xref: /openbmc/linux/drivers/net/can/usb/ems_usb.c (revision 0da85d1e)
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 /*
121  * CAN-Message representation in a CPC_MSG. Message object type is
122  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
123  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
124  */
125 struct cpc_can_msg {
126 	__le32 id;
127 	u8 length;
128 	u8 msg[8];
129 };
130 
131 /* Representation of the CAN parameters for the SJA1000 controller */
132 struct cpc_sja1000_params {
133 	u8 mode;
134 	u8 acc_code0;
135 	u8 acc_code1;
136 	u8 acc_code2;
137 	u8 acc_code3;
138 	u8 acc_mask0;
139 	u8 acc_mask1;
140 	u8 acc_mask2;
141 	u8 acc_mask3;
142 	u8 btr0;
143 	u8 btr1;
144 	u8 outp_contr;
145 };
146 
147 /* CAN params message representation */
148 struct cpc_can_params {
149 	u8 cc_type;
150 
151 	/* Will support M16C CAN controller in the future */
152 	union {
153 		struct cpc_sja1000_params sja1000;
154 	} cc_params;
155 };
156 
157 /* Structure for confirmed message handling */
158 struct cpc_confirm {
159 	u8 error; /* error code */
160 };
161 
162 /* Structure for overrun conditions */
163 struct cpc_overrun {
164 	u8 event;
165 	u8 count;
166 };
167 
168 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
169 struct cpc_sja1000_can_error {
170 	u8 ecc;
171 	u8 rxerr;
172 	u8 txerr;
173 };
174 
175 /* structure for CAN error conditions */
176 struct cpc_can_error {
177 	u8 ecode;
178 
179 	struct {
180 		u8 cc_type;
181 
182 		/* Other controllers may also provide error code capture regs */
183 		union {
184 			struct cpc_sja1000_can_error sja1000;
185 		} regs;
186 	} cc;
187 };
188 
189 /*
190  * Structure containing RX/TX error counter. This structure is used to request
191  * the values of the CAN controllers TX and RX error counter.
192  */
193 struct cpc_can_err_counter {
194 	u8 rx;
195 	u8 tx;
196 };
197 
198 /* Main message type used between library and application */
199 struct __packed ems_cpc_msg {
200 	u8 type;	/* type of message */
201 	u8 length;	/* length of data within union 'msg' */
202 	u8 msgid;	/* confirmation handle */
203 	__le32 ts_sec;	/* timestamp in seconds */
204 	__le32 ts_nsec;	/* timestamp in nano seconds */
205 
206 	union {
207 		u8 generic[64];
208 		struct cpc_can_msg can_msg;
209 		struct cpc_can_params can_params;
210 		struct cpc_confirm confirmation;
211 		struct cpc_overrun overrun;
212 		struct cpc_can_error error;
213 		struct cpc_can_err_counter err_counter;
214 		u8 can_state;
215 	} msg;
216 };
217 
218 /*
219  * Table of devices that work with this driver
220  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
221  */
222 static struct usb_device_id ems_usb_table[] = {
223 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
224 	{} /* Terminating entry */
225 };
226 
227 MODULE_DEVICE_TABLE(usb, ems_usb_table);
228 
229 #define RX_BUFFER_SIZE      64
230 #define CPC_HEADER_SIZE     4
231 #define INTR_IN_BUFFER_SIZE 4
232 
233 #define MAX_RX_URBS 10
234 #define MAX_TX_URBS 10
235 
236 struct ems_usb;
237 
238 struct ems_tx_urb_context {
239 	struct ems_usb *dev;
240 
241 	u32 echo_index;
242 	u8 dlc;
243 };
244 
245 struct ems_usb {
246 	struct can_priv can; /* must be the first member */
247 
248 	struct sk_buff *echo_skb[MAX_TX_URBS];
249 
250 	struct usb_device *udev;
251 	struct net_device *netdev;
252 
253 	atomic_t active_tx_urbs;
254 	struct usb_anchor tx_submitted;
255 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
256 
257 	struct usb_anchor rx_submitted;
258 
259 	struct urb *intr_urb;
260 
261 	u8 *tx_msg_buffer;
262 
263 	u8 *intr_in_buffer;
264 	unsigned int free_slots; /* remember number of available slots */
265 
266 	struct ems_cpc_msg active_params; /* active controller parameters */
267 };
268 
269 static void ems_usb_read_interrupt_callback(struct urb *urb)
270 {
271 	struct ems_usb *dev = urb->context;
272 	struct net_device *netdev = dev->netdev;
273 	int err;
274 
275 	if (!netif_device_present(netdev))
276 		return;
277 
278 	switch (urb->status) {
279 	case 0:
280 		dev->free_slots = dev->intr_in_buffer[1];
281 		break;
282 
283 	case -ECONNRESET: /* unlink */
284 	case -ENOENT:
285 	case -ESHUTDOWN:
286 		return;
287 
288 	default:
289 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
290 		break;
291 	}
292 
293 	err = usb_submit_urb(urb, GFP_ATOMIC);
294 
295 	if (err == -ENODEV)
296 		netif_device_detach(netdev);
297 	else if (err)
298 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
299 }
300 
301 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
302 {
303 	struct can_frame *cf;
304 	struct sk_buff *skb;
305 	int i;
306 	struct net_device_stats *stats = &dev->netdev->stats;
307 
308 	skb = alloc_can_skb(dev->netdev, &cf);
309 	if (skb == NULL)
310 		return;
311 
312 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
313 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
314 
315 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
316 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
317 		cf->can_id |= CAN_EFF_FLAG;
318 
319 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
320 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
321 		cf->can_id |= CAN_RTR_FLAG;
322 	} else {
323 		for (i = 0; i < cf->can_dlc; i++)
324 			cf->data[i] = msg->msg.can_msg.msg[i];
325 	}
326 
327 	netif_rx(skb);
328 
329 	stats->rx_packets++;
330 	stats->rx_bytes += cf->can_dlc;
331 }
332 
333 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
334 {
335 	struct can_frame *cf;
336 	struct sk_buff *skb;
337 	struct net_device_stats *stats = &dev->netdev->stats;
338 
339 	skb = alloc_can_err_skb(dev->netdev, &cf);
340 	if (skb == NULL)
341 		return;
342 
343 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
344 		u8 state = msg->msg.can_state;
345 
346 		if (state & SJA1000_SR_BS) {
347 			dev->can.state = CAN_STATE_BUS_OFF;
348 			cf->can_id |= CAN_ERR_BUSOFF;
349 
350 			dev->can.can_stats.bus_off++;
351 			can_bus_off(dev->netdev);
352 		} else if (state & SJA1000_SR_ES) {
353 			dev->can.state = CAN_STATE_ERROR_WARNING;
354 			dev->can.can_stats.error_warning++;
355 		} else {
356 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
357 			dev->can.can_stats.error_passive++;
358 		}
359 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
360 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
361 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
362 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
363 
364 		/* bus error interrupt */
365 		dev->can.can_stats.bus_error++;
366 		stats->rx_errors++;
367 
368 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
369 
370 		switch (ecc & SJA1000_ECC_MASK) {
371 		case SJA1000_ECC_BIT:
372 			cf->data[2] |= CAN_ERR_PROT_BIT;
373 			break;
374 		case SJA1000_ECC_FORM:
375 			cf->data[2] |= CAN_ERR_PROT_FORM;
376 			break;
377 		case SJA1000_ECC_STUFF:
378 			cf->data[2] |= CAN_ERR_PROT_STUFF;
379 			break;
380 		default:
381 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
382 			cf->data[3] = ecc & SJA1000_ECC_SEG;
383 			break;
384 		}
385 
386 		/* Error occurred during transmission? */
387 		if ((ecc & SJA1000_ECC_DIR) == 0)
388 			cf->data[2] |= CAN_ERR_PROT_TX;
389 
390 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
391 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
392 			cf->data[1] = (txerr > rxerr) ?
393 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
394 		}
395 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
396 		cf->can_id |= CAN_ERR_CRTL;
397 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
398 
399 		stats->rx_over_errors++;
400 		stats->rx_errors++;
401 	}
402 
403 	netif_rx(skb);
404 
405 	stats->rx_packets++;
406 	stats->rx_bytes += cf->can_dlc;
407 }
408 
409 /*
410  * callback for bulk IN urb
411  */
412 static void ems_usb_read_bulk_callback(struct urb *urb)
413 {
414 	struct ems_usb *dev = urb->context;
415 	struct net_device *netdev;
416 	int retval;
417 
418 	netdev = dev->netdev;
419 
420 	if (!netif_device_present(netdev))
421 		return;
422 
423 	switch (urb->status) {
424 	case 0: /* success */
425 		break;
426 
427 	case -ENOENT:
428 		return;
429 
430 	default:
431 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
432 		goto resubmit_urb;
433 	}
434 
435 	if (urb->actual_length > CPC_HEADER_SIZE) {
436 		struct ems_cpc_msg *msg;
437 		u8 *ibuf = urb->transfer_buffer;
438 		u8 msg_count, start;
439 
440 		msg_count = ibuf[0] & ~0x80;
441 
442 		start = CPC_HEADER_SIZE;
443 
444 		while (msg_count) {
445 			msg = (struct ems_cpc_msg *)&ibuf[start];
446 
447 			switch (msg->type) {
448 			case CPC_MSG_TYPE_CAN_STATE:
449 				/* Process CAN state changes */
450 				ems_usb_rx_err(dev, msg);
451 				break;
452 
453 			case CPC_MSG_TYPE_CAN_FRAME:
454 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
455 			case CPC_MSG_TYPE_RTR_FRAME:
456 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
457 				ems_usb_rx_can_msg(dev, msg);
458 				break;
459 
460 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
461 				/* Process errorframe */
462 				ems_usb_rx_err(dev, msg);
463 				break;
464 
465 			case CPC_MSG_TYPE_OVERRUN:
466 				/* Message lost while receiving */
467 				ems_usb_rx_err(dev, msg);
468 				break;
469 			}
470 
471 			start += CPC_MSG_HEADER_LEN + msg->length;
472 			msg_count--;
473 
474 			if (start > urb->transfer_buffer_length) {
475 				netdev_err(netdev, "format error\n");
476 				break;
477 			}
478 		}
479 	}
480 
481 resubmit_urb:
482 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
483 			  urb->transfer_buffer, RX_BUFFER_SIZE,
484 			  ems_usb_read_bulk_callback, dev);
485 
486 	retval = usb_submit_urb(urb, GFP_ATOMIC);
487 
488 	if (retval == -ENODEV)
489 		netif_device_detach(netdev);
490 	else if (retval)
491 		netdev_err(netdev,
492 			   "failed resubmitting read bulk urb: %d\n", retval);
493 }
494 
495 /*
496  * callback for bulk IN urb
497  */
498 static void ems_usb_write_bulk_callback(struct urb *urb)
499 {
500 	struct ems_tx_urb_context *context = urb->context;
501 	struct ems_usb *dev;
502 	struct net_device *netdev;
503 
504 	BUG_ON(!context);
505 
506 	dev = context->dev;
507 	netdev = dev->netdev;
508 
509 	/* free up our allocated buffer */
510 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
511 			  urb->transfer_buffer, urb->transfer_dma);
512 
513 	atomic_dec(&dev->active_tx_urbs);
514 
515 	if (!netif_device_present(netdev))
516 		return;
517 
518 	if (urb->status)
519 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
520 
521 	netdev->trans_start = jiffies;
522 
523 	/* transmission complete interrupt */
524 	netdev->stats.tx_packets++;
525 	netdev->stats.tx_bytes += context->dlc;
526 
527 	can_get_echo_skb(netdev, context->echo_index);
528 
529 	/* Release context */
530 	context->echo_index = MAX_TX_URBS;
531 
532 	if (netif_queue_stopped(netdev))
533 		netif_wake_queue(netdev);
534 }
535 
536 /*
537  * Send the given CPC command synchronously
538  */
539 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
540 {
541 	int actual_length;
542 
543 	/* Copy payload */
544 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
545 	       msg->length + CPC_MSG_HEADER_LEN);
546 
547 	/* Clear header */
548 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
549 
550 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
551 			    &dev->tx_msg_buffer[0],
552 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
553 			    &actual_length, 1000);
554 }
555 
556 /*
557  * Change CAN controllers' mode register
558  */
559 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
560 {
561 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
562 
563 	return ems_usb_command_msg(dev, &dev->active_params);
564 }
565 
566 /*
567  * Send a CPC_Control command to change behaviour when interface receives a CAN
568  * message, bus error or CAN state changed notifications.
569  */
570 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
571 {
572 	struct ems_cpc_msg cmd;
573 
574 	cmd.type = CPC_CMD_TYPE_CONTROL;
575 	cmd.length = CPC_MSG_HEADER_LEN + 1;
576 
577 	cmd.msgid = 0;
578 
579 	cmd.msg.generic[0] = val;
580 
581 	return ems_usb_command_msg(dev, &cmd);
582 }
583 
584 /*
585  * Start interface
586  */
587 static int ems_usb_start(struct ems_usb *dev)
588 {
589 	struct net_device *netdev = dev->netdev;
590 	int err, i;
591 
592 	dev->intr_in_buffer[0] = 0;
593 	dev->free_slots = 15; /* initial size */
594 
595 	for (i = 0; i < MAX_RX_URBS; i++) {
596 		struct urb *urb = NULL;
597 		u8 *buf = NULL;
598 
599 		/* create a URB, and a buffer for it */
600 		urb = usb_alloc_urb(0, GFP_KERNEL);
601 		if (!urb) {
602 			netdev_err(netdev, "No memory left for URBs\n");
603 			err = -ENOMEM;
604 			break;
605 		}
606 
607 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
608 					 &urb->transfer_dma);
609 		if (!buf) {
610 			netdev_err(netdev, "No memory left for USB buffer\n");
611 			usb_free_urb(urb);
612 			err = -ENOMEM;
613 			break;
614 		}
615 
616 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
617 				  buf, RX_BUFFER_SIZE,
618 				  ems_usb_read_bulk_callback, dev);
619 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
620 		usb_anchor_urb(urb, &dev->rx_submitted);
621 
622 		err = usb_submit_urb(urb, GFP_KERNEL);
623 		if (err) {
624 			usb_unanchor_urb(urb);
625 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
626 					  urb->transfer_dma);
627 			usb_free_urb(urb);
628 			break;
629 		}
630 
631 		/* Drop reference, USB core will take care of freeing it */
632 		usb_free_urb(urb);
633 	}
634 
635 	/* Did we submit any URBs */
636 	if (i == 0) {
637 		netdev_warn(netdev, "couldn't setup read URBs\n");
638 		return err;
639 	}
640 
641 	/* Warn if we've couldn't transmit all the URBs */
642 	if (i < MAX_RX_URBS)
643 		netdev_warn(netdev, "rx performance may be slow\n");
644 
645 	/* Setup and start interrupt URB */
646 	usb_fill_int_urb(dev->intr_urb, dev->udev,
647 			 usb_rcvintpipe(dev->udev, 1),
648 			 dev->intr_in_buffer,
649 			 INTR_IN_BUFFER_SIZE,
650 			 ems_usb_read_interrupt_callback, dev, 1);
651 
652 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
653 	if (err) {
654 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
655 
656 		return err;
657 	}
658 
659 	/* CPC-USB will transfer received message to host */
660 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
661 	if (err)
662 		goto failed;
663 
664 	/* CPC-USB will transfer CAN state changes to host */
665 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
666 	if (err)
667 		goto failed;
668 
669 	/* CPC-USB will transfer bus errors to host */
670 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
671 	if (err)
672 		goto failed;
673 
674 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
675 	if (err)
676 		goto failed;
677 
678 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
679 
680 	return 0;
681 
682 failed:
683 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
684 
685 	return err;
686 }
687 
688 static void unlink_all_urbs(struct ems_usb *dev)
689 {
690 	int i;
691 
692 	usb_unlink_urb(dev->intr_urb);
693 
694 	usb_kill_anchored_urbs(&dev->rx_submitted);
695 
696 	usb_kill_anchored_urbs(&dev->tx_submitted);
697 	atomic_set(&dev->active_tx_urbs, 0);
698 
699 	for (i = 0; i < MAX_TX_URBS; i++)
700 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
701 }
702 
703 static int ems_usb_open(struct net_device *netdev)
704 {
705 	struct ems_usb *dev = netdev_priv(netdev);
706 	int err;
707 
708 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
709 	if (err)
710 		return err;
711 
712 	/* common open */
713 	err = open_candev(netdev);
714 	if (err)
715 		return err;
716 
717 	/* finally start device */
718 	err = ems_usb_start(dev);
719 	if (err) {
720 		if (err == -ENODEV)
721 			netif_device_detach(dev->netdev);
722 
723 		netdev_warn(netdev, "couldn't start device: %d\n", err);
724 
725 		close_candev(netdev);
726 
727 		return err;
728 	}
729 
730 
731 	netif_start_queue(netdev);
732 
733 	return 0;
734 }
735 
736 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
737 {
738 	struct ems_usb *dev = netdev_priv(netdev);
739 	struct ems_tx_urb_context *context = NULL;
740 	struct net_device_stats *stats = &netdev->stats;
741 	struct can_frame *cf = (struct can_frame *)skb->data;
742 	struct ems_cpc_msg *msg;
743 	struct urb *urb;
744 	u8 *buf;
745 	int i, err;
746 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
747 			+ sizeof(struct cpc_can_msg);
748 
749 	if (can_dropped_invalid_skb(netdev, skb))
750 		return NETDEV_TX_OK;
751 
752 	/* create a URB, and a buffer for it, and copy the data to the URB */
753 	urb = usb_alloc_urb(0, GFP_ATOMIC);
754 	if (!urb) {
755 		netdev_err(netdev, "No memory left for URBs\n");
756 		goto nomem;
757 	}
758 
759 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
760 	if (!buf) {
761 		netdev_err(netdev, "No memory left for USB buffer\n");
762 		usb_free_urb(urb);
763 		goto nomem;
764 	}
765 
766 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
767 
768 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
769 	msg->msg.can_msg.length = cf->can_dlc;
770 
771 	if (cf->can_id & CAN_RTR_FLAG) {
772 		msg->type = cf->can_id & CAN_EFF_FLAG ?
773 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
774 
775 		msg->length = CPC_CAN_MSG_MIN_SIZE;
776 	} else {
777 		msg->type = cf->can_id & CAN_EFF_FLAG ?
778 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
779 
780 		for (i = 0; i < cf->can_dlc; i++)
781 			msg->msg.can_msg.msg[i] = cf->data[i];
782 
783 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
784 	}
785 
786 	for (i = 0; i < MAX_TX_URBS; i++) {
787 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
788 			context = &dev->tx_contexts[i];
789 			break;
790 		}
791 	}
792 
793 	/*
794 	 * May never happen! When this happens we'd more URBs in flight as
795 	 * allowed (MAX_TX_URBS).
796 	 */
797 	if (!context) {
798 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
799 		usb_free_urb(urb);
800 
801 		netdev_warn(netdev, "couldn't find free context\n");
802 
803 		return NETDEV_TX_BUSY;
804 	}
805 
806 	context->dev = dev;
807 	context->echo_index = i;
808 	context->dlc = cf->can_dlc;
809 
810 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
811 			  size, ems_usb_write_bulk_callback, context);
812 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
813 	usb_anchor_urb(urb, &dev->tx_submitted);
814 
815 	can_put_echo_skb(skb, netdev, context->echo_index);
816 
817 	atomic_inc(&dev->active_tx_urbs);
818 
819 	err = usb_submit_urb(urb, GFP_ATOMIC);
820 	if (unlikely(err)) {
821 		can_free_echo_skb(netdev, context->echo_index);
822 
823 		usb_unanchor_urb(urb);
824 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
825 		dev_kfree_skb(skb);
826 
827 		atomic_dec(&dev->active_tx_urbs);
828 
829 		if (err == -ENODEV) {
830 			netif_device_detach(netdev);
831 		} else {
832 			netdev_warn(netdev, "failed tx_urb %d\n", err);
833 
834 			stats->tx_dropped++;
835 		}
836 	} else {
837 		netdev->trans_start = jiffies;
838 
839 		/* Slow down tx path */
840 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
841 		    dev->free_slots < 5) {
842 			netif_stop_queue(netdev);
843 		}
844 	}
845 
846 	/*
847 	 * Release our reference to this URB, the USB core will eventually free
848 	 * it entirely.
849 	 */
850 	usb_free_urb(urb);
851 
852 	return NETDEV_TX_OK;
853 
854 nomem:
855 	dev_kfree_skb(skb);
856 	stats->tx_dropped++;
857 
858 	return NETDEV_TX_OK;
859 }
860 
861 static int ems_usb_close(struct net_device *netdev)
862 {
863 	struct ems_usb *dev = netdev_priv(netdev);
864 
865 	/* Stop polling */
866 	unlink_all_urbs(dev);
867 
868 	netif_stop_queue(netdev);
869 
870 	/* Set CAN controller to reset mode */
871 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
872 		netdev_warn(netdev, "couldn't stop device");
873 
874 	close_candev(netdev);
875 
876 	return 0;
877 }
878 
879 static const struct net_device_ops ems_usb_netdev_ops = {
880 	.ndo_open = ems_usb_open,
881 	.ndo_stop = ems_usb_close,
882 	.ndo_start_xmit = ems_usb_start_xmit,
883 	.ndo_change_mtu = can_change_mtu,
884 };
885 
886 static const struct can_bittiming_const ems_usb_bittiming_const = {
887 	.name = "ems_usb",
888 	.tseg1_min = 1,
889 	.tseg1_max = 16,
890 	.tseg2_min = 1,
891 	.tseg2_max = 8,
892 	.sjw_max = 4,
893 	.brp_min = 1,
894 	.brp_max = 64,
895 	.brp_inc = 1,
896 };
897 
898 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
899 {
900 	struct ems_usb *dev = netdev_priv(netdev);
901 
902 	switch (mode) {
903 	case CAN_MODE_START:
904 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
905 			netdev_warn(netdev, "couldn't start device");
906 
907 		if (netif_queue_stopped(netdev))
908 			netif_wake_queue(netdev);
909 		break;
910 
911 	default:
912 		return -EOPNOTSUPP;
913 	}
914 
915 	return 0;
916 }
917 
918 static int ems_usb_set_bittiming(struct net_device *netdev)
919 {
920 	struct ems_usb *dev = netdev_priv(netdev);
921 	struct can_bittiming *bt = &dev->can.bittiming;
922 	u8 btr0, btr1;
923 
924 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
925 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
926 		(((bt->phase_seg2 - 1) & 0x7) << 4);
927 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
928 		btr1 |= 0x80;
929 
930 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
931 
932 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
933 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
934 
935 	return ems_usb_command_msg(dev, &dev->active_params);
936 }
937 
938 static void init_params_sja1000(struct ems_cpc_msg *msg)
939 {
940 	struct cpc_sja1000_params *sja1000 =
941 		&msg->msg.can_params.cc_params.sja1000;
942 
943 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
944 	msg->length = sizeof(struct cpc_can_params);
945 	msg->msgid = 0;
946 
947 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
948 
949 	/* Acceptance filter open */
950 	sja1000->acc_code0 = 0x00;
951 	sja1000->acc_code1 = 0x00;
952 	sja1000->acc_code2 = 0x00;
953 	sja1000->acc_code3 = 0x00;
954 
955 	/* Acceptance filter open */
956 	sja1000->acc_mask0 = 0xFF;
957 	sja1000->acc_mask1 = 0xFF;
958 	sja1000->acc_mask2 = 0xFF;
959 	sja1000->acc_mask3 = 0xFF;
960 
961 	sja1000->btr0 = 0;
962 	sja1000->btr1 = 0;
963 
964 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
965 	sja1000->mode = SJA1000_MOD_RM;
966 }
967 
968 /*
969  * probe function for new CPC-USB devices
970  */
971 static int ems_usb_probe(struct usb_interface *intf,
972 			 const struct usb_device_id *id)
973 {
974 	struct net_device *netdev;
975 	struct ems_usb *dev;
976 	int i, err = -ENOMEM;
977 
978 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
979 	if (!netdev) {
980 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
981 		return -ENOMEM;
982 	}
983 
984 	dev = netdev_priv(netdev);
985 
986 	dev->udev = interface_to_usbdev(intf);
987 	dev->netdev = netdev;
988 
989 	dev->can.state = CAN_STATE_STOPPED;
990 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
991 	dev->can.bittiming_const = &ems_usb_bittiming_const;
992 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
993 	dev->can.do_set_mode = ems_usb_set_mode;
994 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
995 
996 	netdev->netdev_ops = &ems_usb_netdev_ops;
997 
998 	netdev->flags |= IFF_ECHO; /* we support local echo */
999 
1000 	init_usb_anchor(&dev->rx_submitted);
1001 
1002 	init_usb_anchor(&dev->tx_submitted);
1003 	atomic_set(&dev->active_tx_urbs, 0);
1004 
1005 	for (i = 0; i < MAX_TX_URBS; i++)
1006 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1007 
1008 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1009 	if (!dev->intr_urb) {
1010 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1011 		goto cleanup_candev;
1012 	}
1013 
1014 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1015 	if (!dev->intr_in_buffer)
1016 		goto cleanup_intr_urb;
1017 
1018 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1019 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1020 	if (!dev->tx_msg_buffer)
1021 		goto cleanup_intr_in_buffer;
1022 
1023 	usb_set_intfdata(intf, dev);
1024 
1025 	SET_NETDEV_DEV(netdev, &intf->dev);
1026 
1027 	init_params_sja1000(&dev->active_params);
1028 
1029 	err = ems_usb_command_msg(dev, &dev->active_params);
1030 	if (err) {
1031 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1032 		goto cleanup_tx_msg_buffer;
1033 	}
1034 
1035 	err = register_candev(netdev);
1036 	if (err) {
1037 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1038 		goto cleanup_tx_msg_buffer;
1039 	}
1040 
1041 	return 0;
1042 
1043 cleanup_tx_msg_buffer:
1044 	kfree(dev->tx_msg_buffer);
1045 
1046 cleanup_intr_in_buffer:
1047 	kfree(dev->intr_in_buffer);
1048 
1049 cleanup_intr_urb:
1050 	usb_free_urb(dev->intr_urb);
1051 
1052 cleanup_candev:
1053 	free_candev(netdev);
1054 
1055 	return err;
1056 }
1057 
1058 /*
1059  * called by the usb core when the device is removed from the system
1060  */
1061 static void ems_usb_disconnect(struct usb_interface *intf)
1062 {
1063 	struct ems_usb *dev = usb_get_intfdata(intf);
1064 
1065 	usb_set_intfdata(intf, NULL);
1066 
1067 	if (dev) {
1068 		unregister_netdev(dev->netdev);
1069 		free_candev(dev->netdev);
1070 
1071 		unlink_all_urbs(dev);
1072 
1073 		usb_free_urb(dev->intr_urb);
1074 
1075 		kfree(dev->intr_in_buffer);
1076 	}
1077 }
1078 
1079 /* usb specific object needed to register this driver with the usb subsystem */
1080 static struct usb_driver ems_usb_driver = {
1081 	.name = "ems_usb",
1082 	.probe = ems_usb_probe,
1083 	.disconnect = ems_usb_disconnect,
1084 	.id_table = ems_usb_table,
1085 };
1086 
1087 module_usb_driver(ems_usb_driver);
1088