xref: /openbmc/linux/drivers/net/can/spi/mcp251x.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/clk.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/device.h>
29 #include <linux/ethtool.h>
30 #include <linux/freezer.h>
31 #include <linux/gpio.h>
32 #include <linux/gpio/driver.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/netdevice.h>
39 #include <linux/platform_device.h>
40 #include <linux/property.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/slab.h>
43 #include <linux/spi/spi.h>
44 #include <linux/uaccess.h>
45 
46 /* SPI interface instruction set */
47 #define INSTRUCTION_WRITE	0x02
48 #define INSTRUCTION_READ	0x03
49 #define INSTRUCTION_BIT_MODIFY	0x05
50 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
51 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
52 #define INSTRUCTION_RESET	0xC0
53 #define RTS_TXB0		0x01
54 #define RTS_TXB1		0x02
55 #define RTS_TXB2		0x04
56 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
57 
58 /* MPC251x registers */
59 #define BFPCTRL			0x0c
60 #  define BFPCTRL_B0BFM		BIT(0)
61 #  define BFPCTRL_B1BFM		BIT(1)
62 #  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
63 #  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
64 #  define BFPCTRL_B0BFE		BIT(2)
65 #  define BFPCTRL_B1BFE		BIT(3)
66 #  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
67 #  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
68 #  define BFPCTRL_B0BFS		BIT(4)
69 #  define BFPCTRL_B1BFS		BIT(5)
70 #  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
71 #  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
72 #define TXRTSCTRL		0x0d
73 #  define TXRTSCTRL_B0RTSM	BIT(0)
74 #  define TXRTSCTRL_B1RTSM	BIT(1)
75 #  define TXRTSCTRL_B2RTSM	BIT(2)
76 #  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
77 #  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
78 #  define TXRTSCTRL_B0RTS	BIT(3)
79 #  define TXRTSCTRL_B1RTS	BIT(4)
80 #  define TXRTSCTRL_B2RTS	BIT(5)
81 #  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
82 #  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
83 #define CANSTAT	      0x0e
84 #define CANCTRL	      0x0f
85 #  define CANCTRL_REQOP_MASK	    0xe0
86 #  define CANCTRL_REQOP_CONF	    0x80
87 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
88 #  define CANCTRL_REQOP_LOOPBACK    0x40
89 #  define CANCTRL_REQOP_SLEEP	    0x20
90 #  define CANCTRL_REQOP_NORMAL	    0x00
91 #  define CANCTRL_OSM		    0x08
92 #  define CANCTRL_ABAT		    0x10
93 #define TEC	      0x1c
94 #define REC	      0x1d
95 #define CNF1	      0x2a
96 #  define CNF1_SJW_SHIFT   6
97 #define CNF2	      0x29
98 #  define CNF2_BTLMODE	   0x80
99 #  define CNF2_SAM         0x40
100 #  define CNF2_PS1_SHIFT   3
101 #define CNF3	      0x28
102 #  define CNF3_SOF	   0x08
103 #  define CNF3_WAKFIL	   0x04
104 #  define CNF3_PHSEG2_MASK 0x07
105 #define CANINTE	      0x2b
106 #  define CANINTE_MERRE 0x80
107 #  define CANINTE_WAKIE 0x40
108 #  define CANINTE_ERRIE 0x20
109 #  define CANINTE_TX2IE 0x10
110 #  define CANINTE_TX1IE 0x08
111 #  define CANINTE_TX0IE 0x04
112 #  define CANINTE_RX1IE 0x02
113 #  define CANINTE_RX0IE 0x01
114 #define CANINTF	      0x2c
115 #  define CANINTF_MERRF 0x80
116 #  define CANINTF_WAKIF 0x40
117 #  define CANINTF_ERRIF 0x20
118 #  define CANINTF_TX2IF 0x10
119 #  define CANINTF_TX1IF 0x08
120 #  define CANINTF_TX0IF 0x04
121 #  define CANINTF_RX1IF 0x02
122 #  define CANINTF_RX0IF 0x01
123 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
124 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
125 #  define CANINTF_ERR (CANINTF_ERRIF)
126 #define EFLG	      0x2d
127 #  define EFLG_EWARN	0x01
128 #  define EFLG_RXWAR	0x02
129 #  define EFLG_TXWAR	0x04
130 #  define EFLG_RXEP	0x08
131 #  define EFLG_TXEP	0x10
132 #  define EFLG_TXBO	0x20
133 #  define EFLG_RX0OVR	0x40
134 #  define EFLG_RX1OVR	0x80
135 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
136 #  define TXBCTRL_ABTF	0x40
137 #  define TXBCTRL_MLOA	0x20
138 #  define TXBCTRL_TXERR 0x10
139 #  define TXBCTRL_TXREQ 0x08
140 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
141 #  define SIDH_SHIFT    3
142 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
143 #  define SIDL_SID_MASK    7
144 #  define SIDL_SID_SHIFT   5
145 #  define SIDL_EXIDE_SHIFT 3
146 #  define SIDL_EID_SHIFT   16
147 #  define SIDL_EID_MASK    3
148 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
149 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
150 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
151 #  define DLC_RTR_SHIFT    6
152 #define TXBCTRL_OFF 0
153 #define TXBSIDH_OFF 1
154 #define TXBSIDL_OFF 2
155 #define TXBEID8_OFF 3
156 #define TXBEID0_OFF 4
157 #define TXBDLC_OFF  5
158 #define TXBDAT_OFF  6
159 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
160 #  define RXBCTRL_BUKT	0x04
161 #  define RXBCTRL_RXM0	0x20
162 #  define RXBCTRL_RXM1	0x40
163 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
164 #  define RXBSIDH_SHIFT 3
165 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
166 #  define RXBSIDL_IDE   0x08
167 #  define RXBSIDL_SRR   0x10
168 #  define RXBSIDL_EID   3
169 #  define RXBSIDL_SHIFT 5
170 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
171 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
172 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
173 #  define RXBDLC_LEN_MASK  0x0f
174 #  define RXBDLC_RTR       0x40
175 #define RXBCTRL_OFF 0
176 #define RXBSIDH_OFF 1
177 #define RXBSIDL_OFF 2
178 #define RXBEID8_OFF 3
179 #define RXBEID0_OFF 4
180 #define RXBDLC_OFF  5
181 #define RXBDAT_OFF  6
182 #define RXFSID(n) ((n < 3) ? 0 : 4)
183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187 #define RXMSIDH(n) ((n) * 4 + 0x20)
188 #define RXMSIDL(n) ((n) * 4 + 0x21)
189 #define RXMEID8(n) ((n) * 4 + 0x22)
190 #define RXMEID0(n) ((n) * 4 + 0x23)
191 
192 #define GET_BYTE(val, byte)			\
193 	(((val) >> ((byte) * 8)) & 0xff)
194 #define SET_BYTE(val, byte)			\
195 	(((val) & 0xff) << ((byte) * 8))
196 
197 /* Buffer size required for the largest SPI transfer (i.e., reading a
198  * frame)
199  */
200 #define CAN_FRAME_MAX_DATA_LEN	8
201 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
202 #define CAN_FRAME_MAX_BITS	128
203 
204 #define TX_ECHO_SKB_MAX	1
205 
206 #define MCP251X_OST_DELAY_MS	(5)
207 
208 #define DEVICE_NAME "mcp251x"
209 
210 static const struct can_bittiming_const mcp251x_bittiming_const = {
211 	.name = DEVICE_NAME,
212 	.tseg1_min = 3,
213 	.tseg1_max = 16,
214 	.tseg2_min = 2,
215 	.tseg2_max = 8,
216 	.sjw_max = 4,
217 	.brp_min = 1,
218 	.brp_max = 64,
219 	.brp_inc = 1,
220 };
221 
222 enum mcp251x_model {
223 	CAN_MCP251X_MCP2510	= 0x2510,
224 	CAN_MCP251X_MCP2515	= 0x2515,
225 	CAN_MCP251X_MCP25625	= 0x25625,
226 };
227 
228 struct mcp251x_priv {
229 	struct can_priv	   can;
230 	struct net_device *net;
231 	struct spi_device *spi;
232 	enum mcp251x_model model;
233 
234 	struct mutex mcp_lock; /* SPI device lock */
235 
236 	u8 *spi_tx_buf;
237 	u8 *spi_rx_buf;
238 
239 	struct sk_buff *tx_skb;
240 
241 	struct workqueue_struct *wq;
242 	struct work_struct tx_work;
243 	struct work_struct restart_work;
244 
245 	int force_quit;
246 	int after_suspend;
247 #define AFTER_SUSPEND_UP 1
248 #define AFTER_SUSPEND_DOWN 2
249 #define AFTER_SUSPEND_POWER 4
250 #define AFTER_SUSPEND_RESTART 8
251 	int restart_tx;
252 	bool tx_busy;
253 
254 	struct regulator *power;
255 	struct regulator *transceiver;
256 	struct clk *clk;
257 #ifdef CONFIG_GPIOLIB
258 	struct gpio_chip gpio;
259 	u8 reg_bfpctrl;
260 #endif
261 };
262 
263 #define MCP251X_IS(_model) \
264 static inline int mcp251x_is_##_model(struct spi_device *spi) \
265 { \
266 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
267 	return priv->model == CAN_MCP251X_MCP##_model; \
268 }
269 
270 MCP251X_IS(2510);
271 
272 static void mcp251x_clean(struct net_device *net)
273 {
274 	struct mcp251x_priv *priv = netdev_priv(net);
275 
276 	if (priv->tx_skb || priv->tx_busy)
277 		net->stats.tx_errors++;
278 	dev_kfree_skb(priv->tx_skb);
279 	if (priv->tx_busy)
280 		can_free_echo_skb(priv->net, 0, NULL);
281 	priv->tx_skb = NULL;
282 	priv->tx_busy = false;
283 }
284 
285 /* Note about handling of error return of mcp251x_spi_trans: accessing
286  * registers via SPI is not really different conceptually than using
287  * normal I/O assembler instructions, although it's much more
288  * complicated from a practical POV. So it's not advisable to always
289  * check the return value of this function. Imagine that every
290  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
291  * error();", it would be a great mess (well there are some situation
292  * when exception handling C++ like could be useful after all). So we
293  * just check that transfers are OK at the beginning of our
294  * conversation with the chip and to avoid doing really nasty things
295  * (like injecting bogus packets in the network stack).
296  */
297 static int mcp251x_spi_trans(struct spi_device *spi, int len)
298 {
299 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
300 	struct spi_transfer t = {
301 		.tx_buf = priv->spi_tx_buf,
302 		.rx_buf = priv->spi_rx_buf,
303 		.len = len,
304 		.cs_change = 0,
305 	};
306 	struct spi_message m;
307 	int ret;
308 
309 	spi_message_init(&m);
310 	spi_message_add_tail(&t, &m);
311 
312 	ret = spi_sync(spi, &m);
313 	if (ret)
314 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
315 	return ret;
316 }
317 
318 static int mcp251x_spi_write(struct spi_device *spi, int len)
319 {
320 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
321 	int ret;
322 
323 	ret = spi_write(spi, priv->spi_tx_buf, len);
324 	if (ret)
325 		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
326 
327 	return ret;
328 }
329 
330 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
331 {
332 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
333 	u8 val = 0;
334 
335 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
336 	priv->spi_tx_buf[1] = reg;
337 
338 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
339 		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
340 	} else {
341 		mcp251x_spi_trans(spi, 3);
342 		val = priv->spi_rx_buf[2];
343 	}
344 
345 	return val;
346 }
347 
348 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
349 {
350 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
351 
352 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
353 	priv->spi_tx_buf[1] = reg;
354 
355 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
356 		u8 val[2] = { 0 };
357 
358 		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
359 		*v1 = val[0];
360 		*v2 = val[1];
361 	} else {
362 		mcp251x_spi_trans(spi, 4);
363 
364 		*v1 = priv->spi_rx_buf[2];
365 		*v2 = priv->spi_rx_buf[3];
366 	}
367 }
368 
369 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
370 {
371 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
372 
373 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
374 	priv->spi_tx_buf[1] = reg;
375 	priv->spi_tx_buf[2] = val;
376 
377 	mcp251x_spi_write(spi, 3);
378 }
379 
380 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
381 {
382 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
383 
384 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
385 	priv->spi_tx_buf[1] = reg;
386 	priv->spi_tx_buf[2] = v1;
387 	priv->spi_tx_buf[3] = v2;
388 
389 	mcp251x_spi_write(spi, 4);
390 }
391 
392 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
393 			       u8 mask, u8 val)
394 {
395 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
396 
397 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
398 	priv->spi_tx_buf[1] = reg;
399 	priv->spi_tx_buf[2] = mask;
400 	priv->spi_tx_buf[3] = val;
401 
402 	mcp251x_spi_write(spi, 4);
403 }
404 
405 static u8 mcp251x_read_stat(struct spi_device *spi)
406 {
407 	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
408 }
409 
410 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
411 	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
412 			   delay_us, timeout_us)
413 
414 #ifdef CONFIG_GPIOLIB
415 enum {
416 	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
417 	MCP251X_GPIO_TX1RTS,
418 	MCP251X_GPIO_TX2RTS,
419 	MCP251X_GPIO_RX0BF,			/* outputs */
420 	MCP251X_GPIO_RX1BF,
421 };
422 
423 #define MCP251X_GPIO_INPUT_MASK \
424 	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
425 #define MCP251X_GPIO_OUTPUT_MASK \
426 	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
427 
428 static const char * const mcp251x_gpio_names[] = {
429 	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
430 	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
431 	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
432 	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
433 	[MCP251X_GPIO_RX1BF] = "RX1BF",
434 };
435 
436 static inline bool mcp251x_gpio_is_input(unsigned int offset)
437 {
438 	return offset <= MCP251X_GPIO_TX2RTS;
439 }
440 
441 static int mcp251x_gpio_request(struct gpio_chip *chip,
442 				unsigned int offset)
443 {
444 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
445 	u8 val;
446 
447 	/* nothing to be done for inputs */
448 	if (mcp251x_gpio_is_input(offset))
449 		return 0;
450 
451 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
452 
453 	mutex_lock(&priv->mcp_lock);
454 	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
455 	mutex_unlock(&priv->mcp_lock);
456 
457 	priv->reg_bfpctrl |= val;
458 
459 	return 0;
460 }
461 
462 static void mcp251x_gpio_free(struct gpio_chip *chip,
463 			      unsigned int offset)
464 {
465 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
466 	u8 val;
467 
468 	/* nothing to be done for inputs */
469 	if (mcp251x_gpio_is_input(offset))
470 		return;
471 
472 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
473 
474 	mutex_lock(&priv->mcp_lock);
475 	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
476 	mutex_unlock(&priv->mcp_lock);
477 
478 	priv->reg_bfpctrl &= ~val;
479 }
480 
481 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
482 				      unsigned int offset)
483 {
484 	if (mcp251x_gpio_is_input(offset))
485 		return GPIOF_DIR_IN;
486 
487 	return GPIOF_DIR_OUT;
488 }
489 
490 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
491 {
492 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
493 	u8 reg, mask, val;
494 
495 	if (mcp251x_gpio_is_input(offset)) {
496 		reg = TXRTSCTRL;
497 		mask = TXRTSCTRL_RTS(offset);
498 	} else {
499 		reg = BFPCTRL;
500 		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
501 	}
502 
503 	mutex_lock(&priv->mcp_lock);
504 	val = mcp251x_read_reg(priv->spi, reg);
505 	mutex_unlock(&priv->mcp_lock);
506 
507 	return !!(val & mask);
508 }
509 
510 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
511 				     unsigned long *maskp, unsigned long *bitsp)
512 {
513 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
514 	unsigned long bits = 0;
515 	u8 val;
516 
517 	mutex_lock(&priv->mcp_lock);
518 	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
519 		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
520 		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
521 		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
522 	}
523 	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
524 		val = mcp251x_read_reg(priv->spi, BFPCTRL);
525 		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
526 		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
527 	}
528 	mutex_unlock(&priv->mcp_lock);
529 
530 	bitsp[0] = bits;
531 	return 0;
532 }
533 
534 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
535 			     int value)
536 {
537 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
538 	u8 mask, val;
539 
540 	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
541 	val = value ? mask : 0;
542 
543 	mutex_lock(&priv->mcp_lock);
544 	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
545 	mutex_unlock(&priv->mcp_lock);
546 
547 	priv->reg_bfpctrl &= ~mask;
548 	priv->reg_bfpctrl |= val;
549 }
550 
551 static void
552 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
553 			  unsigned long *maskp, unsigned long *bitsp)
554 {
555 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
556 	u8 mask, val;
557 
558 	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
559 	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
560 
561 	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
562 	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
563 
564 	if (!mask)
565 		return;
566 
567 	mutex_lock(&priv->mcp_lock);
568 	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
569 	mutex_unlock(&priv->mcp_lock);
570 
571 	priv->reg_bfpctrl &= ~mask;
572 	priv->reg_bfpctrl |= val;
573 }
574 
575 static void mcp251x_gpio_restore(struct spi_device *spi)
576 {
577 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
578 
579 	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
580 }
581 
582 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
583 {
584 	struct gpio_chip *gpio = &priv->gpio;
585 
586 	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
587 		return 0;
588 
589 	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
590 	gpio->label = priv->spi->modalias;
591 	gpio->parent = &priv->spi->dev;
592 	gpio->owner = THIS_MODULE;
593 	gpio->request = mcp251x_gpio_request;
594 	gpio->free = mcp251x_gpio_free;
595 	gpio->get_direction = mcp251x_gpio_get_direction;
596 	gpio->get = mcp251x_gpio_get;
597 	gpio->get_multiple = mcp251x_gpio_get_multiple;
598 	gpio->set = mcp251x_gpio_set;
599 	gpio->set_multiple = mcp251x_gpio_set_multiple;
600 	gpio->base = -1;
601 	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
602 	gpio->names = mcp251x_gpio_names;
603 	gpio->can_sleep = true;
604 
605 	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
606 }
607 #else
608 static inline void mcp251x_gpio_restore(struct spi_device *spi)
609 {
610 }
611 
612 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
613 {
614 	return 0;
615 }
616 #endif
617 
618 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
619 				int len, int tx_buf_idx)
620 {
621 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
622 
623 	if (mcp251x_is_2510(spi)) {
624 		int i;
625 
626 		for (i = 1; i < TXBDAT_OFF + len; i++)
627 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
628 					  buf[i]);
629 	} else {
630 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
631 		mcp251x_spi_write(spi, TXBDAT_OFF + len);
632 	}
633 }
634 
635 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
636 			  int tx_buf_idx)
637 {
638 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
639 	u32 sid, eid, exide, rtr;
640 	u8 buf[SPI_TRANSFER_BUF_LEN];
641 
642 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
643 	if (exide)
644 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
645 	else
646 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
647 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
648 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
649 
650 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
651 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
652 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
653 		(exide << SIDL_EXIDE_SHIFT) |
654 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
655 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
656 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
657 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
658 	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
659 	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
660 
661 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
662 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
663 	mcp251x_spi_write(priv->spi, 1);
664 }
665 
666 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
667 				int buf_idx)
668 {
669 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
670 
671 	if (mcp251x_is_2510(spi)) {
672 		int i, len;
673 
674 		for (i = 1; i < RXBDAT_OFF; i++)
675 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
676 
677 		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
678 		for (; i < (RXBDAT_OFF + len); i++)
679 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
680 	} else {
681 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
682 		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
683 			spi_write_then_read(spi, priv->spi_tx_buf, 1,
684 					    priv->spi_rx_buf,
685 					    SPI_TRANSFER_BUF_LEN);
686 			memcpy(buf + 1, priv->spi_rx_buf,
687 			       SPI_TRANSFER_BUF_LEN - 1);
688 		} else {
689 			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
690 			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
691 		}
692 	}
693 }
694 
695 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
696 {
697 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
698 	struct sk_buff *skb;
699 	struct can_frame *frame;
700 	u8 buf[SPI_TRANSFER_BUF_LEN];
701 
702 	skb = alloc_can_skb(priv->net, &frame);
703 	if (!skb) {
704 		dev_err(&spi->dev, "cannot allocate RX skb\n");
705 		priv->net->stats.rx_dropped++;
706 		return;
707 	}
708 
709 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
710 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
711 		/* Extended ID format */
712 		frame->can_id = CAN_EFF_FLAG;
713 		frame->can_id |=
714 			/* Extended ID part */
715 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
716 			SET_BYTE(buf[RXBEID8_OFF], 1) |
717 			SET_BYTE(buf[RXBEID0_OFF], 0) |
718 			/* Standard ID part */
719 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
720 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
721 		/* Remote transmission request */
722 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
723 			frame->can_id |= CAN_RTR_FLAG;
724 	} else {
725 		/* Standard ID format */
726 		frame->can_id =
727 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
728 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
729 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
730 			frame->can_id |= CAN_RTR_FLAG;
731 	}
732 	/* Data length */
733 	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
734 	if (!(frame->can_id & CAN_RTR_FLAG)) {
735 		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
736 
737 		priv->net->stats.rx_bytes += frame->len;
738 	}
739 	priv->net->stats.rx_packets++;
740 
741 	netif_rx(skb);
742 }
743 
744 static void mcp251x_hw_sleep(struct spi_device *spi)
745 {
746 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
747 }
748 
749 /* May only be called when device is sleeping! */
750 static int mcp251x_hw_wake(struct spi_device *spi)
751 {
752 	u8 value;
753 	int ret;
754 
755 	/* Force wakeup interrupt to wake device, but don't execute IST */
756 	disable_irq(spi->irq);
757 	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
758 
759 	/* Wait for oscillator startup timer after wake up */
760 	mdelay(MCP251X_OST_DELAY_MS);
761 
762 	/* Put device into config mode */
763 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
764 
765 	/* Wait for the device to enter config mode */
766 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
767 					     MCP251X_OST_DELAY_MS * 1000,
768 					     USEC_PER_SEC);
769 	if (ret) {
770 		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
771 		return ret;
772 	}
773 
774 	/* Disable and clear pending interrupts */
775 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
776 	enable_irq(spi->irq);
777 
778 	return 0;
779 }
780 
781 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
782 					   struct net_device *net)
783 {
784 	struct mcp251x_priv *priv = netdev_priv(net);
785 	struct spi_device *spi = priv->spi;
786 
787 	if (priv->tx_skb || priv->tx_busy) {
788 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
789 		return NETDEV_TX_BUSY;
790 	}
791 
792 	if (can_dev_dropped_skb(net, skb))
793 		return NETDEV_TX_OK;
794 
795 	netif_stop_queue(net);
796 	priv->tx_skb = skb;
797 	queue_work(priv->wq, &priv->tx_work);
798 
799 	return NETDEV_TX_OK;
800 }
801 
802 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
803 {
804 	struct mcp251x_priv *priv = netdev_priv(net);
805 
806 	switch (mode) {
807 	case CAN_MODE_START:
808 		mcp251x_clean(net);
809 		/* We have to delay work since SPI I/O may sleep */
810 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
811 		priv->restart_tx = 1;
812 		if (priv->can.restart_ms == 0)
813 			priv->after_suspend = AFTER_SUSPEND_RESTART;
814 		queue_work(priv->wq, &priv->restart_work);
815 		break;
816 	default:
817 		return -EOPNOTSUPP;
818 	}
819 
820 	return 0;
821 }
822 
823 static int mcp251x_set_normal_mode(struct spi_device *spi)
824 {
825 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
826 	u8 value;
827 	int ret;
828 
829 	/* Enable interrupts */
830 	mcp251x_write_reg(spi, CANINTE,
831 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
832 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
833 
834 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
835 		/* Put device into loopback mode */
836 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
837 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
838 		/* Put device into listen-only mode */
839 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
840 	} else {
841 		/* Put device into normal mode */
842 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
843 
844 		/* Wait for the device to enter normal mode */
845 		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
846 						     MCP251X_OST_DELAY_MS * 1000,
847 						     USEC_PER_SEC);
848 		if (ret) {
849 			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
850 			return ret;
851 		}
852 	}
853 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
854 	return 0;
855 }
856 
857 static int mcp251x_do_set_bittiming(struct net_device *net)
858 {
859 	struct mcp251x_priv *priv = netdev_priv(net);
860 	struct can_bittiming *bt = &priv->can.bittiming;
861 	struct spi_device *spi = priv->spi;
862 
863 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
864 			  (bt->brp - 1));
865 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
866 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
867 			   CNF2_SAM : 0) |
868 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
869 			  (bt->prop_seg - 1));
870 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
871 			   (bt->phase_seg2 - 1));
872 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
873 		mcp251x_read_reg(spi, CNF1),
874 		mcp251x_read_reg(spi, CNF2),
875 		mcp251x_read_reg(spi, CNF3));
876 
877 	return 0;
878 }
879 
880 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
881 {
882 	mcp251x_do_set_bittiming(net);
883 
884 	mcp251x_write_reg(spi, RXBCTRL(0),
885 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
886 	mcp251x_write_reg(spi, RXBCTRL(1),
887 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
888 	return 0;
889 }
890 
891 static int mcp251x_hw_reset(struct spi_device *spi)
892 {
893 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
894 	u8 value;
895 	int ret;
896 
897 	/* Wait for oscillator startup timer after power up */
898 	mdelay(MCP251X_OST_DELAY_MS);
899 
900 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
901 	ret = mcp251x_spi_write(spi, 1);
902 	if (ret)
903 		return ret;
904 
905 	/* Wait for oscillator startup timer after reset */
906 	mdelay(MCP251X_OST_DELAY_MS);
907 
908 	/* Wait for reset to finish */
909 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
910 					     MCP251X_OST_DELAY_MS * 1000,
911 					     USEC_PER_SEC);
912 	if (ret)
913 		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
914 	return ret;
915 }
916 
917 static int mcp251x_hw_probe(struct spi_device *spi)
918 {
919 	u8 ctrl;
920 	int ret;
921 
922 	ret = mcp251x_hw_reset(spi);
923 	if (ret)
924 		return ret;
925 
926 	ctrl = mcp251x_read_reg(spi, CANCTRL);
927 
928 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
929 
930 	/* Check for power up default value */
931 	if ((ctrl & 0x17) != 0x07)
932 		return -ENODEV;
933 
934 	return 0;
935 }
936 
937 static int mcp251x_power_enable(struct regulator *reg, int enable)
938 {
939 	if (IS_ERR_OR_NULL(reg))
940 		return 0;
941 
942 	if (enable)
943 		return regulator_enable(reg);
944 	else
945 		return regulator_disable(reg);
946 }
947 
948 static int mcp251x_stop(struct net_device *net)
949 {
950 	struct mcp251x_priv *priv = netdev_priv(net);
951 	struct spi_device *spi = priv->spi;
952 
953 	close_candev(net);
954 
955 	priv->force_quit = 1;
956 	free_irq(spi->irq, priv);
957 
958 	mutex_lock(&priv->mcp_lock);
959 
960 	/* Disable and clear pending interrupts */
961 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
962 
963 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
964 	mcp251x_clean(net);
965 
966 	mcp251x_hw_sleep(spi);
967 
968 	mcp251x_power_enable(priv->transceiver, 0);
969 
970 	priv->can.state = CAN_STATE_STOPPED;
971 
972 	mutex_unlock(&priv->mcp_lock);
973 
974 	return 0;
975 }
976 
977 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
978 {
979 	struct sk_buff *skb;
980 	struct can_frame *frame;
981 
982 	skb = alloc_can_err_skb(net, &frame);
983 	if (skb) {
984 		frame->can_id |= can_id;
985 		frame->data[1] = data1;
986 		netif_rx(skb);
987 	} else {
988 		netdev_err(net, "cannot allocate error skb\n");
989 	}
990 }
991 
992 static void mcp251x_tx_work_handler(struct work_struct *ws)
993 {
994 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
995 						 tx_work);
996 	struct spi_device *spi = priv->spi;
997 	struct net_device *net = priv->net;
998 	struct can_frame *frame;
999 
1000 	mutex_lock(&priv->mcp_lock);
1001 	if (priv->tx_skb) {
1002 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1003 			mcp251x_clean(net);
1004 		} else {
1005 			frame = (struct can_frame *)priv->tx_skb->data;
1006 
1007 			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008 				frame->len = CAN_FRAME_MAX_DATA_LEN;
1009 			mcp251x_hw_tx(spi, frame, 0);
1010 			priv->tx_busy = true;
1011 			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012 			priv->tx_skb = NULL;
1013 		}
1014 	}
1015 	mutex_unlock(&priv->mcp_lock);
1016 }
1017 
1018 static void mcp251x_restart_work_handler(struct work_struct *ws)
1019 {
1020 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021 						 restart_work);
1022 	struct spi_device *spi = priv->spi;
1023 	struct net_device *net = priv->net;
1024 
1025 	mutex_lock(&priv->mcp_lock);
1026 	if (priv->after_suspend) {
1027 		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028 			mcp251x_hw_reset(spi);
1029 			mcp251x_setup(net, spi);
1030 			mcp251x_gpio_restore(spi);
1031 		} else {
1032 			mcp251x_hw_wake(spi);
1033 		}
1034 		priv->force_quit = 0;
1035 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036 			mcp251x_set_normal_mode(spi);
1037 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038 			netif_device_attach(net);
1039 			mcp251x_clean(net);
1040 			mcp251x_set_normal_mode(spi);
1041 			netif_wake_queue(net);
1042 		} else {
1043 			mcp251x_hw_sleep(spi);
1044 		}
1045 		priv->after_suspend = 0;
1046 	}
1047 
1048 	if (priv->restart_tx) {
1049 		priv->restart_tx = 0;
1050 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051 		mcp251x_clean(net);
1052 		netif_wake_queue(net);
1053 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054 	}
1055 	mutex_unlock(&priv->mcp_lock);
1056 }
1057 
1058 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059 {
1060 	struct mcp251x_priv *priv = dev_id;
1061 	struct spi_device *spi = priv->spi;
1062 	struct net_device *net = priv->net;
1063 
1064 	mutex_lock(&priv->mcp_lock);
1065 	while (!priv->force_quit) {
1066 		enum can_state new_state;
1067 		u8 intf, eflag;
1068 		u8 clear_intf = 0;
1069 		int can_id = 0, data1 = 0;
1070 
1071 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072 
1073 		/* receive buffer 0 */
1074 		if (intf & CANINTF_RX0IF) {
1075 			mcp251x_hw_rx(spi, 0);
1076 			/* Free one buffer ASAP
1077 			 * (The MCP2515/25625 does this automatically.)
1078 			 */
1079 			if (mcp251x_is_2510(spi))
1080 				mcp251x_write_bits(spi, CANINTF,
1081 						   CANINTF_RX0IF, 0x00);
1082 
1083 			/* check if buffer 1 is already known to be full, no need to re-read */
1084 			if (!(intf & CANINTF_RX1IF)) {
1085 				u8 intf1, eflag1;
1086 
1087 				/* intf needs to be read again to avoid a race condition */
1088 				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089 
1090 				/* combine flags from both operations for error handling */
1091 				intf |= intf1;
1092 				eflag |= eflag1;
1093 			}
1094 		}
1095 
1096 		/* receive buffer 1 */
1097 		if (intf & CANINTF_RX1IF) {
1098 			mcp251x_hw_rx(spi, 1);
1099 			/* The MCP2515/25625 does this automatically. */
1100 			if (mcp251x_is_2510(spi))
1101 				clear_intf |= CANINTF_RX1IF;
1102 		}
1103 
1104 		/* mask out flags we don't care about */
1105 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106 
1107 		/* any error or tx interrupt we need to clear? */
1108 		if (intf & (CANINTF_ERR | CANINTF_TX))
1109 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110 		if (clear_intf)
1111 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112 
1113 		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115 
1116 		/* Update can state */
1117 		if (eflag & EFLG_TXBO) {
1118 			new_state = CAN_STATE_BUS_OFF;
1119 			can_id |= CAN_ERR_BUSOFF;
1120 		} else if (eflag & EFLG_TXEP) {
1121 			new_state = CAN_STATE_ERROR_PASSIVE;
1122 			can_id |= CAN_ERR_CRTL;
1123 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124 		} else if (eflag & EFLG_RXEP) {
1125 			new_state = CAN_STATE_ERROR_PASSIVE;
1126 			can_id |= CAN_ERR_CRTL;
1127 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128 		} else if (eflag & EFLG_TXWAR) {
1129 			new_state = CAN_STATE_ERROR_WARNING;
1130 			can_id |= CAN_ERR_CRTL;
1131 			data1 |= CAN_ERR_CRTL_TX_WARNING;
1132 		} else if (eflag & EFLG_RXWAR) {
1133 			new_state = CAN_STATE_ERROR_WARNING;
1134 			can_id |= CAN_ERR_CRTL;
1135 			data1 |= CAN_ERR_CRTL_RX_WARNING;
1136 		} else {
1137 			new_state = CAN_STATE_ERROR_ACTIVE;
1138 		}
1139 
1140 		/* Update can state statistics */
1141 		switch (priv->can.state) {
1142 		case CAN_STATE_ERROR_ACTIVE:
1143 			if (new_state >= CAN_STATE_ERROR_WARNING &&
1144 			    new_state <= CAN_STATE_BUS_OFF)
1145 				priv->can.can_stats.error_warning++;
1146 			fallthrough;
1147 		case CAN_STATE_ERROR_WARNING:
1148 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149 			    new_state <= CAN_STATE_BUS_OFF)
1150 				priv->can.can_stats.error_passive++;
1151 			break;
1152 		default:
1153 			break;
1154 		}
1155 		priv->can.state = new_state;
1156 
1157 		if (intf & CANINTF_ERRIF) {
1158 			/* Handle overflow counters */
1159 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160 				if (eflag & EFLG_RX0OVR) {
1161 					net->stats.rx_over_errors++;
1162 					net->stats.rx_errors++;
1163 				}
1164 				if (eflag & EFLG_RX1OVR) {
1165 					net->stats.rx_over_errors++;
1166 					net->stats.rx_errors++;
1167 				}
1168 				can_id |= CAN_ERR_CRTL;
1169 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170 			}
1171 			mcp251x_error_skb(net, can_id, data1);
1172 		}
1173 
1174 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1175 			if (priv->can.restart_ms == 0) {
1176 				priv->force_quit = 1;
1177 				priv->can.can_stats.bus_off++;
1178 				can_bus_off(net);
1179 				mcp251x_hw_sleep(spi);
1180 				break;
1181 			}
1182 		}
1183 
1184 		if (intf == 0)
1185 			break;
1186 
1187 		if (intf & CANINTF_TX) {
1188 			if (priv->tx_busy) {
1189 				net->stats.tx_packets++;
1190 				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191 									NULL);
1192 				priv->tx_busy = false;
1193 			}
1194 			netif_wake_queue(net);
1195 		}
1196 	}
1197 	mutex_unlock(&priv->mcp_lock);
1198 	return IRQ_HANDLED;
1199 }
1200 
1201 static int mcp251x_open(struct net_device *net)
1202 {
1203 	struct mcp251x_priv *priv = netdev_priv(net);
1204 	struct spi_device *spi = priv->spi;
1205 	unsigned long flags = 0;
1206 	int ret;
1207 
1208 	ret = open_candev(net);
1209 	if (ret) {
1210 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211 		return ret;
1212 	}
1213 
1214 	mutex_lock(&priv->mcp_lock);
1215 	mcp251x_power_enable(priv->transceiver, 1);
1216 
1217 	priv->force_quit = 0;
1218 	priv->tx_skb = NULL;
1219 	priv->tx_busy = false;
1220 
1221 	if (!dev_fwnode(&spi->dev))
1222 		flags = IRQF_TRIGGER_FALLING;
1223 
1224 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225 				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226 				   priv);
1227 	if (ret) {
1228 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229 		goto out_close;
1230 	}
1231 
1232 	ret = mcp251x_hw_wake(spi);
1233 	if (ret)
1234 		goto out_free_irq;
1235 	ret = mcp251x_setup(net, spi);
1236 	if (ret)
1237 		goto out_free_irq;
1238 	ret = mcp251x_set_normal_mode(spi);
1239 	if (ret)
1240 		goto out_free_irq;
1241 
1242 	netif_wake_queue(net);
1243 	mutex_unlock(&priv->mcp_lock);
1244 
1245 	return 0;
1246 
1247 out_free_irq:
1248 	free_irq(spi->irq, priv);
1249 	mcp251x_hw_sleep(spi);
1250 out_close:
1251 	mcp251x_power_enable(priv->transceiver, 0);
1252 	close_candev(net);
1253 	mutex_unlock(&priv->mcp_lock);
1254 	return ret;
1255 }
1256 
1257 static const struct net_device_ops mcp251x_netdev_ops = {
1258 	.ndo_open = mcp251x_open,
1259 	.ndo_stop = mcp251x_stop,
1260 	.ndo_start_xmit = mcp251x_hard_start_xmit,
1261 	.ndo_change_mtu = can_change_mtu,
1262 };
1263 
1264 static const struct ethtool_ops mcp251x_ethtool_ops = {
1265 	.get_ts_info = ethtool_op_get_ts_info,
1266 };
1267 
1268 static const struct of_device_id mcp251x_of_match[] = {
1269 	{
1270 		.compatible	= "microchip,mcp2510",
1271 		.data		= (void *)CAN_MCP251X_MCP2510,
1272 	},
1273 	{
1274 		.compatible	= "microchip,mcp2515",
1275 		.data		= (void *)CAN_MCP251X_MCP2515,
1276 	},
1277 	{
1278 		.compatible	= "microchip,mcp25625",
1279 		.data		= (void *)CAN_MCP251X_MCP25625,
1280 	},
1281 	{ }
1282 };
1283 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284 
1285 static const struct spi_device_id mcp251x_id_table[] = {
1286 	{
1287 		.name		= "mcp2510",
1288 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289 	},
1290 	{
1291 		.name		= "mcp2515",
1292 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293 	},
1294 	{
1295 		.name		= "mcp25625",
1296 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297 	},
1298 	{ }
1299 };
1300 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301 
1302 static int mcp251x_can_probe(struct spi_device *spi)
1303 {
1304 	const void *match = device_get_match_data(&spi->dev);
1305 	struct net_device *net;
1306 	struct mcp251x_priv *priv;
1307 	struct clk *clk;
1308 	u32 freq;
1309 	int ret;
1310 
1311 	clk = devm_clk_get_optional(&spi->dev, NULL);
1312 	if (IS_ERR(clk))
1313 		return PTR_ERR(clk);
1314 
1315 	freq = clk_get_rate(clk);
1316 	if (freq == 0)
1317 		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1318 
1319 	/* Sanity check */
1320 	if (freq < 1000000 || freq > 25000000)
1321 		return -ERANGE;
1322 
1323 	/* Allocate can/net device */
1324 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325 	if (!net)
1326 		return -ENOMEM;
1327 
1328 	ret = clk_prepare_enable(clk);
1329 	if (ret)
1330 		goto out_free;
1331 
1332 	net->netdev_ops = &mcp251x_netdev_ops;
1333 	net->ethtool_ops = &mcp251x_ethtool_ops;
1334 	net->flags |= IFF_ECHO;
1335 
1336 	priv = netdev_priv(net);
1337 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1338 	priv->can.do_set_mode = mcp251x_do_set_mode;
1339 	priv->can.clock.freq = freq / 2;
1340 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342 	if (match)
1343 		priv->model = (enum mcp251x_model)(uintptr_t)match;
1344 	else
1345 		priv->model = spi_get_device_id(spi)->driver_data;
1346 	priv->net = net;
1347 	priv->clk = clk;
1348 
1349 	spi_set_drvdata(spi, priv);
1350 
1351 	/* Configure the SPI bus */
1352 	spi->bits_per_word = 8;
1353 	if (mcp251x_is_2510(spi))
1354 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355 	else
1356 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357 	ret = spi_setup(spi);
1358 	if (ret)
1359 		goto out_clk;
1360 
1361 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365 		ret = -EPROBE_DEFER;
1366 		goto out_clk;
1367 	}
1368 
1369 	ret = mcp251x_power_enable(priv->power, 1);
1370 	if (ret)
1371 		goto out_clk;
1372 
1373 	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374 				   0);
1375 	if (!priv->wq) {
1376 		ret = -ENOMEM;
1377 		goto out_clk;
1378 	}
1379 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381 
1382 	priv->spi = spi;
1383 	mutex_init(&priv->mcp_lock);
1384 
1385 	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386 					GFP_KERNEL);
1387 	if (!priv->spi_tx_buf) {
1388 		ret = -ENOMEM;
1389 		goto error_probe;
1390 	}
1391 
1392 	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393 					GFP_KERNEL);
1394 	if (!priv->spi_rx_buf) {
1395 		ret = -ENOMEM;
1396 		goto error_probe;
1397 	}
1398 
1399 	SET_NETDEV_DEV(net, &spi->dev);
1400 
1401 	/* Here is OK to not lock the MCP, no one knows about it yet */
1402 	ret = mcp251x_hw_probe(spi);
1403 	if (ret) {
1404 		if (ret == -ENODEV)
1405 			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406 				priv->model);
1407 		goto error_probe;
1408 	}
1409 
1410 	mcp251x_hw_sleep(spi);
1411 
1412 	ret = register_candev(net);
1413 	if (ret)
1414 		goto error_probe;
1415 
1416 	ret = mcp251x_gpio_setup(priv);
1417 	if (ret)
1418 		goto out_unregister_candev;
1419 
1420 	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421 	return 0;
1422 
1423 out_unregister_candev:
1424 	unregister_candev(net);
1425 
1426 error_probe:
1427 	destroy_workqueue(priv->wq);
1428 	priv->wq = NULL;
1429 	mcp251x_power_enable(priv->power, 0);
1430 
1431 out_clk:
1432 	clk_disable_unprepare(clk);
1433 
1434 out_free:
1435 	free_candev(net);
1436 
1437 	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1438 	return ret;
1439 }
1440 
1441 static void mcp251x_can_remove(struct spi_device *spi)
1442 {
1443 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1444 	struct net_device *net = priv->net;
1445 
1446 	unregister_candev(net);
1447 
1448 	mcp251x_power_enable(priv->power, 0);
1449 
1450 	destroy_workqueue(priv->wq);
1451 	priv->wq = NULL;
1452 
1453 	clk_disable_unprepare(priv->clk);
1454 
1455 	free_candev(net);
1456 }
1457 
1458 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1459 {
1460 	struct spi_device *spi = to_spi_device(dev);
1461 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1462 	struct net_device *net = priv->net;
1463 
1464 	priv->force_quit = 1;
1465 	disable_irq(spi->irq);
1466 	/* Note: at this point neither IST nor workqueues are running.
1467 	 * open/stop cannot be called anyway so locking is not needed
1468 	 */
1469 	if (netif_running(net)) {
1470 		netif_device_detach(net);
1471 
1472 		mcp251x_hw_sleep(spi);
1473 		mcp251x_power_enable(priv->transceiver, 0);
1474 		priv->after_suspend = AFTER_SUSPEND_UP;
1475 	} else {
1476 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1477 	}
1478 
1479 	mcp251x_power_enable(priv->power, 0);
1480 	priv->after_suspend |= AFTER_SUSPEND_POWER;
1481 
1482 	return 0;
1483 }
1484 
1485 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1486 {
1487 	struct spi_device *spi = to_spi_device(dev);
1488 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1489 
1490 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1491 		mcp251x_power_enable(priv->power, 1);
1492 	if (priv->after_suspend & AFTER_SUSPEND_UP)
1493 		mcp251x_power_enable(priv->transceiver, 1);
1494 
1495 	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1496 		queue_work(priv->wq, &priv->restart_work);
1497 	else
1498 		priv->after_suspend = 0;
1499 
1500 	priv->force_quit = 0;
1501 	enable_irq(spi->irq);
1502 	return 0;
1503 }
1504 
1505 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1506 	mcp251x_can_resume);
1507 
1508 static struct spi_driver mcp251x_can_driver = {
1509 	.driver = {
1510 		.name = DEVICE_NAME,
1511 		.of_match_table = mcp251x_of_match,
1512 		.pm = &mcp251x_can_pm_ops,
1513 	},
1514 	.id_table = mcp251x_id_table,
1515 	.probe = mcp251x_can_probe,
1516 	.remove = mcp251x_can_remove,
1517 };
1518 module_spi_driver(mcp251x_can_driver);
1519 
1520 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1521 	      "Christian Pellegrin <chripell@evolware.org>");
1522 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1523 MODULE_LICENSE("GPL v2");
1524