xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 31b90347)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/usb.h>
25 
26 #include <linux/can.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 
30 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
31 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32 MODULE_LICENSE("GPL v2");
33 
34 /* Control-Values for CPC_Control() Command Subject Selection */
35 #define CONTR_CAN_MESSAGE 0x04
36 #define CONTR_CAN_STATE   0x0C
37 #define CONTR_BUS_ERROR   0x1C
38 
39 /* Control Command Actions */
40 #define CONTR_CONT_OFF 0
41 #define CONTR_CONT_ON  1
42 #define CONTR_ONCE     2
43 
44 /* Messages from CPC to PC */
45 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
46 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
47 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
48 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
49 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
50 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
51 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
52 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
53 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
54 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
56 
57 /* Messages from the PC to the CPC interface  */
58 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
59 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
60 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
61 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
62 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
63 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
64 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
65 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
66 
67 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
69 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70 
71 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72 
73 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74 
75 /* Overrun types */
76 #define CPC_OVR_EVENT_CAN       0x01
77 #define CPC_OVR_EVENT_CANSTATE  0x02
78 #define CPC_OVR_EVENT_BUSERROR  0x04
79 
80 /*
81  * If the CAN controller lost a message we indicate it with the highest bit
82  * set in the count field.
83  */
84 #define CPC_OVR_HW 0x80
85 
86 /* Size of the "struct ems_cpc_msg" without the union */
87 #define CPC_MSG_HEADER_LEN   11
88 #define CPC_CAN_MSG_MIN_SIZE 5
89 
90 /* Define these values to match your devices */
91 #define USB_CPCUSB_VENDOR_ID 0x12D6
92 
93 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94 
95 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
96 #define SJA1000_MOD_NORMAL 0x00
97 #define SJA1000_MOD_RM     0x01
98 
99 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
100 #define SJA1000_ECC_SEG   0x1F
101 #define SJA1000_ECC_DIR   0x20
102 #define SJA1000_ECC_ERR   0x06
103 #define SJA1000_ECC_BIT   0x00
104 #define SJA1000_ECC_FORM  0x40
105 #define SJA1000_ECC_STUFF 0x80
106 #define SJA1000_ECC_MASK  0xc0
107 
108 /* Status register content */
109 #define SJA1000_SR_BS 0x80
110 #define SJA1000_SR_ES 0x40
111 
112 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113 
114 /*
115  * The device actually uses a 16MHz clock to generate the CAN clock
116  * but it expects SJA1000 bit settings based on 8MHz (is internally
117  * converted).
118  */
119 #define EMS_USB_ARM7_CLOCK 8000000
120 
121 /*
122  * CAN-Message representation in a CPC_MSG. Message object type is
123  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125  */
126 struct cpc_can_msg {
127 	u32 id;
128 	u8 length;
129 	u8 msg[8];
130 };
131 
132 /* Representation of the CAN parameters for the SJA1000 controller */
133 struct cpc_sja1000_params {
134 	u8 mode;
135 	u8 acc_code0;
136 	u8 acc_code1;
137 	u8 acc_code2;
138 	u8 acc_code3;
139 	u8 acc_mask0;
140 	u8 acc_mask1;
141 	u8 acc_mask2;
142 	u8 acc_mask3;
143 	u8 btr0;
144 	u8 btr1;
145 	u8 outp_contr;
146 };
147 
148 /* CAN params message representation */
149 struct cpc_can_params {
150 	u8 cc_type;
151 
152 	/* Will support M16C CAN controller in the future */
153 	union {
154 		struct cpc_sja1000_params sja1000;
155 	} cc_params;
156 };
157 
158 /* Structure for confirmed message handling */
159 struct cpc_confirm {
160 	u8 error; /* error code */
161 };
162 
163 /* Structure for overrun conditions */
164 struct cpc_overrun {
165 	u8 event;
166 	u8 count;
167 };
168 
169 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
170 struct cpc_sja1000_can_error {
171 	u8 ecc;
172 	u8 rxerr;
173 	u8 txerr;
174 };
175 
176 /* structure for CAN error conditions */
177 struct cpc_can_error {
178 	u8 ecode;
179 
180 	struct {
181 		u8 cc_type;
182 
183 		/* Other controllers may also provide error code capture regs */
184 		union {
185 			struct cpc_sja1000_can_error sja1000;
186 		} regs;
187 	} cc;
188 };
189 
190 /*
191  * Structure containing RX/TX error counter. This structure is used to request
192  * the values of the CAN controllers TX and RX error counter.
193  */
194 struct cpc_can_err_counter {
195 	u8 rx;
196 	u8 tx;
197 };
198 
199 /* Main message type used between library and application */
200 struct __packed ems_cpc_msg {
201 	u8 type;	/* type of message */
202 	u8 length;	/* length of data within union 'msg' */
203 	u8 msgid;	/* confirmation handle */
204 	u32 ts_sec;	/* timestamp in seconds */
205 	u32 ts_nsec;	/* timestamp in nano seconds */
206 
207 	union {
208 		u8 generic[64];
209 		struct cpc_can_msg can_msg;
210 		struct cpc_can_params can_params;
211 		struct cpc_confirm confirmation;
212 		struct cpc_overrun overrun;
213 		struct cpc_can_error error;
214 		struct cpc_can_err_counter err_counter;
215 		u8 can_state;
216 	} msg;
217 };
218 
219 /*
220  * Table of devices that work with this driver
221  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222  */
223 static struct usb_device_id ems_usb_table[] = {
224 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
225 	{} /* Terminating entry */
226 };
227 
228 MODULE_DEVICE_TABLE(usb, ems_usb_table);
229 
230 #define RX_BUFFER_SIZE      64
231 #define CPC_HEADER_SIZE     4
232 #define INTR_IN_BUFFER_SIZE 4
233 
234 #define MAX_RX_URBS 10
235 #define MAX_TX_URBS 10
236 
237 struct ems_usb;
238 
239 struct ems_tx_urb_context {
240 	struct ems_usb *dev;
241 
242 	u32 echo_index;
243 	u8 dlc;
244 };
245 
246 struct ems_usb {
247 	struct can_priv can; /* must be the first member */
248 
249 	struct sk_buff *echo_skb[MAX_TX_URBS];
250 
251 	struct usb_device *udev;
252 	struct net_device *netdev;
253 
254 	atomic_t active_tx_urbs;
255 	struct usb_anchor tx_submitted;
256 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
257 
258 	struct usb_anchor rx_submitted;
259 
260 	struct urb *intr_urb;
261 
262 	u8 *tx_msg_buffer;
263 
264 	u8 *intr_in_buffer;
265 	unsigned int free_slots; /* remember number of available slots */
266 
267 	struct ems_cpc_msg active_params; /* active controller parameters */
268 };
269 
270 static void ems_usb_read_interrupt_callback(struct urb *urb)
271 {
272 	struct ems_usb *dev = urb->context;
273 	struct net_device *netdev = dev->netdev;
274 	int err;
275 
276 	if (!netif_device_present(netdev))
277 		return;
278 
279 	switch (urb->status) {
280 	case 0:
281 		dev->free_slots = dev->intr_in_buffer[1];
282 		break;
283 
284 	case -ECONNRESET: /* unlink */
285 	case -ENOENT:
286 	case -ESHUTDOWN:
287 		return;
288 
289 	default:
290 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
291 		break;
292 	}
293 
294 	err = usb_submit_urb(urb, GFP_ATOMIC);
295 
296 	if (err == -ENODEV)
297 		netif_device_detach(netdev);
298 	else if (err)
299 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
300 }
301 
302 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
303 {
304 	struct can_frame *cf;
305 	struct sk_buff *skb;
306 	int i;
307 	struct net_device_stats *stats = &dev->netdev->stats;
308 
309 	skb = alloc_can_skb(dev->netdev, &cf);
310 	if (skb == NULL)
311 		return;
312 
313 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
314 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
315 
316 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
317 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
318 		cf->can_id |= CAN_EFF_FLAG;
319 
320 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
321 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
322 		cf->can_id |= CAN_RTR_FLAG;
323 	} else {
324 		for (i = 0; i < cf->can_dlc; i++)
325 			cf->data[i] = msg->msg.can_msg.msg[i];
326 	}
327 
328 	netif_rx(skb);
329 
330 	stats->rx_packets++;
331 	stats->rx_bytes += cf->can_dlc;
332 }
333 
334 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
335 {
336 	struct can_frame *cf;
337 	struct sk_buff *skb;
338 	struct net_device_stats *stats = &dev->netdev->stats;
339 
340 	skb = alloc_can_err_skb(dev->netdev, &cf);
341 	if (skb == NULL)
342 		return;
343 
344 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
345 		u8 state = msg->msg.can_state;
346 
347 		if (state & SJA1000_SR_BS) {
348 			dev->can.state = CAN_STATE_BUS_OFF;
349 			cf->can_id |= CAN_ERR_BUSOFF;
350 
351 			can_bus_off(dev->netdev);
352 		} else if (state & SJA1000_SR_ES) {
353 			dev->can.state = CAN_STATE_ERROR_WARNING;
354 			dev->can.can_stats.error_warning++;
355 		} else {
356 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
357 			dev->can.can_stats.error_passive++;
358 		}
359 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
360 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
361 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
362 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
363 
364 		/* bus error interrupt */
365 		dev->can.can_stats.bus_error++;
366 		stats->rx_errors++;
367 
368 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
369 
370 		switch (ecc & SJA1000_ECC_MASK) {
371 		case SJA1000_ECC_BIT:
372 			cf->data[2] |= CAN_ERR_PROT_BIT;
373 			break;
374 		case SJA1000_ECC_FORM:
375 			cf->data[2] |= CAN_ERR_PROT_FORM;
376 			break;
377 		case SJA1000_ECC_STUFF:
378 			cf->data[2] |= CAN_ERR_PROT_STUFF;
379 			break;
380 		default:
381 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
382 			cf->data[3] = ecc & SJA1000_ECC_SEG;
383 			break;
384 		}
385 
386 		/* Error occurred during transmission? */
387 		if ((ecc & SJA1000_ECC_DIR) == 0)
388 			cf->data[2] |= CAN_ERR_PROT_TX;
389 
390 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
391 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
392 			cf->data[1] = (txerr > rxerr) ?
393 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
394 		}
395 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
396 		cf->can_id |= CAN_ERR_CRTL;
397 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
398 
399 		stats->rx_over_errors++;
400 		stats->rx_errors++;
401 	}
402 
403 	netif_rx(skb);
404 
405 	stats->rx_packets++;
406 	stats->rx_bytes += cf->can_dlc;
407 }
408 
409 /*
410  * callback for bulk IN urb
411  */
412 static void ems_usb_read_bulk_callback(struct urb *urb)
413 {
414 	struct ems_usb *dev = urb->context;
415 	struct net_device *netdev;
416 	int retval;
417 
418 	netdev = dev->netdev;
419 
420 	if (!netif_device_present(netdev))
421 		return;
422 
423 	switch (urb->status) {
424 	case 0: /* success */
425 		break;
426 
427 	case -ENOENT:
428 		return;
429 
430 	default:
431 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
432 		goto resubmit_urb;
433 	}
434 
435 	if (urb->actual_length > CPC_HEADER_SIZE) {
436 		struct ems_cpc_msg *msg;
437 		u8 *ibuf = urb->transfer_buffer;
438 		u8 msg_count, again, start;
439 
440 		msg_count = ibuf[0] & ~0x80;
441 		again = ibuf[0] & 0x80;
442 
443 		start = CPC_HEADER_SIZE;
444 
445 		while (msg_count) {
446 			msg = (struct ems_cpc_msg *)&ibuf[start];
447 
448 			switch (msg->type) {
449 			case CPC_MSG_TYPE_CAN_STATE:
450 				/* Process CAN state changes */
451 				ems_usb_rx_err(dev, msg);
452 				break;
453 
454 			case CPC_MSG_TYPE_CAN_FRAME:
455 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
456 			case CPC_MSG_TYPE_RTR_FRAME:
457 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
458 				ems_usb_rx_can_msg(dev, msg);
459 				break;
460 
461 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
462 				/* Process errorframe */
463 				ems_usb_rx_err(dev, msg);
464 				break;
465 
466 			case CPC_MSG_TYPE_OVERRUN:
467 				/* Message lost while receiving */
468 				ems_usb_rx_err(dev, msg);
469 				break;
470 			}
471 
472 			start += CPC_MSG_HEADER_LEN + msg->length;
473 			msg_count--;
474 
475 			if (start > urb->transfer_buffer_length) {
476 				netdev_err(netdev, "format error\n");
477 				break;
478 			}
479 		}
480 	}
481 
482 resubmit_urb:
483 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
484 			  urb->transfer_buffer, RX_BUFFER_SIZE,
485 			  ems_usb_read_bulk_callback, dev);
486 
487 	retval = usb_submit_urb(urb, GFP_ATOMIC);
488 
489 	if (retval == -ENODEV)
490 		netif_device_detach(netdev);
491 	else if (retval)
492 		netdev_err(netdev,
493 			   "failed resubmitting read bulk urb: %d\n", retval);
494 }
495 
496 /*
497  * callback for bulk IN urb
498  */
499 static void ems_usb_write_bulk_callback(struct urb *urb)
500 {
501 	struct ems_tx_urb_context *context = urb->context;
502 	struct ems_usb *dev;
503 	struct net_device *netdev;
504 
505 	BUG_ON(!context);
506 
507 	dev = context->dev;
508 	netdev = dev->netdev;
509 
510 	/* free up our allocated buffer */
511 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
512 			  urb->transfer_buffer, urb->transfer_dma);
513 
514 	atomic_dec(&dev->active_tx_urbs);
515 
516 	if (!netif_device_present(netdev))
517 		return;
518 
519 	if (urb->status)
520 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
521 
522 	netdev->trans_start = jiffies;
523 
524 	/* transmission complete interrupt */
525 	netdev->stats.tx_packets++;
526 	netdev->stats.tx_bytes += context->dlc;
527 
528 	can_get_echo_skb(netdev, context->echo_index);
529 
530 	/* Release context */
531 	context->echo_index = MAX_TX_URBS;
532 
533 	if (netif_queue_stopped(netdev))
534 		netif_wake_queue(netdev);
535 }
536 
537 /*
538  * Send the given CPC command synchronously
539  */
540 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
541 {
542 	int actual_length;
543 
544 	/* Copy payload */
545 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
546 	       msg->length + CPC_MSG_HEADER_LEN);
547 
548 	/* Clear header */
549 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
550 
551 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
552 			    &dev->tx_msg_buffer[0],
553 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
554 			    &actual_length, 1000);
555 }
556 
557 /*
558  * Change CAN controllers' mode register
559  */
560 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
561 {
562 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
563 
564 	return ems_usb_command_msg(dev, &dev->active_params);
565 }
566 
567 /*
568  * Send a CPC_Control command to change behaviour when interface receives a CAN
569  * message, bus error or CAN state changed notifications.
570  */
571 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
572 {
573 	struct ems_cpc_msg cmd;
574 
575 	cmd.type = CPC_CMD_TYPE_CONTROL;
576 	cmd.length = CPC_MSG_HEADER_LEN + 1;
577 
578 	cmd.msgid = 0;
579 
580 	cmd.msg.generic[0] = val;
581 
582 	return ems_usb_command_msg(dev, &cmd);
583 }
584 
585 /*
586  * Start interface
587  */
588 static int ems_usb_start(struct ems_usb *dev)
589 {
590 	struct net_device *netdev = dev->netdev;
591 	int err, i;
592 
593 	dev->intr_in_buffer[0] = 0;
594 	dev->free_slots = 15; /* initial size */
595 
596 	for (i = 0; i < MAX_RX_URBS; i++) {
597 		struct urb *urb = NULL;
598 		u8 *buf = NULL;
599 
600 		/* create a URB, and a buffer for it */
601 		urb = usb_alloc_urb(0, GFP_KERNEL);
602 		if (!urb) {
603 			netdev_err(netdev, "No memory left for URBs\n");
604 			err = -ENOMEM;
605 			break;
606 		}
607 
608 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
609 					 &urb->transfer_dma);
610 		if (!buf) {
611 			netdev_err(netdev, "No memory left for USB buffer\n");
612 			usb_free_urb(urb);
613 			err = -ENOMEM;
614 			break;
615 		}
616 
617 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
618 				  buf, RX_BUFFER_SIZE,
619 				  ems_usb_read_bulk_callback, dev);
620 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
621 		usb_anchor_urb(urb, &dev->rx_submitted);
622 
623 		err = usb_submit_urb(urb, GFP_KERNEL);
624 		if (err) {
625 			usb_unanchor_urb(urb);
626 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
627 					  urb->transfer_dma);
628 			usb_free_urb(urb);
629 			break;
630 		}
631 
632 		/* Drop reference, USB core will take care of freeing it */
633 		usb_free_urb(urb);
634 	}
635 
636 	/* Did we submit any URBs */
637 	if (i == 0) {
638 		netdev_warn(netdev, "couldn't setup read URBs\n");
639 		return err;
640 	}
641 
642 	/* Warn if we've couldn't transmit all the URBs */
643 	if (i < MAX_RX_URBS)
644 		netdev_warn(netdev, "rx performance may be slow\n");
645 
646 	/* Setup and start interrupt URB */
647 	usb_fill_int_urb(dev->intr_urb, dev->udev,
648 			 usb_rcvintpipe(dev->udev, 1),
649 			 dev->intr_in_buffer,
650 			 INTR_IN_BUFFER_SIZE,
651 			 ems_usb_read_interrupt_callback, dev, 1);
652 
653 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
654 	if (err) {
655 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
656 
657 		return err;
658 	}
659 
660 	/* CPC-USB will transfer received message to host */
661 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
662 	if (err)
663 		goto failed;
664 
665 	/* CPC-USB will transfer CAN state changes to host */
666 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
667 	if (err)
668 		goto failed;
669 
670 	/* CPC-USB will transfer bus errors to host */
671 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
672 	if (err)
673 		goto failed;
674 
675 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
676 	if (err)
677 		goto failed;
678 
679 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
680 
681 	return 0;
682 
683 failed:
684 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
685 
686 	return err;
687 }
688 
689 static void unlink_all_urbs(struct ems_usb *dev)
690 {
691 	int i;
692 
693 	usb_unlink_urb(dev->intr_urb);
694 
695 	usb_kill_anchored_urbs(&dev->rx_submitted);
696 
697 	usb_kill_anchored_urbs(&dev->tx_submitted);
698 	atomic_set(&dev->active_tx_urbs, 0);
699 
700 	for (i = 0; i < MAX_TX_URBS; i++)
701 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
702 }
703 
704 static int ems_usb_open(struct net_device *netdev)
705 {
706 	struct ems_usb *dev = netdev_priv(netdev);
707 	int err;
708 
709 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
710 	if (err)
711 		return err;
712 
713 	/* common open */
714 	err = open_candev(netdev);
715 	if (err)
716 		return err;
717 
718 	/* finally start device */
719 	err = ems_usb_start(dev);
720 	if (err) {
721 		if (err == -ENODEV)
722 			netif_device_detach(dev->netdev);
723 
724 		netdev_warn(netdev, "couldn't start device: %d\n", err);
725 
726 		close_candev(netdev);
727 
728 		return err;
729 	}
730 
731 
732 	netif_start_queue(netdev);
733 
734 	return 0;
735 }
736 
737 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
738 {
739 	struct ems_usb *dev = netdev_priv(netdev);
740 	struct ems_tx_urb_context *context = NULL;
741 	struct net_device_stats *stats = &netdev->stats;
742 	struct can_frame *cf = (struct can_frame *)skb->data;
743 	struct ems_cpc_msg *msg;
744 	struct urb *urb;
745 	u8 *buf;
746 	int i, err;
747 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
748 			+ sizeof(struct cpc_can_msg);
749 
750 	if (can_dropped_invalid_skb(netdev, skb))
751 		return NETDEV_TX_OK;
752 
753 	/* create a URB, and a buffer for it, and copy the data to the URB */
754 	urb = usb_alloc_urb(0, GFP_ATOMIC);
755 	if (!urb) {
756 		netdev_err(netdev, "No memory left for URBs\n");
757 		goto nomem;
758 	}
759 
760 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
761 	if (!buf) {
762 		netdev_err(netdev, "No memory left for USB buffer\n");
763 		usb_free_urb(urb);
764 		goto nomem;
765 	}
766 
767 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
768 
769 	msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
770 	msg->msg.can_msg.length = cf->can_dlc;
771 
772 	if (cf->can_id & CAN_RTR_FLAG) {
773 		msg->type = cf->can_id & CAN_EFF_FLAG ?
774 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
775 
776 		msg->length = CPC_CAN_MSG_MIN_SIZE;
777 	} else {
778 		msg->type = cf->can_id & CAN_EFF_FLAG ?
779 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
780 
781 		for (i = 0; i < cf->can_dlc; i++)
782 			msg->msg.can_msg.msg[i] = cf->data[i];
783 
784 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
785 	}
786 
787 	/* Respect byte order */
788 	msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
789 
790 	for (i = 0; i < MAX_TX_URBS; i++) {
791 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
792 			context = &dev->tx_contexts[i];
793 			break;
794 		}
795 	}
796 
797 	/*
798 	 * May never happen! When this happens we'd more URBs in flight as
799 	 * allowed (MAX_TX_URBS).
800 	 */
801 	if (!context) {
802 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
803 		usb_free_urb(urb);
804 
805 		netdev_warn(netdev, "couldn't find free context\n");
806 
807 		return NETDEV_TX_BUSY;
808 	}
809 
810 	context->dev = dev;
811 	context->echo_index = i;
812 	context->dlc = cf->can_dlc;
813 
814 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
815 			  size, ems_usb_write_bulk_callback, context);
816 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
817 	usb_anchor_urb(urb, &dev->tx_submitted);
818 
819 	can_put_echo_skb(skb, netdev, context->echo_index);
820 
821 	atomic_inc(&dev->active_tx_urbs);
822 
823 	err = usb_submit_urb(urb, GFP_ATOMIC);
824 	if (unlikely(err)) {
825 		can_free_echo_skb(netdev, context->echo_index);
826 
827 		usb_unanchor_urb(urb);
828 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
829 		dev_kfree_skb(skb);
830 
831 		atomic_dec(&dev->active_tx_urbs);
832 
833 		if (err == -ENODEV) {
834 			netif_device_detach(netdev);
835 		} else {
836 			netdev_warn(netdev, "failed tx_urb %d\n", err);
837 
838 			stats->tx_dropped++;
839 		}
840 	} else {
841 		netdev->trans_start = jiffies;
842 
843 		/* Slow down tx path */
844 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
845 		    dev->free_slots < 5) {
846 			netif_stop_queue(netdev);
847 		}
848 	}
849 
850 	/*
851 	 * Release our reference to this URB, the USB core will eventually free
852 	 * it entirely.
853 	 */
854 	usb_free_urb(urb);
855 
856 	return NETDEV_TX_OK;
857 
858 nomem:
859 	dev_kfree_skb(skb);
860 	stats->tx_dropped++;
861 
862 	return NETDEV_TX_OK;
863 }
864 
865 static int ems_usb_close(struct net_device *netdev)
866 {
867 	struct ems_usb *dev = netdev_priv(netdev);
868 
869 	/* Stop polling */
870 	unlink_all_urbs(dev);
871 
872 	netif_stop_queue(netdev);
873 
874 	/* Set CAN controller to reset mode */
875 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
876 		netdev_warn(netdev, "couldn't stop device");
877 
878 	close_candev(netdev);
879 
880 	return 0;
881 }
882 
883 static const struct net_device_ops ems_usb_netdev_ops = {
884 	.ndo_open = ems_usb_open,
885 	.ndo_stop = ems_usb_close,
886 	.ndo_start_xmit = ems_usb_start_xmit,
887 };
888 
889 static const struct can_bittiming_const ems_usb_bittiming_const = {
890 	.name = "ems_usb",
891 	.tseg1_min = 1,
892 	.tseg1_max = 16,
893 	.tseg2_min = 1,
894 	.tseg2_max = 8,
895 	.sjw_max = 4,
896 	.brp_min = 1,
897 	.brp_max = 64,
898 	.brp_inc = 1,
899 };
900 
901 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
902 {
903 	struct ems_usb *dev = netdev_priv(netdev);
904 
905 	switch (mode) {
906 	case CAN_MODE_START:
907 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
908 			netdev_warn(netdev, "couldn't start device");
909 
910 		if (netif_queue_stopped(netdev))
911 			netif_wake_queue(netdev);
912 		break;
913 
914 	default:
915 		return -EOPNOTSUPP;
916 	}
917 
918 	return 0;
919 }
920 
921 static int ems_usb_set_bittiming(struct net_device *netdev)
922 {
923 	struct ems_usb *dev = netdev_priv(netdev);
924 	struct can_bittiming *bt = &dev->can.bittiming;
925 	u8 btr0, btr1;
926 
927 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
928 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
929 		(((bt->phase_seg2 - 1) & 0x7) << 4);
930 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
931 		btr1 |= 0x80;
932 
933 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
934 
935 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
936 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
937 
938 	return ems_usb_command_msg(dev, &dev->active_params);
939 }
940 
941 static void init_params_sja1000(struct ems_cpc_msg *msg)
942 {
943 	struct cpc_sja1000_params *sja1000 =
944 		&msg->msg.can_params.cc_params.sja1000;
945 
946 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
947 	msg->length = sizeof(struct cpc_can_params);
948 	msg->msgid = 0;
949 
950 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
951 
952 	/* Acceptance filter open */
953 	sja1000->acc_code0 = 0x00;
954 	sja1000->acc_code1 = 0x00;
955 	sja1000->acc_code2 = 0x00;
956 	sja1000->acc_code3 = 0x00;
957 
958 	/* Acceptance filter open */
959 	sja1000->acc_mask0 = 0xFF;
960 	sja1000->acc_mask1 = 0xFF;
961 	sja1000->acc_mask2 = 0xFF;
962 	sja1000->acc_mask3 = 0xFF;
963 
964 	sja1000->btr0 = 0;
965 	sja1000->btr1 = 0;
966 
967 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
968 	sja1000->mode = SJA1000_MOD_RM;
969 }
970 
971 /*
972  * probe function for new CPC-USB devices
973  */
974 static int ems_usb_probe(struct usb_interface *intf,
975 			 const struct usb_device_id *id)
976 {
977 	struct net_device *netdev;
978 	struct ems_usb *dev;
979 	int i, err = -ENOMEM;
980 
981 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
982 	if (!netdev) {
983 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
984 		return -ENOMEM;
985 	}
986 
987 	dev = netdev_priv(netdev);
988 
989 	dev->udev = interface_to_usbdev(intf);
990 	dev->netdev = netdev;
991 
992 	dev->can.state = CAN_STATE_STOPPED;
993 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
994 	dev->can.bittiming_const = &ems_usb_bittiming_const;
995 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
996 	dev->can.do_set_mode = ems_usb_set_mode;
997 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
998 
999 	netdev->netdev_ops = &ems_usb_netdev_ops;
1000 
1001 	netdev->flags |= IFF_ECHO; /* we support local echo */
1002 
1003 	init_usb_anchor(&dev->rx_submitted);
1004 
1005 	init_usb_anchor(&dev->tx_submitted);
1006 	atomic_set(&dev->active_tx_urbs, 0);
1007 
1008 	for (i = 0; i < MAX_TX_URBS; i++)
1009 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1010 
1011 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1012 	if (!dev->intr_urb) {
1013 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1014 		goto cleanup_candev;
1015 	}
1016 
1017 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1018 	if (!dev->intr_in_buffer)
1019 		goto cleanup_intr_urb;
1020 
1021 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1022 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1023 	if (!dev->tx_msg_buffer)
1024 		goto cleanup_intr_in_buffer;
1025 
1026 	usb_set_intfdata(intf, dev);
1027 
1028 	SET_NETDEV_DEV(netdev, &intf->dev);
1029 
1030 	init_params_sja1000(&dev->active_params);
1031 
1032 	err = ems_usb_command_msg(dev, &dev->active_params);
1033 	if (err) {
1034 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1035 		goto cleanup_tx_msg_buffer;
1036 	}
1037 
1038 	err = register_candev(netdev);
1039 	if (err) {
1040 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1041 		goto cleanup_tx_msg_buffer;
1042 	}
1043 
1044 	return 0;
1045 
1046 cleanup_tx_msg_buffer:
1047 	kfree(dev->tx_msg_buffer);
1048 
1049 cleanup_intr_in_buffer:
1050 	kfree(dev->intr_in_buffer);
1051 
1052 cleanup_intr_urb:
1053 	usb_free_urb(dev->intr_urb);
1054 
1055 cleanup_candev:
1056 	free_candev(netdev);
1057 
1058 	return err;
1059 }
1060 
1061 /*
1062  * called by the usb core when the device is removed from the system
1063  */
1064 static void ems_usb_disconnect(struct usb_interface *intf)
1065 {
1066 	struct ems_usb *dev = usb_get_intfdata(intf);
1067 
1068 	usb_set_intfdata(intf, NULL);
1069 
1070 	if (dev) {
1071 		unregister_netdev(dev->netdev);
1072 		free_candev(dev->netdev);
1073 
1074 		unlink_all_urbs(dev);
1075 
1076 		usb_free_urb(dev->intr_urb);
1077 
1078 		kfree(dev->intr_in_buffer);
1079 	}
1080 }
1081 
1082 /* usb specific object needed to register this driver with the usb subsystem */
1083 static struct usb_driver ems_usb_driver = {
1084 	.name = "ems_usb",
1085 	.probe = ems_usb_probe,
1086 	.disconnect = ems_usb_disconnect,
1087 	.id_table = ems_usb_table,
1088 };
1089 
1090 module_usb_driver(ems_usb_driver);
1091