1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // mcp251xfd - Microchip MCP251xFD Family CAN controller driver 4 // 5 // Copyright (c) 2019, 2020, 2021 Pengutronix, 6 // Marc Kleine-Budde <kernel@pengutronix.de> 7 // 8 // Based on: 9 // 10 // CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface 11 // 12 // Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org> 13 // 14 15 #include <asm/unaligned.h> 16 17 #include "mcp251xfd.h" 18 #include "mcp251xfd-ram.h" 19 20 static inline u8 21 mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv, 22 union mcp251xfd_write_reg_buf *write_reg_buf, 23 const u16 reg, const u32 mask, const u32 val) 24 { 25 u8 first_byte, last_byte, len; 26 u8 *data; 27 __le32 val_le32; 28 29 first_byte = mcp251xfd_first_byte_set(mask); 30 last_byte = mcp251xfd_last_byte_set(mask); 31 len = last_byte - first_byte + 1; 32 33 data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte, len); 34 val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte); 35 memcpy(data, &val_le32, len); 36 37 if (!(priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG)) { 38 len += sizeof(write_reg_buf->nocrc.cmd); 39 } else if (len == 1) { 40 u16 crc; 41 42 /* CRC */ 43 len += sizeof(write_reg_buf->safe.cmd); 44 crc = mcp251xfd_crc16_compute(&write_reg_buf->safe, len); 45 put_unaligned_be16(crc, (void *)write_reg_buf + len); 46 47 /* Total length */ 48 len += sizeof(write_reg_buf->safe.crc); 49 } else { 50 u16 crc; 51 52 mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd, 53 len); 54 /* CRC */ 55 len += sizeof(write_reg_buf->crc.cmd); 56 crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len); 57 put_unaligned_be16(crc, (void *)write_reg_buf + len); 58 59 /* Total length */ 60 len += sizeof(write_reg_buf->crc.crc); 61 } 62 63 return len; 64 } 65 66 static void 67 mcp251xfd_ring_init_tef(struct mcp251xfd_priv *priv, u16 *base) 68 { 69 struct mcp251xfd_tef_ring *tef_ring; 70 struct spi_transfer *xfer; 71 u32 val; 72 u16 addr; 73 u8 len; 74 int i; 75 76 /* TEF */ 77 tef_ring = priv->tef; 78 tef_ring->head = 0; 79 tef_ring->tail = 0; 80 81 /* TEF- and TX-FIFO have same number of objects */ 82 *base = mcp251xfd_get_tef_obj_addr(priv->tx->obj_num); 83 84 /* FIFO IRQ enable */ 85 addr = MCP251XFD_REG_TEFCON; 86 val = MCP251XFD_REG_TEFCON_TEFOVIE | MCP251XFD_REG_TEFCON_TEFNEIE; 87 88 len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->irq_enable_buf, 89 addr, val, val); 90 tef_ring->irq_enable_xfer.tx_buf = &tef_ring->irq_enable_buf; 91 tef_ring->irq_enable_xfer.len = len; 92 spi_message_init_with_transfers(&tef_ring->irq_enable_msg, 93 &tef_ring->irq_enable_xfer, 1); 94 95 /* FIFO increment TEF tail pointer */ 96 addr = MCP251XFD_REG_TEFCON; 97 val = MCP251XFD_REG_TEFCON_UINC; 98 len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf, 99 addr, val, val); 100 101 for (i = 0; i < ARRAY_SIZE(tef_ring->uinc_xfer); i++) { 102 xfer = &tef_ring->uinc_xfer[i]; 103 xfer->tx_buf = &tef_ring->uinc_buf; 104 xfer->len = len; 105 xfer->cs_change = 1; 106 xfer->cs_change_delay.value = 0; 107 xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; 108 } 109 110 /* "cs_change == 1" on the last transfer results in an active 111 * chip select after the complete SPI message. This causes the 112 * controller to interpret the next register access as 113 * data. Set "cs_change" of the last transfer to "0" to 114 * properly deactivate the chip select at the end of the 115 * message. 116 */ 117 xfer->cs_change = 0; 118 119 if (priv->tx_coalesce_usecs_irq || priv->tx_obj_num_coalesce_irq) { 120 val = MCP251XFD_REG_TEFCON_UINC | 121 MCP251XFD_REG_TEFCON_TEFOVIE | 122 MCP251XFD_REG_TEFCON_TEFHIE; 123 124 len = mcp251xfd_cmd_prepare_write_reg(priv, 125 &tef_ring->uinc_irq_disable_buf, 126 addr, val, val); 127 xfer->tx_buf = &tef_ring->uinc_irq_disable_buf; 128 xfer->len = len; 129 } 130 } 131 132 static void 133 mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv, 134 const struct mcp251xfd_tx_ring *ring, 135 struct mcp251xfd_tx_obj *tx_obj, 136 const u8 rts_buf_len, 137 const u8 n) 138 { 139 struct spi_transfer *xfer; 140 u16 addr; 141 142 /* FIFO load */ 143 addr = mcp251xfd_get_tx_obj_addr(ring, n); 144 if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX) 145 mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd, 146 addr); 147 else 148 mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd, 149 addr); 150 151 xfer = &tx_obj->xfer[0]; 152 xfer->tx_buf = &tx_obj->buf; 153 xfer->len = 0; /* actual len is assigned on the fly */ 154 xfer->cs_change = 1; 155 xfer->cs_change_delay.value = 0; 156 xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; 157 158 /* FIFO request to send */ 159 xfer = &tx_obj->xfer[1]; 160 xfer->tx_buf = &ring->rts_buf; 161 xfer->len = rts_buf_len; 162 163 /* SPI message */ 164 spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer, 165 ARRAY_SIZE(tx_obj->xfer)); 166 } 167 168 static void 169 mcp251xfd_ring_init_tx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr) 170 { 171 struct mcp251xfd_tx_ring *tx_ring; 172 struct mcp251xfd_tx_obj *tx_obj; 173 u32 val; 174 u16 addr; 175 u8 len; 176 int i; 177 178 tx_ring = priv->tx; 179 tx_ring->head = 0; 180 tx_ring->tail = 0; 181 tx_ring->base = *base; 182 tx_ring->nr = 0; 183 tx_ring->fifo_nr = *fifo_nr; 184 185 *base = mcp251xfd_get_tx_obj_addr(tx_ring, tx_ring->obj_num); 186 *fifo_nr += 1; 187 188 /* FIFO request to send */ 189 addr = MCP251XFD_REG_FIFOCON(tx_ring->fifo_nr); 190 val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC; 191 len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf, 192 addr, val, val); 193 194 mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i) 195 mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i); 196 } 197 198 static void 199 mcp251xfd_ring_init_rx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr) 200 { 201 struct mcp251xfd_rx_ring *rx_ring; 202 struct spi_transfer *xfer; 203 u32 val; 204 u16 addr; 205 u8 len; 206 int i, j; 207 208 mcp251xfd_for_each_rx_ring(priv, rx_ring, i) { 209 rx_ring->head = 0; 210 rx_ring->tail = 0; 211 rx_ring->base = *base; 212 rx_ring->nr = i; 213 rx_ring->fifo_nr = *fifo_nr; 214 215 *base = mcp251xfd_get_rx_obj_addr(rx_ring, rx_ring->obj_num); 216 *fifo_nr += 1; 217 218 /* FIFO IRQ enable */ 219 addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr); 220 val = MCP251XFD_REG_FIFOCON_RXOVIE | 221 MCP251XFD_REG_FIFOCON_TFNRFNIE; 222 len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->irq_enable_buf, 223 addr, val, val); 224 rx_ring->irq_enable_xfer.tx_buf = &rx_ring->irq_enable_buf; 225 rx_ring->irq_enable_xfer.len = len; 226 spi_message_init_with_transfers(&rx_ring->irq_enable_msg, 227 &rx_ring->irq_enable_xfer, 1); 228 229 /* FIFO increment RX tail pointer */ 230 val = MCP251XFD_REG_FIFOCON_UINC; 231 len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf, 232 addr, val, val); 233 234 for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) { 235 xfer = &rx_ring->uinc_xfer[j]; 236 xfer->tx_buf = &rx_ring->uinc_buf; 237 xfer->len = len; 238 xfer->cs_change = 1; 239 xfer->cs_change_delay.value = 0; 240 xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; 241 } 242 243 /* "cs_change == 1" on the last transfer results in an 244 * active chip select after the complete SPI 245 * message. This causes the controller to interpret 246 * the next register access as data. Set "cs_change" 247 * of the last transfer to "0" to properly deactivate 248 * the chip select at the end of the message. 249 */ 250 xfer->cs_change = 0; 251 252 /* Use 1st RX-FIFO for IRQ coalescing. If enabled 253 * (rx_coalesce_usecs_irq or rx_max_coalesce_frames_irq 254 * is activated), use the last transfer to disable: 255 * 256 * - TFNRFNIE (Receive FIFO Not Empty Interrupt) 257 * 258 * and enable: 259 * 260 * - TFHRFHIE (Receive FIFO Half Full Interrupt) 261 * - or - 262 * - TFERFFIE (Receive FIFO Full Interrupt) 263 * 264 * depending on rx_max_coalesce_frames_irq. 265 * 266 * The RXOVIE (Overflow Interrupt) is always enabled. 267 */ 268 if (rx_ring->nr == 0 && (priv->rx_coalesce_usecs_irq || 269 priv->rx_obj_num_coalesce_irq)) { 270 val = MCP251XFD_REG_FIFOCON_UINC | 271 MCP251XFD_REG_FIFOCON_RXOVIE; 272 273 if (priv->rx_obj_num_coalesce_irq == rx_ring->obj_num) 274 val |= MCP251XFD_REG_FIFOCON_TFERFFIE; 275 else if (priv->rx_obj_num_coalesce_irq) 276 val |= MCP251XFD_REG_FIFOCON_TFHRFHIE; 277 278 len = mcp251xfd_cmd_prepare_write_reg(priv, 279 &rx_ring->uinc_irq_disable_buf, 280 addr, val, val); 281 xfer->tx_buf = &rx_ring->uinc_irq_disable_buf; 282 xfer->len = len; 283 } 284 } 285 } 286 287 int mcp251xfd_ring_init(struct mcp251xfd_priv *priv) 288 { 289 const struct mcp251xfd_rx_ring *rx_ring; 290 u16 base = 0, ram_used; 291 u8 fifo_nr = 1; 292 int i; 293 294 netdev_reset_queue(priv->ndev); 295 296 mcp251xfd_ring_init_tef(priv, &base); 297 mcp251xfd_ring_init_rx(priv, &base, &fifo_nr); 298 mcp251xfd_ring_init_tx(priv, &base, &fifo_nr); 299 300 /* mcp251xfd_handle_rxif() will iterate over all RX rings. 301 * Rings with their corresponding bit set in 302 * priv->regs_status.rxif are read out. 303 * 304 * If the chip is configured for only 1 RX-FIFO, and if there 305 * is an RX interrupt pending (RXIF in INT register is set), 306 * it must be the 1st RX-FIFO. 307 * 308 * We mark the RXIF of the 1st FIFO as pending here, so that 309 * we can skip the read of the RXIF register in 310 * mcp251xfd_read_regs_status() for the 1 RX-FIFO only case. 311 * 312 * If we use more than 1 RX-FIFO, this value gets overwritten 313 * in mcp251xfd_read_regs_status(), so set it unconditionally 314 * here. 315 */ 316 priv->regs_status.rxif = BIT(priv->rx[0]->fifo_nr); 317 318 if (priv->tx_obj_num_coalesce_irq) { 319 netdev_dbg(priv->ndev, 320 "FIFO setup: TEF: 0x%03x: %2d*%zu bytes = %4zu bytes (coalesce)\n", 321 mcp251xfd_get_tef_obj_addr(0), 322 priv->tx_obj_num_coalesce_irq, 323 sizeof(struct mcp251xfd_hw_tef_obj), 324 priv->tx_obj_num_coalesce_irq * 325 sizeof(struct mcp251xfd_hw_tef_obj)); 326 327 netdev_dbg(priv->ndev, 328 " 0x%03x: %2d*%zu bytes = %4zu bytes\n", 329 mcp251xfd_get_tef_obj_addr(priv->tx_obj_num_coalesce_irq), 330 priv->tx->obj_num - priv->tx_obj_num_coalesce_irq, 331 sizeof(struct mcp251xfd_hw_tef_obj), 332 (priv->tx->obj_num - priv->tx_obj_num_coalesce_irq) * 333 sizeof(struct mcp251xfd_hw_tef_obj)); 334 } else { 335 netdev_dbg(priv->ndev, 336 "FIFO setup: TEF: 0x%03x: %2d*%zu bytes = %4zu bytes\n", 337 mcp251xfd_get_tef_obj_addr(0), 338 priv->tx->obj_num, sizeof(struct mcp251xfd_hw_tef_obj), 339 priv->tx->obj_num * sizeof(struct mcp251xfd_hw_tef_obj)); 340 } 341 342 mcp251xfd_for_each_rx_ring(priv, rx_ring, i) { 343 if (rx_ring->nr == 0 && priv->rx_obj_num_coalesce_irq) { 344 netdev_dbg(priv->ndev, 345 "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes (coalesce)\n", 346 rx_ring->nr, rx_ring->fifo_nr, 347 mcp251xfd_get_rx_obj_addr(rx_ring, 0), 348 priv->rx_obj_num_coalesce_irq, rx_ring->obj_size, 349 priv->rx_obj_num_coalesce_irq * rx_ring->obj_size); 350 351 if (priv->rx_obj_num_coalesce_irq == MCP251XFD_FIFO_DEPTH) 352 continue; 353 354 netdev_dbg(priv->ndev, 355 " 0x%03x: %2u*%u bytes = %4u bytes\n", 356 mcp251xfd_get_rx_obj_addr(rx_ring, 357 priv->rx_obj_num_coalesce_irq), 358 rx_ring->obj_num - priv->rx_obj_num_coalesce_irq, 359 rx_ring->obj_size, 360 (rx_ring->obj_num - priv->rx_obj_num_coalesce_irq) * 361 rx_ring->obj_size); 362 } else { 363 netdev_dbg(priv->ndev, 364 "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n", 365 rx_ring->nr, rx_ring->fifo_nr, 366 mcp251xfd_get_rx_obj_addr(rx_ring, 0), 367 rx_ring->obj_num, rx_ring->obj_size, 368 rx_ring->obj_num * rx_ring->obj_size); 369 } 370 } 371 372 netdev_dbg(priv->ndev, 373 "FIFO setup: TX: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n", 374 priv->tx->fifo_nr, 375 mcp251xfd_get_tx_obj_addr(priv->tx, 0), 376 priv->tx->obj_num, priv->tx->obj_size, 377 priv->tx->obj_num * priv->tx->obj_size); 378 379 netdev_dbg(priv->ndev, 380 "FIFO setup: free: %4d bytes\n", 381 MCP251XFD_RAM_SIZE - (base - MCP251XFD_RAM_START)); 382 383 ram_used = base - MCP251XFD_RAM_START; 384 if (ram_used > MCP251XFD_RAM_SIZE) { 385 netdev_err(priv->ndev, 386 "Error during ring configuration, using more RAM (%u bytes) than available (%u bytes).\n", 387 ram_used, MCP251XFD_RAM_SIZE); 388 return -ENOMEM; 389 } 390 391 return 0; 392 } 393 394 void mcp251xfd_ring_free(struct mcp251xfd_priv *priv) 395 { 396 int i; 397 398 for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) { 399 kfree(priv->rx[i]); 400 priv->rx[i] = NULL; 401 } 402 } 403 404 static enum hrtimer_restart mcp251xfd_rx_irq_timer(struct hrtimer *t) 405 { 406 struct mcp251xfd_priv *priv = container_of(t, struct mcp251xfd_priv, 407 rx_irq_timer); 408 struct mcp251xfd_rx_ring *ring = priv->rx[0]; 409 410 if (test_bit(MCP251XFD_FLAGS_DOWN, priv->flags)) 411 return HRTIMER_NORESTART; 412 413 spi_async(priv->spi, &ring->irq_enable_msg); 414 415 return HRTIMER_NORESTART; 416 } 417 418 static enum hrtimer_restart mcp251xfd_tx_irq_timer(struct hrtimer *t) 419 { 420 struct mcp251xfd_priv *priv = container_of(t, struct mcp251xfd_priv, 421 tx_irq_timer); 422 struct mcp251xfd_tef_ring *ring = priv->tef; 423 424 if (test_bit(MCP251XFD_FLAGS_DOWN, priv->flags)) 425 return HRTIMER_NORESTART; 426 427 spi_async(priv->spi, &ring->irq_enable_msg); 428 429 return HRTIMER_NORESTART; 430 } 431 432 const struct can_ram_config mcp251xfd_ram_config = { 433 .rx = { 434 .size[CAN_RAM_MODE_CAN] = sizeof(struct mcp251xfd_hw_rx_obj_can), 435 .size[CAN_RAM_MODE_CANFD] = sizeof(struct mcp251xfd_hw_rx_obj_canfd), 436 .min = MCP251XFD_RX_OBJ_NUM_MIN, 437 .max = MCP251XFD_RX_OBJ_NUM_MAX, 438 .def[CAN_RAM_MODE_CAN] = CAN_RAM_NUM_MAX, 439 .def[CAN_RAM_MODE_CANFD] = CAN_RAM_NUM_MAX, 440 .fifo_num = MCP251XFD_FIFO_RX_NUM, 441 .fifo_depth_min = MCP251XFD_RX_FIFO_DEPTH_MIN, 442 .fifo_depth_coalesce_min = MCP251XFD_RX_FIFO_DEPTH_COALESCE_MIN, 443 }, 444 .tx = { 445 .size[CAN_RAM_MODE_CAN] = sizeof(struct mcp251xfd_hw_tef_obj) + 446 sizeof(struct mcp251xfd_hw_tx_obj_can), 447 .size[CAN_RAM_MODE_CANFD] = sizeof(struct mcp251xfd_hw_tef_obj) + 448 sizeof(struct mcp251xfd_hw_tx_obj_canfd), 449 .min = MCP251XFD_TX_OBJ_NUM_MIN, 450 .max = MCP251XFD_TX_OBJ_NUM_MAX, 451 .def[CAN_RAM_MODE_CAN] = MCP251XFD_TX_OBJ_NUM_CAN_DEFAULT, 452 .def[CAN_RAM_MODE_CANFD] = MCP251XFD_TX_OBJ_NUM_CANFD_DEFAULT, 453 .fifo_num = MCP251XFD_FIFO_TX_NUM, 454 .fifo_depth_min = MCP251XFD_TX_FIFO_DEPTH_MIN, 455 .fifo_depth_coalesce_min = MCP251XFD_TX_FIFO_DEPTH_COALESCE_MIN, 456 }, 457 .size = MCP251XFD_RAM_SIZE, 458 .fifo_depth = MCP251XFD_FIFO_DEPTH, 459 }; 460 461 int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv) 462 { 463 const bool fd_mode = mcp251xfd_is_fd_mode(priv); 464 struct mcp251xfd_tx_ring *tx_ring = priv->tx; 465 struct mcp251xfd_rx_ring *rx_ring; 466 u8 tx_obj_size, rx_obj_size; 467 u8 rem, i; 468 469 /* switching from CAN-2.0 to CAN-FD mode or vice versa */ 470 if (fd_mode != test_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags)) { 471 struct can_ram_layout layout; 472 473 can_ram_get_layout(&layout, &mcp251xfd_ram_config, NULL, NULL, fd_mode); 474 priv->rx_obj_num = layout.default_rx; 475 tx_ring->obj_num = layout.default_tx; 476 } 477 478 if (fd_mode) { 479 tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd); 480 rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd); 481 set_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags); 482 } else { 483 tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can); 484 rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can); 485 clear_bit(MCP251XFD_FLAGS_FD_MODE, priv->flags); 486 } 487 488 tx_ring->obj_num_shift_to_u8 = BITS_PER_TYPE(tx_ring->obj_num) - 489 ilog2(tx_ring->obj_num); 490 tx_ring->obj_size = tx_obj_size; 491 492 rem = priv->rx_obj_num; 493 for (i = 0; i < ARRAY_SIZE(priv->rx) && rem; i++) { 494 u8 rx_obj_num; 495 496 if (i == 0 && priv->rx_obj_num_coalesce_irq) 497 rx_obj_num = min_t(u8, priv->rx_obj_num_coalesce_irq * 2, 498 MCP251XFD_FIFO_DEPTH); 499 else 500 rx_obj_num = min_t(u8, rounddown_pow_of_two(rem), 501 MCP251XFD_FIFO_DEPTH); 502 rem -= rx_obj_num; 503 504 rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num, 505 GFP_KERNEL); 506 if (!rx_ring) { 507 mcp251xfd_ring_free(priv); 508 return -ENOMEM; 509 } 510 511 rx_ring->obj_num = rx_obj_num; 512 rx_ring->obj_size = rx_obj_size; 513 priv->rx[i] = rx_ring; 514 } 515 priv->rx_ring_num = i; 516 517 hrtimer_init(&priv->rx_irq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 518 priv->rx_irq_timer.function = mcp251xfd_rx_irq_timer; 519 520 hrtimer_init(&priv->tx_irq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 521 priv->tx_irq_timer.function = mcp251xfd_tx_irq_timer; 522 523 return 0; 524 } 525