xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 242cdad8)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 #define CPC_TX_QUEUE_TRIGGER_LOW	25
121 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
122 
123 /*
124  * CAN-Message representation in a CPC_MSG. Message object type is
125  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127  */
128 struct cpc_can_msg {
129 	__le32 id;
130 	u8 length;
131 	u8 msg[8];
132 };
133 
134 /* Representation of the CAN parameters for the SJA1000 controller */
135 struct cpc_sja1000_params {
136 	u8 mode;
137 	u8 acc_code0;
138 	u8 acc_code1;
139 	u8 acc_code2;
140 	u8 acc_code3;
141 	u8 acc_mask0;
142 	u8 acc_mask1;
143 	u8 acc_mask2;
144 	u8 acc_mask3;
145 	u8 btr0;
146 	u8 btr1;
147 	u8 outp_contr;
148 };
149 
150 /* CAN params message representation */
151 struct cpc_can_params {
152 	u8 cc_type;
153 
154 	/* Will support M16C CAN controller in the future */
155 	union {
156 		struct cpc_sja1000_params sja1000;
157 	} cc_params;
158 };
159 
160 /* Structure for confirmed message handling */
161 struct cpc_confirm {
162 	u8 error; /* error code */
163 };
164 
165 /* Structure for overrun conditions */
166 struct cpc_overrun {
167 	u8 event;
168 	u8 count;
169 };
170 
171 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
172 struct cpc_sja1000_can_error {
173 	u8 ecc;
174 	u8 rxerr;
175 	u8 txerr;
176 };
177 
178 /* structure for CAN error conditions */
179 struct cpc_can_error {
180 	u8 ecode;
181 
182 	struct {
183 		u8 cc_type;
184 
185 		/* Other controllers may also provide error code capture regs */
186 		union {
187 			struct cpc_sja1000_can_error sja1000;
188 		} regs;
189 	} cc;
190 };
191 
192 /*
193  * Structure containing RX/TX error counter. This structure is used to request
194  * the values of the CAN controllers TX and RX error counter.
195  */
196 struct cpc_can_err_counter {
197 	u8 rx;
198 	u8 tx;
199 };
200 
201 /* Main message type used between library and application */
202 struct __packed ems_cpc_msg {
203 	u8 type;	/* type of message */
204 	u8 length;	/* length of data within union 'msg' */
205 	u8 msgid;	/* confirmation handle */
206 	__le32 ts_sec;	/* timestamp in seconds */
207 	__le32 ts_nsec;	/* timestamp in nano seconds */
208 
209 	union {
210 		u8 generic[64];
211 		struct cpc_can_msg can_msg;
212 		struct cpc_can_params can_params;
213 		struct cpc_confirm confirmation;
214 		struct cpc_overrun overrun;
215 		struct cpc_can_error error;
216 		struct cpc_can_err_counter err_counter;
217 		u8 can_state;
218 	} msg;
219 };
220 
221 /*
222  * Table of devices that work with this driver
223  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224  */
225 static struct usb_device_id ems_usb_table[] = {
226 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227 	{} /* Terminating entry */
228 };
229 
230 MODULE_DEVICE_TABLE(usb, ems_usb_table);
231 
232 #define RX_BUFFER_SIZE      64
233 #define CPC_HEADER_SIZE     4
234 #define INTR_IN_BUFFER_SIZE 4
235 
236 #define MAX_RX_URBS 10
237 #define MAX_TX_URBS 10
238 
239 struct ems_usb;
240 
241 struct ems_tx_urb_context {
242 	struct ems_usb *dev;
243 
244 	u32 echo_index;
245 	u8 dlc;
246 };
247 
248 struct ems_usb {
249 	struct can_priv can; /* must be the first member */
250 
251 	struct sk_buff *echo_skb[MAX_TX_URBS];
252 
253 	struct usb_device *udev;
254 	struct net_device *netdev;
255 
256 	atomic_t active_tx_urbs;
257 	struct usb_anchor tx_submitted;
258 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259 
260 	struct usb_anchor rx_submitted;
261 
262 	struct urb *intr_urb;
263 
264 	u8 *tx_msg_buffer;
265 
266 	u8 *intr_in_buffer;
267 	unsigned int free_slots; /* remember number of available slots */
268 
269 	struct ems_cpc_msg active_params; /* active controller parameters */
270 };
271 
272 static void ems_usb_read_interrupt_callback(struct urb *urb)
273 {
274 	struct ems_usb *dev = urb->context;
275 	struct net_device *netdev = dev->netdev;
276 	int err;
277 
278 	if (!netif_device_present(netdev))
279 		return;
280 
281 	switch (urb->status) {
282 	case 0:
283 		dev->free_slots = dev->intr_in_buffer[1];
284 		if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
285 		    netif_queue_stopped(netdev))
286 			netif_wake_queue(netdev);
287 		break;
288 
289 	case -ECONNRESET: /* unlink */
290 	case -ENOENT:
291 	case -EPIPE:
292 	case -EPROTO:
293 	case -ESHUTDOWN:
294 		return;
295 
296 	default:
297 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
298 		break;
299 	}
300 
301 	err = usb_submit_urb(urb, GFP_ATOMIC);
302 
303 	if (err == -ENODEV)
304 		netif_device_detach(netdev);
305 	else if (err)
306 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
307 }
308 
309 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
310 {
311 	struct can_frame *cf;
312 	struct sk_buff *skb;
313 	int i;
314 	struct net_device_stats *stats = &dev->netdev->stats;
315 
316 	skb = alloc_can_skb(dev->netdev, &cf);
317 	if (skb == NULL)
318 		return;
319 
320 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
321 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
322 
323 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
324 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
325 		cf->can_id |= CAN_EFF_FLAG;
326 
327 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
328 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
329 		cf->can_id |= CAN_RTR_FLAG;
330 	} else {
331 		for (i = 0; i < cf->can_dlc; i++)
332 			cf->data[i] = msg->msg.can_msg.msg[i];
333 	}
334 
335 	stats->rx_packets++;
336 	stats->rx_bytes += cf->can_dlc;
337 	netif_rx(skb);
338 }
339 
340 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
341 {
342 	struct can_frame *cf;
343 	struct sk_buff *skb;
344 	struct net_device_stats *stats = &dev->netdev->stats;
345 
346 	skb = alloc_can_err_skb(dev->netdev, &cf);
347 	if (skb == NULL)
348 		return;
349 
350 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
351 		u8 state = msg->msg.can_state;
352 
353 		if (state & SJA1000_SR_BS) {
354 			dev->can.state = CAN_STATE_BUS_OFF;
355 			cf->can_id |= CAN_ERR_BUSOFF;
356 
357 			dev->can.can_stats.bus_off++;
358 			can_bus_off(dev->netdev);
359 		} else if (state & SJA1000_SR_ES) {
360 			dev->can.state = CAN_STATE_ERROR_WARNING;
361 			dev->can.can_stats.error_warning++;
362 		} else {
363 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
364 			dev->can.can_stats.error_passive++;
365 		}
366 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
367 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
368 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
369 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
370 
371 		/* bus error interrupt */
372 		dev->can.can_stats.bus_error++;
373 		stats->rx_errors++;
374 
375 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
376 
377 		switch (ecc & SJA1000_ECC_MASK) {
378 		case SJA1000_ECC_BIT:
379 			cf->data[2] |= CAN_ERR_PROT_BIT;
380 			break;
381 		case SJA1000_ECC_FORM:
382 			cf->data[2] |= CAN_ERR_PROT_FORM;
383 			break;
384 		case SJA1000_ECC_STUFF:
385 			cf->data[2] |= CAN_ERR_PROT_STUFF;
386 			break;
387 		default:
388 			cf->data[3] = ecc & SJA1000_ECC_SEG;
389 			break;
390 		}
391 
392 		/* Error occurred during transmission? */
393 		if ((ecc & SJA1000_ECC_DIR) == 0)
394 			cf->data[2] |= CAN_ERR_PROT_TX;
395 
396 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
397 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
398 			cf->can_id |= CAN_ERR_CRTL;
399 			cf->data[1] = (txerr > rxerr) ?
400 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
401 		}
402 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
403 		cf->can_id |= CAN_ERR_CRTL;
404 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
405 
406 		stats->rx_over_errors++;
407 		stats->rx_errors++;
408 	}
409 
410 	stats->rx_packets++;
411 	stats->rx_bytes += cf->can_dlc;
412 	netif_rx(skb);
413 }
414 
415 /*
416  * callback for bulk IN urb
417  */
418 static void ems_usb_read_bulk_callback(struct urb *urb)
419 {
420 	struct ems_usb *dev = urb->context;
421 	struct net_device *netdev;
422 	int retval;
423 
424 	netdev = dev->netdev;
425 
426 	if (!netif_device_present(netdev))
427 		return;
428 
429 	switch (urb->status) {
430 	case 0: /* success */
431 		break;
432 
433 	case -ENOENT:
434 		return;
435 
436 	default:
437 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
438 		goto resubmit_urb;
439 	}
440 
441 	if (urb->actual_length > CPC_HEADER_SIZE) {
442 		struct ems_cpc_msg *msg;
443 		u8 *ibuf = urb->transfer_buffer;
444 		u8 msg_count, start;
445 
446 		msg_count = ibuf[0] & ~0x80;
447 
448 		start = CPC_HEADER_SIZE;
449 
450 		while (msg_count) {
451 			msg = (struct ems_cpc_msg *)&ibuf[start];
452 
453 			switch (msg->type) {
454 			case CPC_MSG_TYPE_CAN_STATE:
455 				/* Process CAN state changes */
456 				ems_usb_rx_err(dev, msg);
457 				break;
458 
459 			case CPC_MSG_TYPE_CAN_FRAME:
460 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
461 			case CPC_MSG_TYPE_RTR_FRAME:
462 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
463 				ems_usb_rx_can_msg(dev, msg);
464 				break;
465 
466 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
467 				/* Process errorframe */
468 				ems_usb_rx_err(dev, msg);
469 				break;
470 
471 			case CPC_MSG_TYPE_OVERRUN:
472 				/* Message lost while receiving */
473 				ems_usb_rx_err(dev, msg);
474 				break;
475 			}
476 
477 			start += CPC_MSG_HEADER_LEN + msg->length;
478 			msg_count--;
479 
480 			if (start > urb->transfer_buffer_length) {
481 				netdev_err(netdev, "format error\n");
482 				break;
483 			}
484 		}
485 	}
486 
487 resubmit_urb:
488 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
489 			  urb->transfer_buffer, RX_BUFFER_SIZE,
490 			  ems_usb_read_bulk_callback, dev);
491 
492 	retval = usb_submit_urb(urb, GFP_ATOMIC);
493 
494 	if (retval == -ENODEV)
495 		netif_device_detach(netdev);
496 	else if (retval)
497 		netdev_err(netdev,
498 			   "failed resubmitting read bulk urb: %d\n", retval);
499 }
500 
501 /*
502  * callback for bulk IN urb
503  */
504 static void ems_usb_write_bulk_callback(struct urb *urb)
505 {
506 	struct ems_tx_urb_context *context = urb->context;
507 	struct ems_usb *dev;
508 	struct net_device *netdev;
509 
510 	BUG_ON(!context);
511 
512 	dev = context->dev;
513 	netdev = dev->netdev;
514 
515 	/* free up our allocated buffer */
516 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
517 			  urb->transfer_buffer, urb->transfer_dma);
518 
519 	atomic_dec(&dev->active_tx_urbs);
520 
521 	if (!netif_device_present(netdev))
522 		return;
523 
524 	if (urb->status)
525 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
526 
527 	netif_trans_update(netdev);
528 
529 	/* transmission complete interrupt */
530 	netdev->stats.tx_packets++;
531 	netdev->stats.tx_bytes += context->dlc;
532 
533 	can_get_echo_skb(netdev, context->echo_index);
534 
535 	/* Release context */
536 	context->echo_index = MAX_TX_URBS;
537 
538 }
539 
540 /*
541  * Send the given CPC command synchronously
542  */
543 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
544 {
545 	int actual_length;
546 
547 	/* Copy payload */
548 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
549 	       msg->length + CPC_MSG_HEADER_LEN);
550 
551 	/* Clear header */
552 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
553 
554 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
555 			    &dev->tx_msg_buffer[0],
556 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
557 			    &actual_length, 1000);
558 }
559 
560 /*
561  * Change CAN controllers' mode register
562  */
563 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
564 {
565 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
566 
567 	return ems_usb_command_msg(dev, &dev->active_params);
568 }
569 
570 /*
571  * Send a CPC_Control command to change behaviour when interface receives a CAN
572  * message, bus error or CAN state changed notifications.
573  */
574 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
575 {
576 	struct ems_cpc_msg cmd;
577 
578 	cmd.type = CPC_CMD_TYPE_CONTROL;
579 	cmd.length = CPC_MSG_HEADER_LEN + 1;
580 
581 	cmd.msgid = 0;
582 
583 	cmd.msg.generic[0] = val;
584 
585 	return ems_usb_command_msg(dev, &cmd);
586 }
587 
588 /*
589  * Start interface
590  */
591 static int ems_usb_start(struct ems_usb *dev)
592 {
593 	struct net_device *netdev = dev->netdev;
594 	int err, i;
595 
596 	dev->intr_in_buffer[0] = 0;
597 	dev->free_slots = 50; /* initial size */
598 
599 	for (i = 0; i < MAX_RX_URBS; i++) {
600 		struct urb *urb = NULL;
601 		u8 *buf = NULL;
602 
603 		/* create a URB, and a buffer for it */
604 		urb = usb_alloc_urb(0, GFP_KERNEL);
605 		if (!urb) {
606 			err = -ENOMEM;
607 			break;
608 		}
609 
610 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
611 					 &urb->transfer_dma);
612 		if (!buf) {
613 			netdev_err(netdev, "No memory left for USB buffer\n");
614 			usb_free_urb(urb);
615 			err = -ENOMEM;
616 			break;
617 		}
618 
619 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
620 				  buf, RX_BUFFER_SIZE,
621 				  ems_usb_read_bulk_callback, dev);
622 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
623 		usb_anchor_urb(urb, &dev->rx_submitted);
624 
625 		err = usb_submit_urb(urb, GFP_KERNEL);
626 		if (err) {
627 			usb_unanchor_urb(urb);
628 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
629 					  urb->transfer_dma);
630 			usb_free_urb(urb);
631 			break;
632 		}
633 
634 		/* Drop reference, USB core will take care of freeing it */
635 		usb_free_urb(urb);
636 	}
637 
638 	/* Did we submit any URBs */
639 	if (i == 0) {
640 		netdev_warn(netdev, "couldn't setup read URBs\n");
641 		return err;
642 	}
643 
644 	/* Warn if we've couldn't transmit all the URBs */
645 	if (i < MAX_RX_URBS)
646 		netdev_warn(netdev, "rx performance may be slow\n");
647 
648 	/* Setup and start interrupt URB */
649 	usb_fill_int_urb(dev->intr_urb, dev->udev,
650 			 usb_rcvintpipe(dev->udev, 1),
651 			 dev->intr_in_buffer,
652 			 INTR_IN_BUFFER_SIZE,
653 			 ems_usb_read_interrupt_callback, dev, 1);
654 
655 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
656 	if (err) {
657 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
658 
659 		return err;
660 	}
661 
662 	/* CPC-USB will transfer received message to host */
663 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
664 	if (err)
665 		goto failed;
666 
667 	/* CPC-USB will transfer CAN state changes to host */
668 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
669 	if (err)
670 		goto failed;
671 
672 	/* CPC-USB will transfer bus errors to host */
673 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
674 	if (err)
675 		goto failed;
676 
677 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
678 	if (err)
679 		goto failed;
680 
681 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
682 
683 	return 0;
684 
685 failed:
686 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
687 
688 	return err;
689 }
690 
691 static void unlink_all_urbs(struct ems_usb *dev)
692 {
693 	int i;
694 
695 	usb_unlink_urb(dev->intr_urb);
696 
697 	usb_kill_anchored_urbs(&dev->rx_submitted);
698 
699 	usb_kill_anchored_urbs(&dev->tx_submitted);
700 	atomic_set(&dev->active_tx_urbs, 0);
701 
702 	for (i = 0; i < MAX_TX_URBS; i++)
703 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
704 }
705 
706 static int ems_usb_open(struct net_device *netdev)
707 {
708 	struct ems_usb *dev = netdev_priv(netdev);
709 	int err;
710 
711 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
712 	if (err)
713 		return err;
714 
715 	/* common open */
716 	err = open_candev(netdev);
717 	if (err)
718 		return err;
719 
720 	/* finally start device */
721 	err = ems_usb_start(dev);
722 	if (err) {
723 		if (err == -ENODEV)
724 			netif_device_detach(dev->netdev);
725 
726 		netdev_warn(netdev, "couldn't start device: %d\n", err);
727 
728 		close_candev(netdev);
729 
730 		return err;
731 	}
732 
733 
734 	netif_start_queue(netdev);
735 
736 	return 0;
737 }
738 
739 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
740 {
741 	struct ems_usb *dev = netdev_priv(netdev);
742 	struct ems_tx_urb_context *context = NULL;
743 	struct net_device_stats *stats = &netdev->stats;
744 	struct can_frame *cf = (struct can_frame *)skb->data;
745 	struct ems_cpc_msg *msg;
746 	struct urb *urb;
747 	u8 *buf;
748 	int i, err;
749 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
750 			+ sizeof(struct cpc_can_msg);
751 
752 	if (can_dropped_invalid_skb(netdev, skb))
753 		return NETDEV_TX_OK;
754 
755 	/* create a URB, and a buffer for it, and copy the data to the URB */
756 	urb = usb_alloc_urb(0, GFP_ATOMIC);
757 	if (!urb)
758 		goto nomem;
759 
760 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
761 	if (!buf) {
762 		netdev_err(netdev, "No memory left for USB buffer\n");
763 		usb_free_urb(urb);
764 		goto nomem;
765 	}
766 
767 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
768 
769 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
770 	msg->msg.can_msg.length = cf->can_dlc;
771 
772 	if (cf->can_id & CAN_RTR_FLAG) {
773 		msg->type = cf->can_id & CAN_EFF_FLAG ?
774 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
775 
776 		msg->length = CPC_CAN_MSG_MIN_SIZE;
777 	} else {
778 		msg->type = cf->can_id & CAN_EFF_FLAG ?
779 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
780 
781 		for (i = 0; i < cf->can_dlc; i++)
782 			msg->msg.can_msg.msg[i] = cf->data[i];
783 
784 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
785 	}
786 
787 	for (i = 0; i < MAX_TX_URBS; i++) {
788 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
789 			context = &dev->tx_contexts[i];
790 			break;
791 		}
792 	}
793 
794 	/*
795 	 * May never happen! When this happens we'd more URBs in flight as
796 	 * allowed (MAX_TX_URBS).
797 	 */
798 	if (!context) {
799 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
800 		usb_free_urb(urb);
801 
802 		netdev_warn(netdev, "couldn't find free context\n");
803 
804 		return NETDEV_TX_BUSY;
805 	}
806 
807 	context->dev = dev;
808 	context->echo_index = i;
809 	context->dlc = cf->can_dlc;
810 
811 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
812 			  size, ems_usb_write_bulk_callback, context);
813 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
814 	usb_anchor_urb(urb, &dev->tx_submitted);
815 
816 	can_put_echo_skb(skb, netdev, context->echo_index);
817 
818 	atomic_inc(&dev->active_tx_urbs);
819 
820 	err = usb_submit_urb(urb, GFP_ATOMIC);
821 	if (unlikely(err)) {
822 		can_free_echo_skb(netdev, context->echo_index);
823 
824 		usb_unanchor_urb(urb);
825 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
826 		dev_kfree_skb(skb);
827 
828 		atomic_dec(&dev->active_tx_urbs);
829 
830 		if (err == -ENODEV) {
831 			netif_device_detach(netdev);
832 		} else {
833 			netdev_warn(netdev, "failed tx_urb %d\n", err);
834 
835 			stats->tx_dropped++;
836 		}
837 	} else {
838 		netif_trans_update(netdev);
839 
840 		/* Slow down tx path */
841 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
842 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
843 			netif_stop_queue(netdev);
844 		}
845 	}
846 
847 	/*
848 	 * Release our reference to this URB, the USB core will eventually free
849 	 * it entirely.
850 	 */
851 	usb_free_urb(urb);
852 
853 	return NETDEV_TX_OK;
854 
855 nomem:
856 	dev_kfree_skb(skb);
857 	stats->tx_dropped++;
858 
859 	return NETDEV_TX_OK;
860 }
861 
862 static int ems_usb_close(struct net_device *netdev)
863 {
864 	struct ems_usb *dev = netdev_priv(netdev);
865 
866 	/* Stop polling */
867 	unlink_all_urbs(dev);
868 
869 	netif_stop_queue(netdev);
870 
871 	/* Set CAN controller to reset mode */
872 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
873 		netdev_warn(netdev, "couldn't stop device");
874 
875 	close_candev(netdev);
876 
877 	return 0;
878 }
879 
880 static const struct net_device_ops ems_usb_netdev_ops = {
881 	.ndo_open = ems_usb_open,
882 	.ndo_stop = ems_usb_close,
883 	.ndo_start_xmit = ems_usb_start_xmit,
884 	.ndo_change_mtu = can_change_mtu,
885 };
886 
887 static const struct can_bittiming_const ems_usb_bittiming_const = {
888 	.name = "ems_usb",
889 	.tseg1_min = 1,
890 	.tseg1_max = 16,
891 	.tseg2_min = 1,
892 	.tseg2_max = 8,
893 	.sjw_max = 4,
894 	.brp_min = 1,
895 	.brp_max = 64,
896 	.brp_inc = 1,
897 };
898 
899 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
900 {
901 	struct ems_usb *dev = netdev_priv(netdev);
902 
903 	switch (mode) {
904 	case CAN_MODE_START:
905 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
906 			netdev_warn(netdev, "couldn't start device");
907 
908 		if (netif_queue_stopped(netdev))
909 			netif_wake_queue(netdev);
910 		break;
911 
912 	default:
913 		return -EOPNOTSUPP;
914 	}
915 
916 	return 0;
917 }
918 
919 static int ems_usb_set_bittiming(struct net_device *netdev)
920 {
921 	struct ems_usb *dev = netdev_priv(netdev);
922 	struct can_bittiming *bt = &dev->can.bittiming;
923 	u8 btr0, btr1;
924 
925 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
926 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
927 		(((bt->phase_seg2 - 1) & 0x7) << 4);
928 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
929 		btr1 |= 0x80;
930 
931 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
932 
933 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
934 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
935 
936 	return ems_usb_command_msg(dev, &dev->active_params);
937 }
938 
939 static void init_params_sja1000(struct ems_cpc_msg *msg)
940 {
941 	struct cpc_sja1000_params *sja1000 =
942 		&msg->msg.can_params.cc_params.sja1000;
943 
944 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
945 	msg->length = sizeof(struct cpc_can_params);
946 	msg->msgid = 0;
947 
948 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
949 
950 	/* Acceptance filter open */
951 	sja1000->acc_code0 = 0x00;
952 	sja1000->acc_code1 = 0x00;
953 	sja1000->acc_code2 = 0x00;
954 	sja1000->acc_code3 = 0x00;
955 
956 	/* Acceptance filter open */
957 	sja1000->acc_mask0 = 0xFF;
958 	sja1000->acc_mask1 = 0xFF;
959 	sja1000->acc_mask2 = 0xFF;
960 	sja1000->acc_mask3 = 0xFF;
961 
962 	sja1000->btr0 = 0;
963 	sja1000->btr1 = 0;
964 
965 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
966 	sja1000->mode = SJA1000_MOD_RM;
967 }
968 
969 /*
970  * probe function for new CPC-USB devices
971  */
972 static int ems_usb_probe(struct usb_interface *intf,
973 			 const struct usb_device_id *id)
974 {
975 	struct net_device *netdev;
976 	struct ems_usb *dev;
977 	int i, err = -ENOMEM;
978 
979 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
980 	if (!netdev) {
981 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
982 		return -ENOMEM;
983 	}
984 
985 	dev = netdev_priv(netdev);
986 
987 	dev->udev = interface_to_usbdev(intf);
988 	dev->netdev = netdev;
989 
990 	dev->can.state = CAN_STATE_STOPPED;
991 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
992 	dev->can.bittiming_const = &ems_usb_bittiming_const;
993 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
994 	dev->can.do_set_mode = ems_usb_set_mode;
995 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
996 
997 	netdev->netdev_ops = &ems_usb_netdev_ops;
998 
999 	netdev->flags |= IFF_ECHO; /* we support local echo */
1000 
1001 	init_usb_anchor(&dev->rx_submitted);
1002 
1003 	init_usb_anchor(&dev->tx_submitted);
1004 	atomic_set(&dev->active_tx_urbs, 0);
1005 
1006 	for (i = 0; i < MAX_TX_URBS; i++)
1007 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1008 
1009 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1010 	if (!dev->intr_urb)
1011 		goto cleanup_candev;
1012 
1013 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1014 	if (!dev->intr_in_buffer)
1015 		goto cleanup_intr_urb;
1016 
1017 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1018 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1019 	if (!dev->tx_msg_buffer)
1020 		goto cleanup_intr_in_buffer;
1021 
1022 	usb_set_intfdata(intf, dev);
1023 
1024 	SET_NETDEV_DEV(netdev, &intf->dev);
1025 
1026 	init_params_sja1000(&dev->active_params);
1027 
1028 	err = ems_usb_command_msg(dev, &dev->active_params);
1029 	if (err) {
1030 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1031 		goto cleanup_tx_msg_buffer;
1032 	}
1033 
1034 	err = register_candev(netdev);
1035 	if (err) {
1036 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1037 		goto cleanup_tx_msg_buffer;
1038 	}
1039 
1040 	return 0;
1041 
1042 cleanup_tx_msg_buffer:
1043 	kfree(dev->tx_msg_buffer);
1044 
1045 cleanup_intr_in_buffer:
1046 	kfree(dev->intr_in_buffer);
1047 
1048 cleanup_intr_urb:
1049 	usb_free_urb(dev->intr_urb);
1050 
1051 cleanup_candev:
1052 	free_candev(netdev);
1053 
1054 	return err;
1055 }
1056 
1057 /*
1058  * called by the usb core when the device is removed from the system
1059  */
1060 static void ems_usb_disconnect(struct usb_interface *intf)
1061 {
1062 	struct ems_usb *dev = usb_get_intfdata(intf);
1063 
1064 	usb_set_intfdata(intf, NULL);
1065 
1066 	if (dev) {
1067 		unregister_netdev(dev->netdev);
1068 		free_candev(dev->netdev);
1069 
1070 		unlink_all_urbs(dev);
1071 
1072 		usb_free_urb(dev->intr_urb);
1073 
1074 		kfree(dev->intr_in_buffer);
1075 		kfree(dev->tx_msg_buffer);
1076 	}
1077 }
1078 
1079 /* usb specific object needed to register this driver with the usb subsystem */
1080 static struct usb_driver ems_usb_driver = {
1081 	.name = "ems_usb",
1082 	.probe = ems_usb_probe,
1083 	.disconnect = ems_usb_disconnect,
1084 	.id_table = ems_usb_table,
1085 };
1086 
1087 module_usb_driver(ems_usb_driver);
1088