763 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
764 			+ sizeof(struct cpc_can_msg);
765 
766 	if (can_dropped_invalid_skb(netdev, skb))
767 		return NETDEV_TX_OK;
768 
769 	/* create a URB, and a buffer for it, and copy the data to the URB */
770 	urb = usb_alloc_urb(0, GFP_ATOMIC);
771 	if (!urb) {
772 		dev_err(netdev->dev.parent, "No memory left for URBs\n");
773 		goto nomem;
774 	}
775 
776 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
777 	if (!buf) {
778 		dev_err(netdev->dev.parent, "No memory left for USB buffer\n");
779 		usb_free_urb(urb);
780 		goto nomem;
781 	}
782 
783 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
784 
785 	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
786 	msg->msg.can_msg.length = cf->can_dlc;
787 
788 	if (cf->can_id & CAN_RTR_FLAG) {
789 		msg->type = cf->can_id & CAN_EFF_FLAG ?
790 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
791 
792 		msg->length = CPC_CAN_MSG_MIN_SIZE;
793 	} else {
794 		msg->type = cf->can_id & CAN_EFF_FLAG ?
795 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
796 
797 		for (i = 0; i < cf->can_dlc; i++)
798 			msg->msg.can_msg.msg[i] = cf->data[i];
799 
800 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
801 	}
802 
803 	/* Respect byte order */
804 	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
805 
806 	for (i = 0; i < MAX_TX_URBS; i++) {
807 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
808 			context = &dev->tx_contexts[i];
809 			break;
810 		}
811 	}
812 
813 	/*
814 	 * May never happen! When this happens we'd more URBs in flight as
815 	 * allowed (MAX_TX_URBS).
816 	 */
817 	if (!context) {
818 		usb_unanchor_urb(urb);
819 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
820 
821 		dev_warn(netdev->dev.parent, "couldn't find free context\n");
822 
823 		return NETDEV_TX_BUSY;
824 	}
825 
826 	context->dev = dev;
827 	context->echo_index = i;
828 	context->dlc = cf->can_dlc;
829 
830 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
831 			  size, ems_usb_write_bulk_callback, context);
832 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
833 	usb_anchor_urb(urb, &dev->tx_submitted);
834 
835 	can_put_echo_skb(skb, netdev, context->echo_index);
836 
837 	atomic_inc(&dev->active_tx_urbs);
838 
839 	err = usb_submit_urb(urb, GFP_ATOMIC);
840 	if (unlikely(err)) {
841 		can_free_echo_skb(netdev, context->echo_index);
842 
843 		usb_unanchor_urb(urb);
844 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
845 		dev_kfree_skb(skb);
846 
847 		atomic_dec(&dev->active_tx_urbs);
848 
849 		if (err == -ENODEV) {
850 			netif_device_detach(netdev);
851 		} else {
852 			dev_warn(netdev->dev.parent, "failed tx_urb %d\n", err);
853 
854 			stats->tx_dropped++;
855 		}
856 	} else {
857 		netdev->trans_start = jiffies;
858 
859 		/* Slow down tx path */
860 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
861 		    dev->free_slots < 5) {
862 			netif_stop_queue(netdev);
863 		}
864 	}
865 
866 	/*
867 	 * Release our reference to this URB, the USB core will eventually free
868 	 * it entirely.
869 	 */
870 	usb_free_urb(urb);
871 
872 	return NETDEV_TX_OK;
873 
874 nomem:
875 	dev_kfree_skb(skb);
876 	stats->tx_dropped++;
877 
878 	return NETDEV_TX_OK;
879 }
880 
881 static int ems_usb_close(struct net_device *netdev)
882 {
883 	struct ems_usb *dev = netdev_priv(netdev);
884 
885 	/* Stop polling */
886 	unlink_all_urbs(dev);
887 
888 	netif_stop_queue(netdev);
889 
890 	/* Set CAN controller to reset mode */
891 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
892 		dev_warn(netdev->dev.parent, "couldn't stop device");
893 
894 	close_candev(netdev);
895 
896 	dev->open_time = 0;
897 
898 	return 0;
899 }
900 
901 static const struct net_device_ops ems_usb_netdev_ops = {
902 	.ndo_open = ems_usb_open,
903 	.ndo_stop = ems_usb_close,
904 	.ndo_start_xmit = ems_usb_start_xmit,
905 };
906 
907 static struct can_bittiming_const ems_usb_bittiming_const = {
908 	.name = "ems_usb",
909 	.tseg1_min = 1,
910 	.tseg1_max = 16,
911 	.tseg2_min = 1,
912 	.tseg2_max = 8,
913 	.sjw_max = 4,
914 	.brp_min = 1,
915 	.brp_max = 64,
916 	.brp_inc = 1,
917 };
918 
919 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
920 {
921 	struct ems_usb *dev = netdev_priv(netdev);
922 
923 	if (!dev->open_time)
924 		return -EINVAL;
925 
926 	switch (mode) {
927 	case CAN_MODE_START:
928 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
929 			dev_warn(netdev->dev.parent, "couldn't start device");
930 
931 		if (netif_queue_stopped(netdev))
932 			netif_wake_queue(netdev);
933 		break;
934 
935 	default:
936 		return -EOPNOTSUPP;
937 	}
938 
939 	return 0;
940 }
941 
942 static int ems_usb_set_bittiming(struct net_device *netdev)
943 {
944 	struct ems_usb *dev = netdev_priv(netdev);
945 	struct can_bittiming *bt = &dev->can.bittiming;
946 	u8 btr0, btr1;
947 
948 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
949 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
950 		(((bt->phase_seg2 - 1) & 0x7) << 4);
951 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
952 		btr1 |= 0x80;
953 
954 	dev_info(netdev->dev.parent, "setting BTR0=0x%02x BTR1=0x%02x\n",
955 		 btr0, btr1);
956 
957 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
958 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
959 
960 	return ems_usb_command_msg(dev, &dev->active_params);
961 }
962 
963 static void init_params_sja1000(struct ems_cpc_msg *msg)
964 {
965 	struct cpc_sja1000_params *sja1000 =
966 		&msg->msg.can_params.cc_params.sja1000;
967 
968 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
969 	msg->length = sizeof(struct cpc_can_params);
970 	msg->msgid = 0;
971 
972 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
973 
974 	/* Acceptance filter open */
975 	sja1000->acc_code0 = 0x00;
976 	sja1000->acc_code1 = 0x00;
977 	sja1000->acc_code2 = 0x00;
978 	sja1000->acc_code3 = 0x00;
979 
980 	/* Acceptance filter open */
981 	sja1000->acc_mask0 = 0xFF;
982 	sja1000->acc_mask1 = 0xFF;
983 	sja1000->acc_mask2 = 0xFF;
984 	sja1000->acc_mask3 = 0xFF;
985 
986 	sja1000->btr0 = 0;
987 	sja1000->btr1 = 0;
988 
989 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
990 	sja1000->mode = SJA1000_MOD_RM;
991 }
992 
993 /*
994  * probe function for new CPC-USB devices
995  */
996 static int ems_usb_probe(struct usb_interface *intf,
997 			 const struct usb_device_id *id)
998 {
999 	struct net_device *netdev;
1000 	struct ems_usb *dev;
1001 	int i, err = -ENOMEM;
1002 
1003 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
1004 	if (!netdev) {
1005 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
1006 		return -ENOMEM;
1007 	}
1008 
1009 	dev = netdev_priv(netdev);
1010 
1011 	dev->udev = interface_to_usbdev(intf);
1012 	dev->netdev = netdev;
1013 
1014 	dev->can.state = CAN_STATE_STOPPED;
1015 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1016 	dev->can.bittiming_const = &ems_usb_bittiming_const;
1017 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
1018 	dev->can.do_set_mode = ems_usb_set_mode;
1019 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1020 
1021 	netdev->netdev_ops = &ems_usb_netdev_ops;
1022 
1023 	netdev->flags |= IFF_ECHO; /* we support local echo */
1024 
1025 	init_usb_anchor(&dev->rx_submitted);
1026 
1027 	init_usb_anchor(&dev->tx_submitted);
1028 	atomic_set(&dev->active_tx_urbs, 0);
1029 
1030 	for (i = 0; i < MAX_TX_URBS; i++)
1031 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1032 
1033 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1034 	if (!dev->intr_urb) {
1035 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1036 		goto cleanup_candev;
1037 	}
1038 
1039 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1040 	if (!dev->intr_in_buffer) {
1041 		dev_err(&intf->dev, "Couldn't alloc Intr buffer\n");
1042 		goto cleanup_intr_urb;
1043 	}
1044 
1045 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1046 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1047 	if (!dev->tx_msg_buffer) {
1048 		dev_err(&intf->dev, "Couldn't alloc Tx buffer\n");
1049 		goto cleanup_intr_in_buffer;
1050 	}
1051 
1052 	usb_set_intfdata(intf, dev);
1053 
1054 	SET_NETDEV_DEV(netdev, &intf->dev);
1055 
1056 	init_params_sja1000(&dev->active_params);
1057 
1058 	err = ems_usb_command_msg(dev, &dev->active_params);
1059 	if (err) {
1060 		dev_err(netdev->dev.parent,
1061 			"couldn't initialize controller: %d\n", err);
1062 		goto cleanup_tx_msg_buffer;
1063 	}
1064 
1065 	err = register_candev(netdev);
1066 	if (err) {
1067 		dev_err(netdev->dev.parent,
1068 			"couldn't register CAN device: %d\n", err);
1069 		goto cleanup_tx_msg_buffer;
1070 	}
1071 
1072 	return 0;
1073 
1074 cleanup_tx_msg_buffer:
1075 	kfree(dev->tx_msg_buffer);
1076 
1077 cleanup_intr_in_buffer:
1078 	kfree(dev->intr_in_buffer);
1079 
1080 cleanup_intr_urb:
1081 	usb_free_urb(dev->intr_urb);
1082 
1083 cleanup_candev:
1084 	free_candev(netdev);
1085 
1086 	return err;
1087 }
1088 
1089 /*
1090  * called by the usb core when the device is removed from the system
1091  */
1092 static void ems_usb_disconnect(struct usb_interface *intf)
1093 {
1094 	struct ems_usb *dev = usb_get_intfdata(intf);
1095 
1096 	usb_set_intfdata(intf, NULL);
1097 
1098 	if (dev) {
1099 		unregister_netdev(dev->netdev);
1100 		free_candev(dev->netdev);
1101 
1102 		unlink_all_urbs(dev);
1103 
1104 		usb_free_urb(dev->intr_urb);
1105 
1106 		kfree(dev->intr_in_buffer);
1107 	}
1108 }
1109 
1110 /* usb specific object needed to register this driver with the usb subsystem */
1111 static struct usb_driver ems_usb_driver = {
1112 	.name = "ems_usb",
1113 	.probe = ems_usb_probe,
1114 	.disconnect = ems_usb_disconnect,
1115 	.id_table = ems_usb_table,
1116 };
1117 
1118 static int __init ems_usb_init(void)
1119 {
1120 	int err;
1121 
1122 	printk(KERN_INFO "CPC-USB kernel driver loaded\n");
1123 
1124 	/* register this driver with the USB subsystem */
1125 	err = usb_register(&ems_usb_driver);
1126 
1127 	if (err) {
1128 		err("usb_register failed. Error number %d\n", err);
1129 		return err;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static void __exit ems_usb_exit(void)
1136 {
1137 	/* deregister this driver with the USB subsystem */
1138 	usb_deregister(&ems_usb_driver);
1139 }
1140 
1141 module_init(ems_usb_init);
1142 module_exit(ems_usb_exit);
1143