xref: /openbmc/linux/drivers/net/can/spi/mcp251x.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  */
21 
22 #include <linux/can/core.h>
23 #include <linux/can/dev.h>
24 #include <linux/can/led.h>
25 #include <linux/can/platform/mcp251x.h>
26 #include <linux/clk.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <linux/property.h>
37 #include <linux/platform_device.h>
38 #include <linux/slab.h>
39 #include <linux/spi/spi.h>
40 #include <linux/uaccess.h>
41 #include <linux/regulator/consumer.h>
42 
43 /* SPI interface instruction set */
44 #define INSTRUCTION_WRITE	0x02
45 #define INSTRUCTION_READ	0x03
46 #define INSTRUCTION_BIT_MODIFY	0x05
47 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
48 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
49 #define INSTRUCTION_RESET	0xC0
50 #define RTS_TXB0		0x01
51 #define RTS_TXB1		0x02
52 #define RTS_TXB2		0x04
53 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
54 
55 /* MPC251x registers */
56 #define CANSTAT	      0x0e
57 #define CANCTRL	      0x0f
58 #  define CANCTRL_REQOP_MASK	    0xe0
59 #  define CANCTRL_REQOP_CONF	    0x80
60 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
61 #  define CANCTRL_REQOP_LOOPBACK    0x40
62 #  define CANCTRL_REQOP_SLEEP	    0x20
63 #  define CANCTRL_REQOP_NORMAL	    0x00
64 #  define CANCTRL_OSM		    0x08
65 #  define CANCTRL_ABAT		    0x10
66 #define TEC	      0x1c
67 #define REC	      0x1d
68 #define CNF1	      0x2a
69 #  define CNF1_SJW_SHIFT   6
70 #define CNF2	      0x29
71 #  define CNF2_BTLMODE	   0x80
72 #  define CNF2_SAM         0x40
73 #  define CNF2_PS1_SHIFT   3
74 #define CNF3	      0x28
75 #  define CNF3_SOF	   0x08
76 #  define CNF3_WAKFIL	   0x04
77 #  define CNF3_PHSEG2_MASK 0x07
78 #define CANINTE	      0x2b
79 #  define CANINTE_MERRE 0x80
80 #  define CANINTE_WAKIE 0x40
81 #  define CANINTE_ERRIE 0x20
82 #  define CANINTE_TX2IE 0x10
83 #  define CANINTE_TX1IE 0x08
84 #  define CANINTE_TX0IE 0x04
85 #  define CANINTE_RX1IE 0x02
86 #  define CANINTE_RX0IE 0x01
87 #define CANINTF	      0x2c
88 #  define CANINTF_MERRF 0x80
89 #  define CANINTF_WAKIF 0x40
90 #  define CANINTF_ERRIF 0x20
91 #  define CANINTF_TX2IF 0x10
92 #  define CANINTF_TX1IF 0x08
93 #  define CANINTF_TX0IF 0x04
94 #  define CANINTF_RX1IF 0x02
95 #  define CANINTF_RX0IF 0x01
96 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
97 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
98 #  define CANINTF_ERR (CANINTF_ERRIF)
99 #define EFLG	      0x2d
100 #  define EFLG_EWARN	0x01
101 #  define EFLG_RXWAR	0x02
102 #  define EFLG_TXWAR	0x04
103 #  define EFLG_RXEP	0x08
104 #  define EFLG_TXEP	0x10
105 #  define EFLG_TXBO	0x20
106 #  define EFLG_RX0OVR	0x40
107 #  define EFLG_RX1OVR	0x80
108 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
109 #  define TXBCTRL_ABTF	0x40
110 #  define TXBCTRL_MLOA	0x20
111 #  define TXBCTRL_TXERR 0x10
112 #  define TXBCTRL_TXREQ 0x08
113 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
114 #  define SIDH_SHIFT    3
115 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
116 #  define SIDL_SID_MASK    7
117 #  define SIDL_SID_SHIFT   5
118 #  define SIDL_EXIDE_SHIFT 3
119 #  define SIDL_EID_SHIFT   16
120 #  define SIDL_EID_MASK    3
121 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
122 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
123 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
124 #  define DLC_RTR_SHIFT    6
125 #define TXBCTRL_OFF 0
126 #define TXBSIDH_OFF 1
127 #define TXBSIDL_OFF 2
128 #define TXBEID8_OFF 3
129 #define TXBEID0_OFF 4
130 #define TXBDLC_OFF  5
131 #define TXBDAT_OFF  6
132 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
133 #  define RXBCTRL_BUKT	0x04
134 #  define RXBCTRL_RXM0	0x20
135 #  define RXBCTRL_RXM1	0x40
136 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
137 #  define RXBSIDH_SHIFT 3
138 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
139 #  define RXBSIDL_IDE   0x08
140 #  define RXBSIDL_SRR   0x10
141 #  define RXBSIDL_EID   3
142 #  define RXBSIDL_SHIFT 5
143 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
144 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
145 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
146 #  define RXBDLC_LEN_MASK  0x0f
147 #  define RXBDLC_RTR       0x40
148 #define RXBCTRL_OFF 0
149 #define RXBSIDH_OFF 1
150 #define RXBSIDL_OFF 2
151 #define RXBEID8_OFF 3
152 #define RXBEID0_OFF 4
153 #define RXBDLC_OFF  5
154 #define RXBDAT_OFF  6
155 #define RXFSID(n) ((n < 3) ? 0 : 4)
156 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
157 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
158 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
159 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
160 #define RXMSIDH(n) ((n) * 4 + 0x20)
161 #define RXMSIDL(n) ((n) * 4 + 0x21)
162 #define RXMEID8(n) ((n) * 4 + 0x22)
163 #define RXMEID0(n) ((n) * 4 + 0x23)
164 
165 #define GET_BYTE(val, byte)			\
166 	(((val) >> ((byte) * 8)) & 0xff)
167 #define SET_BYTE(val, byte)			\
168 	(((val) & 0xff) << ((byte) * 8))
169 
170 /* Buffer size required for the largest SPI transfer (i.e., reading a
171  * frame)
172  */
173 #define CAN_FRAME_MAX_DATA_LEN	8
174 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
175 #define CAN_FRAME_MAX_BITS	128
176 
177 #define TX_ECHO_SKB_MAX	1
178 
179 #define MCP251X_OST_DELAY_MS	(5)
180 
181 #define DEVICE_NAME "mcp251x"
182 
183 static const struct can_bittiming_const mcp251x_bittiming_const = {
184 	.name = DEVICE_NAME,
185 	.tseg1_min = 3,
186 	.tseg1_max = 16,
187 	.tseg2_min = 2,
188 	.tseg2_max = 8,
189 	.sjw_max = 4,
190 	.brp_min = 1,
191 	.brp_max = 64,
192 	.brp_inc = 1,
193 };
194 
195 enum mcp251x_model {
196 	CAN_MCP251X_MCP2510	= 0x2510,
197 	CAN_MCP251X_MCP2515	= 0x2515,
198 	CAN_MCP251X_MCP25625	= 0x25625,
199 };
200 
201 struct mcp251x_priv {
202 	struct can_priv	   can;
203 	struct net_device *net;
204 	struct spi_device *spi;
205 	enum mcp251x_model model;
206 
207 	struct mutex mcp_lock; /* SPI device lock */
208 
209 	u8 *spi_tx_buf;
210 	u8 *spi_rx_buf;
211 
212 	struct sk_buff *tx_skb;
213 	int tx_len;
214 
215 	struct workqueue_struct *wq;
216 	struct work_struct tx_work;
217 	struct work_struct restart_work;
218 
219 	int force_quit;
220 	int after_suspend;
221 #define AFTER_SUSPEND_UP 1
222 #define AFTER_SUSPEND_DOWN 2
223 #define AFTER_SUSPEND_POWER 4
224 #define AFTER_SUSPEND_RESTART 8
225 	int restart_tx;
226 	struct regulator *power;
227 	struct regulator *transceiver;
228 	struct clk *clk;
229 };
230 
231 #define MCP251X_IS(_model) \
232 static inline int mcp251x_is_##_model(struct spi_device *spi) \
233 { \
234 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
235 	return priv->model == CAN_MCP251X_MCP##_model; \
236 }
237 
238 MCP251X_IS(2510);
239 
240 static void mcp251x_clean(struct net_device *net)
241 {
242 	struct mcp251x_priv *priv = netdev_priv(net);
243 
244 	if (priv->tx_skb || priv->tx_len)
245 		net->stats.tx_errors++;
246 	dev_kfree_skb(priv->tx_skb);
247 	if (priv->tx_len)
248 		can_free_echo_skb(priv->net, 0);
249 	priv->tx_skb = NULL;
250 	priv->tx_len = 0;
251 }
252 
253 /* Note about handling of error return of mcp251x_spi_trans: accessing
254  * registers via SPI is not really different conceptually than using
255  * normal I/O assembler instructions, although it's much more
256  * complicated from a practical POV. So it's not advisable to always
257  * check the return value of this function. Imagine that every
258  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
259  * error();", it would be a great mess (well there are some situation
260  * when exception handling C++ like could be useful after all). So we
261  * just check that transfers are OK at the beginning of our
262  * conversation with the chip and to avoid doing really nasty things
263  * (like injecting bogus packets in the network stack).
264  */
265 static int mcp251x_spi_trans(struct spi_device *spi, int len)
266 {
267 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
268 	struct spi_transfer t = {
269 		.tx_buf = priv->spi_tx_buf,
270 		.rx_buf = priv->spi_rx_buf,
271 		.len = len,
272 		.cs_change = 0,
273 	};
274 	struct spi_message m;
275 	int ret;
276 
277 	spi_message_init(&m);
278 	spi_message_add_tail(&t, &m);
279 
280 	ret = spi_sync(spi, &m);
281 	if (ret)
282 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
283 	return ret;
284 }
285 
286 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
287 {
288 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
289 	u8 val = 0;
290 
291 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
292 	priv->spi_tx_buf[1] = reg;
293 
294 	mcp251x_spi_trans(spi, 3);
295 	val = priv->spi_rx_buf[2];
296 
297 	return val;
298 }
299 
300 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
301 {
302 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
303 
304 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
305 	priv->spi_tx_buf[1] = reg;
306 
307 	mcp251x_spi_trans(spi, 4);
308 
309 	*v1 = priv->spi_rx_buf[2];
310 	*v2 = priv->spi_rx_buf[3];
311 }
312 
313 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
314 {
315 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
316 
317 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
318 	priv->spi_tx_buf[1] = reg;
319 	priv->spi_tx_buf[2] = val;
320 
321 	mcp251x_spi_trans(spi, 3);
322 }
323 
324 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
325 			       u8 mask, u8 val)
326 {
327 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
328 
329 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
330 	priv->spi_tx_buf[1] = reg;
331 	priv->spi_tx_buf[2] = mask;
332 	priv->spi_tx_buf[3] = val;
333 
334 	mcp251x_spi_trans(spi, 4);
335 }
336 
337 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
338 				int len, int tx_buf_idx)
339 {
340 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
341 
342 	if (mcp251x_is_2510(spi)) {
343 		int i;
344 
345 		for (i = 1; i < TXBDAT_OFF + len; i++)
346 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
347 					  buf[i]);
348 	} else {
349 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
350 		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
351 	}
352 }
353 
354 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
355 			  int tx_buf_idx)
356 {
357 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
358 	u32 sid, eid, exide, rtr;
359 	u8 buf[SPI_TRANSFER_BUF_LEN];
360 
361 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
362 	if (exide)
363 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
364 	else
365 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
366 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
367 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
368 
369 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
370 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
371 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
372 		(exide << SIDL_EXIDE_SHIFT) |
373 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
374 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
375 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
376 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
377 	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
378 	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
379 
380 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
381 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
382 	mcp251x_spi_trans(priv->spi, 1);
383 }
384 
385 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
386 				int buf_idx)
387 {
388 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
389 
390 	if (mcp251x_is_2510(spi)) {
391 		int i, len;
392 
393 		for (i = 1; i < RXBDAT_OFF; i++)
394 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
395 
396 		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
397 		for (; i < (RXBDAT_OFF + len); i++)
398 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
399 	} else {
400 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
401 		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
402 		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
403 	}
404 }
405 
406 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
407 {
408 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
409 	struct sk_buff *skb;
410 	struct can_frame *frame;
411 	u8 buf[SPI_TRANSFER_BUF_LEN];
412 
413 	skb = alloc_can_skb(priv->net, &frame);
414 	if (!skb) {
415 		dev_err(&spi->dev, "cannot allocate RX skb\n");
416 		priv->net->stats.rx_dropped++;
417 		return;
418 	}
419 
420 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
421 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
422 		/* Extended ID format */
423 		frame->can_id = CAN_EFF_FLAG;
424 		frame->can_id |=
425 			/* Extended ID part */
426 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
427 			SET_BYTE(buf[RXBEID8_OFF], 1) |
428 			SET_BYTE(buf[RXBEID0_OFF], 0) |
429 			/* Standard ID part */
430 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
431 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
432 		/* Remote transmission request */
433 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
434 			frame->can_id |= CAN_RTR_FLAG;
435 	} else {
436 		/* Standard ID format */
437 		frame->can_id =
438 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
439 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
440 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
441 			frame->can_id |= CAN_RTR_FLAG;
442 	}
443 	/* Data length */
444 	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
445 	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
446 
447 	priv->net->stats.rx_packets++;
448 	priv->net->stats.rx_bytes += frame->can_dlc;
449 
450 	can_led_event(priv->net, CAN_LED_EVENT_RX);
451 
452 	netif_rx_ni(skb);
453 }
454 
455 static void mcp251x_hw_sleep(struct spi_device *spi)
456 {
457 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
458 }
459 
460 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
461 					   struct net_device *net)
462 {
463 	struct mcp251x_priv *priv = netdev_priv(net);
464 	struct spi_device *spi = priv->spi;
465 
466 	if (priv->tx_skb || priv->tx_len) {
467 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
468 		return NETDEV_TX_BUSY;
469 	}
470 
471 	if (can_dropped_invalid_skb(net, skb))
472 		return NETDEV_TX_OK;
473 
474 	netif_stop_queue(net);
475 	priv->tx_skb = skb;
476 	queue_work(priv->wq, &priv->tx_work);
477 
478 	return NETDEV_TX_OK;
479 }
480 
481 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
482 {
483 	struct mcp251x_priv *priv = netdev_priv(net);
484 
485 	switch (mode) {
486 	case CAN_MODE_START:
487 		mcp251x_clean(net);
488 		/* We have to delay work since SPI I/O may sleep */
489 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
490 		priv->restart_tx = 1;
491 		if (priv->can.restart_ms == 0)
492 			priv->after_suspend = AFTER_SUSPEND_RESTART;
493 		queue_work(priv->wq, &priv->restart_work);
494 		break;
495 	default:
496 		return -EOPNOTSUPP;
497 	}
498 
499 	return 0;
500 }
501 
502 static int mcp251x_set_normal_mode(struct spi_device *spi)
503 {
504 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
505 	unsigned long timeout;
506 
507 	/* Enable interrupts */
508 	mcp251x_write_reg(spi, CANINTE,
509 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
510 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
511 
512 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
513 		/* Put device into loopback mode */
514 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
515 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
516 		/* Put device into listen-only mode */
517 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
518 	} else {
519 		/* Put device into normal mode */
520 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
521 
522 		/* Wait for the device to enter normal mode */
523 		timeout = jiffies + HZ;
524 		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
525 			schedule();
526 			if (time_after(jiffies, timeout)) {
527 				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
528 				return -EBUSY;
529 			}
530 		}
531 	}
532 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
533 	return 0;
534 }
535 
536 static int mcp251x_do_set_bittiming(struct net_device *net)
537 {
538 	struct mcp251x_priv *priv = netdev_priv(net);
539 	struct can_bittiming *bt = &priv->can.bittiming;
540 	struct spi_device *spi = priv->spi;
541 
542 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
543 			  (bt->brp - 1));
544 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
545 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
546 			   CNF2_SAM : 0) |
547 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
548 			  (bt->prop_seg - 1));
549 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
550 			   (bt->phase_seg2 - 1));
551 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
552 		mcp251x_read_reg(spi, CNF1),
553 		mcp251x_read_reg(spi, CNF2),
554 		mcp251x_read_reg(spi, CNF3));
555 
556 	return 0;
557 }
558 
559 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
560 {
561 	mcp251x_do_set_bittiming(net);
562 
563 	mcp251x_write_reg(spi, RXBCTRL(0),
564 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
565 	mcp251x_write_reg(spi, RXBCTRL(1),
566 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
567 	return 0;
568 }
569 
570 static int mcp251x_hw_reset(struct spi_device *spi)
571 {
572 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
573 	unsigned long timeout;
574 	int ret;
575 
576 	/* Wait for oscillator startup timer after power up */
577 	mdelay(MCP251X_OST_DELAY_MS);
578 
579 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
580 	ret = mcp251x_spi_trans(spi, 1);
581 	if (ret)
582 		return ret;
583 
584 	/* Wait for oscillator startup timer after reset */
585 	mdelay(MCP251X_OST_DELAY_MS);
586 
587 	/* Wait for reset to finish */
588 	timeout = jiffies + HZ;
589 	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
590 	       CANCTRL_REQOP_CONF) {
591 		usleep_range(MCP251X_OST_DELAY_MS * 1000,
592 			     MCP251X_OST_DELAY_MS * 1000 * 2);
593 
594 		if (time_after(jiffies, timeout)) {
595 			dev_err(&spi->dev,
596 				"MCP251x didn't enter in conf mode after reset\n");
597 			return -EBUSY;
598 		}
599 	}
600 	return 0;
601 }
602 
603 static int mcp251x_hw_probe(struct spi_device *spi)
604 {
605 	u8 ctrl;
606 	int ret;
607 
608 	ret = mcp251x_hw_reset(spi);
609 	if (ret)
610 		return ret;
611 
612 	ctrl = mcp251x_read_reg(spi, CANCTRL);
613 
614 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
615 
616 	/* Check for power up default value */
617 	if ((ctrl & 0x17) != 0x07)
618 		return -ENODEV;
619 
620 	return 0;
621 }
622 
623 static int mcp251x_power_enable(struct regulator *reg, int enable)
624 {
625 	if (IS_ERR_OR_NULL(reg))
626 		return 0;
627 
628 	if (enable)
629 		return regulator_enable(reg);
630 	else
631 		return regulator_disable(reg);
632 }
633 
634 static int mcp251x_stop(struct net_device *net)
635 {
636 	struct mcp251x_priv *priv = netdev_priv(net);
637 	struct spi_device *spi = priv->spi;
638 
639 	close_candev(net);
640 
641 	priv->force_quit = 1;
642 	free_irq(spi->irq, priv);
643 	destroy_workqueue(priv->wq);
644 	priv->wq = NULL;
645 
646 	mutex_lock(&priv->mcp_lock);
647 
648 	/* Disable and clear pending interrupts */
649 	mcp251x_write_reg(spi, CANINTE, 0x00);
650 	mcp251x_write_reg(spi, CANINTF, 0x00);
651 
652 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
653 	mcp251x_clean(net);
654 
655 	mcp251x_hw_sleep(spi);
656 
657 	mcp251x_power_enable(priv->transceiver, 0);
658 
659 	priv->can.state = CAN_STATE_STOPPED;
660 
661 	mutex_unlock(&priv->mcp_lock);
662 
663 	can_led_event(net, CAN_LED_EVENT_STOP);
664 
665 	return 0;
666 }
667 
668 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
669 {
670 	struct sk_buff *skb;
671 	struct can_frame *frame;
672 
673 	skb = alloc_can_err_skb(net, &frame);
674 	if (skb) {
675 		frame->can_id |= can_id;
676 		frame->data[1] = data1;
677 		netif_rx_ni(skb);
678 	} else {
679 		netdev_err(net, "cannot allocate error skb\n");
680 	}
681 }
682 
683 static void mcp251x_tx_work_handler(struct work_struct *ws)
684 {
685 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
686 						 tx_work);
687 	struct spi_device *spi = priv->spi;
688 	struct net_device *net = priv->net;
689 	struct can_frame *frame;
690 
691 	mutex_lock(&priv->mcp_lock);
692 	if (priv->tx_skb) {
693 		if (priv->can.state == CAN_STATE_BUS_OFF) {
694 			mcp251x_clean(net);
695 		} else {
696 			frame = (struct can_frame *)priv->tx_skb->data;
697 
698 			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
699 				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
700 			mcp251x_hw_tx(spi, frame, 0);
701 			priv->tx_len = 1 + frame->can_dlc;
702 			can_put_echo_skb(priv->tx_skb, net, 0);
703 			priv->tx_skb = NULL;
704 		}
705 	}
706 	mutex_unlock(&priv->mcp_lock);
707 }
708 
709 static void mcp251x_restart_work_handler(struct work_struct *ws)
710 {
711 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
712 						 restart_work);
713 	struct spi_device *spi = priv->spi;
714 	struct net_device *net = priv->net;
715 
716 	mutex_lock(&priv->mcp_lock);
717 	if (priv->after_suspend) {
718 		mcp251x_hw_reset(spi);
719 		mcp251x_setup(net, spi);
720 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
721 			mcp251x_set_normal_mode(spi);
722 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
723 			netif_device_attach(net);
724 			mcp251x_clean(net);
725 			mcp251x_set_normal_mode(spi);
726 			netif_wake_queue(net);
727 		} else {
728 			mcp251x_hw_sleep(spi);
729 		}
730 		priv->after_suspend = 0;
731 		priv->force_quit = 0;
732 	}
733 
734 	if (priv->restart_tx) {
735 		priv->restart_tx = 0;
736 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
737 		mcp251x_clean(net);
738 		netif_wake_queue(net);
739 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
740 	}
741 	mutex_unlock(&priv->mcp_lock);
742 }
743 
744 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
745 {
746 	struct mcp251x_priv *priv = dev_id;
747 	struct spi_device *spi = priv->spi;
748 	struct net_device *net = priv->net;
749 
750 	mutex_lock(&priv->mcp_lock);
751 	while (!priv->force_quit) {
752 		enum can_state new_state;
753 		u8 intf, eflag;
754 		u8 clear_intf = 0;
755 		int can_id = 0, data1 = 0;
756 
757 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
758 
759 		/* mask out flags we don't care about */
760 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
761 
762 		/* receive buffer 0 */
763 		if (intf & CANINTF_RX0IF) {
764 			mcp251x_hw_rx(spi, 0);
765 			/* Free one buffer ASAP
766 			 * (The MCP2515/25625 does this automatically.)
767 			 */
768 			if (mcp251x_is_2510(spi))
769 				mcp251x_write_bits(spi, CANINTF,
770 						   CANINTF_RX0IF, 0x00);
771 		}
772 
773 		/* receive buffer 1 */
774 		if (intf & CANINTF_RX1IF) {
775 			mcp251x_hw_rx(spi, 1);
776 			/* The MCP2515/25625 does this automatically. */
777 			if (mcp251x_is_2510(spi))
778 				clear_intf |= CANINTF_RX1IF;
779 		}
780 
781 		/* any error or tx interrupt we need to clear? */
782 		if (intf & (CANINTF_ERR | CANINTF_TX))
783 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
784 		if (clear_intf)
785 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
786 
787 		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
788 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
789 
790 		/* Update can state */
791 		if (eflag & EFLG_TXBO) {
792 			new_state = CAN_STATE_BUS_OFF;
793 			can_id |= CAN_ERR_BUSOFF;
794 		} else if (eflag & EFLG_TXEP) {
795 			new_state = CAN_STATE_ERROR_PASSIVE;
796 			can_id |= CAN_ERR_CRTL;
797 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
798 		} else if (eflag & EFLG_RXEP) {
799 			new_state = CAN_STATE_ERROR_PASSIVE;
800 			can_id |= CAN_ERR_CRTL;
801 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
802 		} else if (eflag & EFLG_TXWAR) {
803 			new_state = CAN_STATE_ERROR_WARNING;
804 			can_id |= CAN_ERR_CRTL;
805 			data1 |= CAN_ERR_CRTL_TX_WARNING;
806 		} else if (eflag & EFLG_RXWAR) {
807 			new_state = CAN_STATE_ERROR_WARNING;
808 			can_id |= CAN_ERR_CRTL;
809 			data1 |= CAN_ERR_CRTL_RX_WARNING;
810 		} else {
811 			new_state = CAN_STATE_ERROR_ACTIVE;
812 		}
813 
814 		/* Update can state statistics */
815 		switch (priv->can.state) {
816 		case CAN_STATE_ERROR_ACTIVE:
817 			if (new_state >= CAN_STATE_ERROR_WARNING &&
818 			    new_state <= CAN_STATE_BUS_OFF)
819 				priv->can.can_stats.error_warning++;
820 			/* fall through */
821 		case CAN_STATE_ERROR_WARNING:
822 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
823 			    new_state <= CAN_STATE_BUS_OFF)
824 				priv->can.can_stats.error_passive++;
825 			break;
826 		default:
827 			break;
828 		}
829 		priv->can.state = new_state;
830 
831 		if (intf & CANINTF_ERRIF) {
832 			/* Handle overflow counters */
833 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
834 				if (eflag & EFLG_RX0OVR) {
835 					net->stats.rx_over_errors++;
836 					net->stats.rx_errors++;
837 				}
838 				if (eflag & EFLG_RX1OVR) {
839 					net->stats.rx_over_errors++;
840 					net->stats.rx_errors++;
841 				}
842 				can_id |= CAN_ERR_CRTL;
843 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
844 			}
845 			mcp251x_error_skb(net, can_id, data1);
846 		}
847 
848 		if (priv->can.state == CAN_STATE_BUS_OFF) {
849 			if (priv->can.restart_ms == 0) {
850 				priv->force_quit = 1;
851 				priv->can.can_stats.bus_off++;
852 				can_bus_off(net);
853 				mcp251x_hw_sleep(spi);
854 				break;
855 			}
856 		}
857 
858 		if (intf == 0)
859 			break;
860 
861 		if (intf & CANINTF_TX) {
862 			net->stats.tx_packets++;
863 			net->stats.tx_bytes += priv->tx_len - 1;
864 			can_led_event(net, CAN_LED_EVENT_TX);
865 			if (priv->tx_len) {
866 				can_get_echo_skb(net, 0);
867 				priv->tx_len = 0;
868 			}
869 			netif_wake_queue(net);
870 		}
871 	}
872 	mutex_unlock(&priv->mcp_lock);
873 	return IRQ_HANDLED;
874 }
875 
876 static int mcp251x_open(struct net_device *net)
877 {
878 	struct mcp251x_priv *priv = netdev_priv(net);
879 	struct spi_device *spi = priv->spi;
880 	unsigned long flags = 0;
881 	int ret;
882 
883 	ret = open_candev(net);
884 	if (ret) {
885 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
886 		return ret;
887 	}
888 
889 	mutex_lock(&priv->mcp_lock);
890 	mcp251x_power_enable(priv->transceiver, 1);
891 
892 	priv->force_quit = 0;
893 	priv->tx_skb = NULL;
894 	priv->tx_len = 0;
895 
896 	if (!dev_fwnode(&spi->dev))
897 		flags = IRQF_TRIGGER_FALLING;
898 
899 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
900 				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
901 				   priv);
902 	if (ret) {
903 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
904 		goto out_close;
905 	}
906 
907 	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
908 				   0);
909 	if (!priv->wq) {
910 		ret = -ENOMEM;
911 		goto out_clean;
912 	}
913 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
914 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
915 
916 	ret = mcp251x_hw_reset(spi);
917 	if (ret)
918 		goto out_free_wq;
919 	ret = mcp251x_setup(net, spi);
920 	if (ret)
921 		goto out_free_wq;
922 	ret = mcp251x_set_normal_mode(spi);
923 	if (ret)
924 		goto out_free_wq;
925 
926 	can_led_event(net, CAN_LED_EVENT_OPEN);
927 
928 	netif_wake_queue(net);
929 	mutex_unlock(&priv->mcp_lock);
930 
931 	return 0;
932 
933 out_free_wq:
934 	destroy_workqueue(priv->wq);
935 out_clean:
936 	free_irq(spi->irq, priv);
937 	mcp251x_hw_sleep(spi);
938 out_close:
939 	mcp251x_power_enable(priv->transceiver, 0);
940 	close_candev(net);
941 	mutex_unlock(&priv->mcp_lock);
942 	return ret;
943 }
944 
945 static const struct net_device_ops mcp251x_netdev_ops = {
946 	.ndo_open = mcp251x_open,
947 	.ndo_stop = mcp251x_stop,
948 	.ndo_start_xmit = mcp251x_hard_start_xmit,
949 	.ndo_change_mtu = can_change_mtu,
950 };
951 
952 static const struct of_device_id mcp251x_of_match[] = {
953 	{
954 		.compatible	= "microchip,mcp2510",
955 		.data		= (void *)CAN_MCP251X_MCP2510,
956 	},
957 	{
958 		.compatible	= "microchip,mcp2515",
959 		.data		= (void *)CAN_MCP251X_MCP2515,
960 	},
961 	{
962 		.compatible	= "microchip,mcp25625",
963 		.data		= (void *)CAN_MCP251X_MCP25625,
964 	},
965 	{ }
966 };
967 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
968 
969 static const struct spi_device_id mcp251x_id_table[] = {
970 	{
971 		.name		= "mcp2510",
972 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
973 	},
974 	{
975 		.name		= "mcp2515",
976 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
977 	},
978 	{
979 		.name		= "mcp25625",
980 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
981 	},
982 	{ }
983 };
984 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
985 
986 static int mcp251x_can_probe(struct spi_device *spi)
987 {
988 	const void *match = device_get_match_data(&spi->dev);
989 	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
990 	struct net_device *net;
991 	struct mcp251x_priv *priv;
992 	struct clk *clk;
993 	int freq, ret;
994 
995 	clk = devm_clk_get_optional(&spi->dev, NULL);
996 	if (IS_ERR(clk))
997 		return PTR_ERR(clk);
998 
999 	freq = clk_get_rate(clk);
1000 	if (freq == 0 && pdata)
1001 		freq = pdata->oscillator_frequency;
1002 
1003 	/* Sanity check */
1004 	if (freq < 1000000 || freq > 25000000)
1005 		return -ERANGE;
1006 
1007 	/* Allocate can/net device */
1008 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1009 	if (!net)
1010 		return -ENOMEM;
1011 
1012 	ret = clk_prepare_enable(clk);
1013 	if (ret)
1014 		goto out_free;
1015 
1016 	net->netdev_ops = &mcp251x_netdev_ops;
1017 	net->flags |= IFF_ECHO;
1018 
1019 	priv = netdev_priv(net);
1020 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1021 	priv->can.do_set_mode = mcp251x_do_set_mode;
1022 	priv->can.clock.freq = freq / 2;
1023 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1024 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1025 	if (match)
1026 		priv->model = (enum mcp251x_model)match;
1027 	else
1028 		priv->model = spi_get_device_id(spi)->driver_data;
1029 	priv->net = net;
1030 	priv->clk = clk;
1031 
1032 	spi_set_drvdata(spi, priv);
1033 
1034 	/* Configure the SPI bus */
1035 	spi->bits_per_word = 8;
1036 	if (mcp251x_is_2510(spi))
1037 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1038 	else
1039 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1040 	ret = spi_setup(spi);
1041 	if (ret)
1042 		goto out_clk;
1043 
1044 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1045 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1046 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1047 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1048 		ret = -EPROBE_DEFER;
1049 		goto out_clk;
1050 	}
1051 
1052 	ret = mcp251x_power_enable(priv->power, 1);
1053 	if (ret)
1054 		goto out_clk;
1055 
1056 	priv->spi = spi;
1057 	mutex_init(&priv->mcp_lock);
1058 
1059 	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1060 					GFP_KERNEL);
1061 	if (!priv->spi_tx_buf) {
1062 		ret = -ENOMEM;
1063 		goto error_probe;
1064 	}
1065 
1066 	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1067 					GFP_KERNEL);
1068 	if (!priv->spi_rx_buf) {
1069 		ret = -ENOMEM;
1070 		goto error_probe;
1071 	}
1072 
1073 	SET_NETDEV_DEV(net, &spi->dev);
1074 
1075 	/* Here is OK to not lock the MCP, no one knows about it yet */
1076 	ret = mcp251x_hw_probe(spi);
1077 	if (ret) {
1078 		if (ret == -ENODEV)
1079 			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1080 				priv->model);
1081 		goto error_probe;
1082 	}
1083 
1084 	mcp251x_hw_sleep(spi);
1085 
1086 	ret = register_candev(net);
1087 	if (ret)
1088 		goto error_probe;
1089 
1090 	devm_can_led_init(net);
1091 
1092 	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1093 	return 0;
1094 
1095 error_probe:
1096 	mcp251x_power_enable(priv->power, 0);
1097 
1098 out_clk:
1099 	clk_disable_unprepare(clk);
1100 
1101 out_free:
1102 	free_candev(net);
1103 
1104 	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1105 	return ret;
1106 }
1107 
1108 static int mcp251x_can_remove(struct spi_device *spi)
1109 {
1110 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1111 	struct net_device *net = priv->net;
1112 
1113 	unregister_candev(net);
1114 
1115 	mcp251x_power_enable(priv->power, 0);
1116 
1117 	clk_disable_unprepare(priv->clk);
1118 
1119 	free_candev(net);
1120 
1121 	return 0;
1122 }
1123 
1124 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1125 {
1126 	struct spi_device *spi = to_spi_device(dev);
1127 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1128 	struct net_device *net = priv->net;
1129 
1130 	priv->force_quit = 1;
1131 	disable_irq(spi->irq);
1132 	/* Note: at this point neither IST nor workqueues are running.
1133 	 * open/stop cannot be called anyway so locking is not needed
1134 	 */
1135 	if (netif_running(net)) {
1136 		netif_device_detach(net);
1137 
1138 		mcp251x_hw_sleep(spi);
1139 		mcp251x_power_enable(priv->transceiver, 0);
1140 		priv->after_suspend = AFTER_SUSPEND_UP;
1141 	} else {
1142 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1143 	}
1144 
1145 	mcp251x_power_enable(priv->power, 0);
1146 	priv->after_suspend |= AFTER_SUSPEND_POWER;
1147 
1148 	return 0;
1149 }
1150 
1151 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1152 {
1153 	struct spi_device *spi = to_spi_device(dev);
1154 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1155 
1156 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1157 		mcp251x_power_enable(priv->power, 1);
1158 
1159 	if (priv->after_suspend & AFTER_SUSPEND_UP) {
1160 		mcp251x_power_enable(priv->transceiver, 1);
1161 		queue_work(priv->wq, &priv->restart_work);
1162 	} else {
1163 		priv->after_suspend = 0;
1164 	}
1165 
1166 	priv->force_quit = 0;
1167 	enable_irq(spi->irq);
1168 	return 0;
1169 }
1170 
1171 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1172 	mcp251x_can_resume);
1173 
1174 static struct spi_driver mcp251x_can_driver = {
1175 	.driver = {
1176 		.name = DEVICE_NAME,
1177 		.of_match_table = mcp251x_of_match,
1178 		.pm = &mcp251x_can_pm_ops,
1179 	},
1180 	.id_table = mcp251x_id_table,
1181 	.probe = mcp251x_can_probe,
1182 	.remove = mcp251x_can_remove,
1183 };
1184 module_spi_driver(mcp251x_can_driver);
1185 
1186 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1187 	      "Christian Pellegrin <chripell@evolware.org>");
1188 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1189 MODULE_LICENSE("GPL v2");
1190