xref: /openbmc/linux/drivers/net/can/spi/mcp251x.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  *
21  * Your platform definition file should specify something like:
22  *
23  * static struct mcp251x_platform_data mcp251x_info = {
24  *         .oscillator_frequency = 8000000,
25  * };
26  *
27  * static struct spi_board_info spi_board_info[] = {
28  *         {
29  *                 .modalias = "mcp2510",
30  *			// "mcp2515" or "mcp25625" depending on your controller
31  *                 .platform_data = &mcp251x_info,
32  *                 .irq = IRQ_EINT13,
33  *                 .max_speed_hz = 2*1000*1000,
34  *                 .chip_select = 2,
35  *         },
36  * };
37  *
38  * Please see mcp251x.h for a description of the fields in
39  * struct mcp251x_platform_data.
40  */
41 
42 #include <linux/can/core.h>
43 #include <linux/can/dev.h>
44 #include <linux/can/led.h>
45 #include <linux/can/platform/mcp251x.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/device.h>
50 #include <linux/freezer.h>
51 #include <linux/interrupt.h>
52 #include <linux/io.h>
53 #include <linux/kernel.h>
54 #include <linux/module.h>
55 #include <linux/netdevice.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/platform_device.h>
59 #include <linux/slab.h>
60 #include <linux/spi/spi.h>
61 #include <linux/uaccess.h>
62 #include <linux/regulator/consumer.h>
63 
64 /* SPI interface instruction set */
65 #define INSTRUCTION_WRITE	0x02
66 #define INSTRUCTION_READ	0x03
67 #define INSTRUCTION_BIT_MODIFY	0x05
68 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
69 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
70 #define INSTRUCTION_RESET	0xC0
71 #define RTS_TXB0		0x01
72 #define RTS_TXB1		0x02
73 #define RTS_TXB2		0x04
74 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
75 
76 /* MPC251x registers */
77 #define CANSTAT	      0x0e
78 #define CANCTRL	      0x0f
79 #  define CANCTRL_REQOP_MASK	    0xe0
80 #  define CANCTRL_REQOP_CONF	    0x80
81 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
82 #  define CANCTRL_REQOP_LOOPBACK    0x40
83 #  define CANCTRL_REQOP_SLEEP	    0x20
84 #  define CANCTRL_REQOP_NORMAL	    0x00
85 #  define CANCTRL_OSM		    0x08
86 #  define CANCTRL_ABAT		    0x10
87 #define TEC	      0x1c
88 #define REC	      0x1d
89 #define CNF1	      0x2a
90 #  define CNF1_SJW_SHIFT   6
91 #define CNF2	      0x29
92 #  define CNF2_BTLMODE	   0x80
93 #  define CNF2_SAM         0x40
94 #  define CNF2_PS1_SHIFT   3
95 #define CNF3	      0x28
96 #  define CNF3_SOF	   0x08
97 #  define CNF3_WAKFIL	   0x04
98 #  define CNF3_PHSEG2_MASK 0x07
99 #define CANINTE	      0x2b
100 #  define CANINTE_MERRE 0x80
101 #  define CANINTE_WAKIE 0x40
102 #  define CANINTE_ERRIE 0x20
103 #  define CANINTE_TX2IE 0x10
104 #  define CANINTE_TX1IE 0x08
105 #  define CANINTE_TX0IE 0x04
106 #  define CANINTE_RX1IE 0x02
107 #  define CANINTE_RX0IE 0x01
108 #define CANINTF	      0x2c
109 #  define CANINTF_MERRF 0x80
110 #  define CANINTF_WAKIF 0x40
111 #  define CANINTF_ERRIF 0x20
112 #  define CANINTF_TX2IF 0x10
113 #  define CANINTF_TX1IF 0x08
114 #  define CANINTF_TX0IF 0x04
115 #  define CANINTF_RX1IF 0x02
116 #  define CANINTF_RX0IF 0x01
117 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
118 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
119 #  define CANINTF_ERR (CANINTF_ERRIF)
120 #define EFLG	      0x2d
121 #  define EFLG_EWARN	0x01
122 #  define EFLG_RXWAR	0x02
123 #  define EFLG_TXWAR	0x04
124 #  define EFLG_RXEP	0x08
125 #  define EFLG_TXEP	0x10
126 #  define EFLG_TXBO	0x20
127 #  define EFLG_RX0OVR	0x40
128 #  define EFLG_RX1OVR	0x80
129 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
130 #  define TXBCTRL_ABTF	0x40
131 #  define TXBCTRL_MLOA	0x20
132 #  define TXBCTRL_TXERR 0x10
133 #  define TXBCTRL_TXREQ 0x08
134 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
135 #  define SIDH_SHIFT    3
136 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
137 #  define SIDL_SID_MASK    7
138 #  define SIDL_SID_SHIFT   5
139 #  define SIDL_EXIDE_SHIFT 3
140 #  define SIDL_EID_SHIFT   16
141 #  define SIDL_EID_MASK    3
142 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
143 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
144 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
145 #  define DLC_RTR_SHIFT    6
146 #define TXBCTRL_OFF 0
147 #define TXBSIDH_OFF 1
148 #define TXBSIDL_OFF 2
149 #define TXBEID8_OFF 3
150 #define TXBEID0_OFF 4
151 #define TXBDLC_OFF  5
152 #define TXBDAT_OFF  6
153 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
154 #  define RXBCTRL_BUKT	0x04
155 #  define RXBCTRL_RXM0	0x20
156 #  define RXBCTRL_RXM1	0x40
157 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
158 #  define RXBSIDH_SHIFT 3
159 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
160 #  define RXBSIDL_IDE   0x08
161 #  define RXBSIDL_SRR   0x10
162 #  define RXBSIDL_EID   3
163 #  define RXBSIDL_SHIFT 5
164 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
165 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
166 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
167 #  define RXBDLC_LEN_MASK  0x0f
168 #  define RXBDLC_RTR       0x40
169 #define RXBCTRL_OFF 0
170 #define RXBSIDH_OFF 1
171 #define RXBSIDL_OFF 2
172 #define RXBEID8_OFF 3
173 #define RXBEID0_OFF 4
174 #define RXBDLC_OFF  5
175 #define RXBDAT_OFF  6
176 #define RXFSID(n) ((n < 3) ? 0 : 4)
177 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
178 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
179 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
180 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
181 #define RXMSIDH(n) ((n) * 4 + 0x20)
182 #define RXMSIDL(n) ((n) * 4 + 0x21)
183 #define RXMEID8(n) ((n) * 4 + 0x22)
184 #define RXMEID0(n) ((n) * 4 + 0x23)
185 
186 #define GET_BYTE(val, byte)			\
187 	(((val) >> ((byte) * 8)) & 0xff)
188 #define SET_BYTE(val, byte)			\
189 	(((val) & 0xff) << ((byte) * 8))
190 
191 /* Buffer size required for the largest SPI transfer (i.e., reading a
192  * frame)
193  */
194 #define CAN_FRAME_MAX_DATA_LEN	8
195 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
196 #define CAN_FRAME_MAX_BITS	128
197 
198 #define TX_ECHO_SKB_MAX	1
199 
200 #define MCP251X_OST_DELAY_MS	(5)
201 
202 #define DEVICE_NAME "mcp251x"
203 
204 static const struct can_bittiming_const mcp251x_bittiming_const = {
205 	.name = DEVICE_NAME,
206 	.tseg1_min = 3,
207 	.tseg1_max = 16,
208 	.tseg2_min = 2,
209 	.tseg2_max = 8,
210 	.sjw_max = 4,
211 	.brp_min = 1,
212 	.brp_max = 64,
213 	.brp_inc = 1,
214 };
215 
216 enum mcp251x_model {
217 	CAN_MCP251X_MCP2510	= 0x2510,
218 	CAN_MCP251X_MCP2515	= 0x2515,
219 	CAN_MCP251X_MCP25625	= 0x25625,
220 };
221 
222 struct mcp251x_priv {
223 	struct can_priv	   can;
224 	struct net_device *net;
225 	struct spi_device *spi;
226 	enum mcp251x_model model;
227 
228 	struct mutex mcp_lock; /* SPI device lock */
229 
230 	u8 *spi_tx_buf;
231 	u8 *spi_rx_buf;
232 
233 	struct sk_buff *tx_skb;
234 	int tx_len;
235 
236 	struct workqueue_struct *wq;
237 	struct work_struct tx_work;
238 	struct work_struct restart_work;
239 
240 	int force_quit;
241 	int after_suspend;
242 #define AFTER_SUSPEND_UP 1
243 #define AFTER_SUSPEND_DOWN 2
244 #define AFTER_SUSPEND_POWER 4
245 #define AFTER_SUSPEND_RESTART 8
246 	int restart_tx;
247 	struct regulator *power;
248 	struct regulator *transceiver;
249 	struct clk *clk;
250 };
251 
252 #define MCP251X_IS(_model) \
253 static inline int mcp251x_is_##_model(struct spi_device *spi) \
254 { \
255 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
256 	return priv->model == CAN_MCP251X_MCP##_model; \
257 }
258 
259 MCP251X_IS(2510);
260 
261 static void mcp251x_clean(struct net_device *net)
262 {
263 	struct mcp251x_priv *priv = netdev_priv(net);
264 
265 	if (priv->tx_skb || priv->tx_len)
266 		net->stats.tx_errors++;
267 	dev_kfree_skb(priv->tx_skb);
268 	if (priv->tx_len)
269 		can_free_echo_skb(priv->net, 0);
270 	priv->tx_skb = NULL;
271 	priv->tx_len = 0;
272 }
273 
274 /* Note about handling of error return of mcp251x_spi_trans: accessing
275  * registers via SPI is not really different conceptually than using
276  * normal I/O assembler instructions, although it's much more
277  * complicated from a practical POV. So it's not advisable to always
278  * check the return value of this function. Imagine that every
279  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
280  * error();", it would be a great mess (well there are some situation
281  * when exception handling C++ like could be useful after all). So we
282  * just check that transfers are OK at the beginning of our
283  * conversation with the chip and to avoid doing really nasty things
284  * (like injecting bogus packets in the network stack).
285  */
286 static int mcp251x_spi_trans(struct spi_device *spi, int len)
287 {
288 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
289 	struct spi_transfer t = {
290 		.tx_buf = priv->spi_tx_buf,
291 		.rx_buf = priv->spi_rx_buf,
292 		.len = len,
293 		.cs_change = 0,
294 	};
295 	struct spi_message m;
296 	int ret;
297 
298 	spi_message_init(&m);
299 	spi_message_add_tail(&t, &m);
300 
301 	ret = spi_sync(spi, &m);
302 	if (ret)
303 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
304 	return ret;
305 }
306 
307 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
308 {
309 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
310 	u8 val = 0;
311 
312 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
313 	priv->spi_tx_buf[1] = reg;
314 
315 	mcp251x_spi_trans(spi, 3);
316 	val = priv->spi_rx_buf[2];
317 
318 	return val;
319 }
320 
321 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
322 {
323 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
324 
325 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
326 	priv->spi_tx_buf[1] = reg;
327 
328 	mcp251x_spi_trans(spi, 4);
329 
330 	*v1 = priv->spi_rx_buf[2];
331 	*v2 = priv->spi_rx_buf[3];
332 }
333 
334 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
335 {
336 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
337 
338 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
339 	priv->spi_tx_buf[1] = reg;
340 	priv->spi_tx_buf[2] = val;
341 
342 	mcp251x_spi_trans(spi, 3);
343 }
344 
345 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
346 			       u8 mask, u8 val)
347 {
348 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
349 
350 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
351 	priv->spi_tx_buf[1] = reg;
352 	priv->spi_tx_buf[2] = mask;
353 	priv->spi_tx_buf[3] = val;
354 
355 	mcp251x_spi_trans(spi, 4);
356 }
357 
358 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
359 				int len, int tx_buf_idx)
360 {
361 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
362 
363 	if (mcp251x_is_2510(spi)) {
364 		int i;
365 
366 		for (i = 1; i < TXBDAT_OFF + len; i++)
367 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
368 					  buf[i]);
369 	} else {
370 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
371 		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
372 	}
373 }
374 
375 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
376 			  int tx_buf_idx)
377 {
378 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
379 	u32 sid, eid, exide, rtr;
380 	u8 buf[SPI_TRANSFER_BUF_LEN];
381 
382 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
383 	if (exide)
384 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
385 	else
386 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
387 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
388 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
389 
390 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
391 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
392 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
393 		(exide << SIDL_EXIDE_SHIFT) |
394 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
395 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
396 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
397 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
398 	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
399 	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
400 
401 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
402 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
403 	mcp251x_spi_trans(priv->spi, 1);
404 }
405 
406 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
407 				int buf_idx)
408 {
409 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
410 
411 	if (mcp251x_is_2510(spi)) {
412 		int i, len;
413 
414 		for (i = 1; i < RXBDAT_OFF; i++)
415 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
416 
417 		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
418 		for (; i < (RXBDAT_OFF + len); i++)
419 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
420 	} else {
421 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
422 		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
423 		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
424 	}
425 }
426 
427 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
428 {
429 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
430 	struct sk_buff *skb;
431 	struct can_frame *frame;
432 	u8 buf[SPI_TRANSFER_BUF_LEN];
433 
434 	skb = alloc_can_skb(priv->net, &frame);
435 	if (!skb) {
436 		dev_err(&spi->dev, "cannot allocate RX skb\n");
437 		priv->net->stats.rx_dropped++;
438 		return;
439 	}
440 
441 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
442 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
443 		/* Extended ID format */
444 		frame->can_id = CAN_EFF_FLAG;
445 		frame->can_id |=
446 			/* Extended ID part */
447 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
448 			SET_BYTE(buf[RXBEID8_OFF], 1) |
449 			SET_BYTE(buf[RXBEID0_OFF], 0) |
450 			/* Standard ID part */
451 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
452 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
453 		/* Remote transmission request */
454 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
455 			frame->can_id |= CAN_RTR_FLAG;
456 	} else {
457 		/* Standard ID format */
458 		frame->can_id =
459 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
460 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
461 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
462 			frame->can_id |= CAN_RTR_FLAG;
463 	}
464 	/* Data length */
465 	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
466 	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
467 
468 	priv->net->stats.rx_packets++;
469 	priv->net->stats.rx_bytes += frame->can_dlc;
470 
471 	can_led_event(priv->net, CAN_LED_EVENT_RX);
472 
473 	netif_rx_ni(skb);
474 }
475 
476 static void mcp251x_hw_sleep(struct spi_device *spi)
477 {
478 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
479 }
480 
481 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
482 					   struct net_device *net)
483 {
484 	struct mcp251x_priv *priv = netdev_priv(net);
485 	struct spi_device *spi = priv->spi;
486 
487 	if (priv->tx_skb || priv->tx_len) {
488 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
489 		return NETDEV_TX_BUSY;
490 	}
491 
492 	if (can_dropped_invalid_skb(net, skb))
493 		return NETDEV_TX_OK;
494 
495 	netif_stop_queue(net);
496 	priv->tx_skb = skb;
497 	queue_work(priv->wq, &priv->tx_work);
498 
499 	return NETDEV_TX_OK;
500 }
501 
502 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
503 {
504 	struct mcp251x_priv *priv = netdev_priv(net);
505 
506 	switch (mode) {
507 	case CAN_MODE_START:
508 		mcp251x_clean(net);
509 		/* We have to delay work since SPI I/O may sleep */
510 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
511 		priv->restart_tx = 1;
512 		if (priv->can.restart_ms == 0)
513 			priv->after_suspend = AFTER_SUSPEND_RESTART;
514 		queue_work(priv->wq, &priv->restart_work);
515 		break;
516 	default:
517 		return -EOPNOTSUPP;
518 	}
519 
520 	return 0;
521 }
522 
523 static int mcp251x_set_normal_mode(struct spi_device *spi)
524 {
525 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
526 	unsigned long timeout;
527 
528 	/* Enable interrupts */
529 	mcp251x_write_reg(spi, CANINTE,
530 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
531 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
532 
533 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
534 		/* Put device into loopback mode */
535 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
536 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
537 		/* Put device into listen-only mode */
538 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
539 	} else {
540 		/* Put device into normal mode */
541 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
542 
543 		/* Wait for the device to enter normal mode */
544 		timeout = jiffies + HZ;
545 		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
546 			schedule();
547 			if (time_after(jiffies, timeout)) {
548 				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
549 				return -EBUSY;
550 			}
551 		}
552 	}
553 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
554 	return 0;
555 }
556 
557 static int mcp251x_do_set_bittiming(struct net_device *net)
558 {
559 	struct mcp251x_priv *priv = netdev_priv(net);
560 	struct can_bittiming *bt = &priv->can.bittiming;
561 	struct spi_device *spi = priv->spi;
562 
563 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
564 			  (bt->brp - 1));
565 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
566 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
567 			   CNF2_SAM : 0) |
568 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
569 			  (bt->prop_seg - 1));
570 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
571 			   (bt->phase_seg2 - 1));
572 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
573 		mcp251x_read_reg(spi, CNF1),
574 		mcp251x_read_reg(spi, CNF2),
575 		mcp251x_read_reg(spi, CNF3));
576 
577 	return 0;
578 }
579 
580 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
581 {
582 	mcp251x_do_set_bittiming(net);
583 
584 	mcp251x_write_reg(spi, RXBCTRL(0),
585 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
586 	mcp251x_write_reg(spi, RXBCTRL(1),
587 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
588 	return 0;
589 }
590 
591 static int mcp251x_hw_reset(struct spi_device *spi)
592 {
593 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
594 	unsigned long timeout;
595 	int ret;
596 
597 	/* Wait for oscillator startup timer after power up */
598 	mdelay(MCP251X_OST_DELAY_MS);
599 
600 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
601 	ret = mcp251x_spi_trans(spi, 1);
602 	if (ret)
603 		return ret;
604 
605 	/* Wait for oscillator startup timer after reset */
606 	mdelay(MCP251X_OST_DELAY_MS);
607 
608 	/* Wait for reset to finish */
609 	timeout = jiffies + HZ;
610 	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
611 	       CANCTRL_REQOP_CONF) {
612 		usleep_range(MCP251X_OST_DELAY_MS * 1000,
613 			     MCP251X_OST_DELAY_MS * 1000 * 2);
614 
615 		if (time_after(jiffies, timeout)) {
616 			dev_err(&spi->dev,
617 				"MCP251x didn't enter in conf mode after reset\n");
618 			return -EBUSY;
619 		}
620 	}
621 	return 0;
622 }
623 
624 static int mcp251x_hw_probe(struct spi_device *spi)
625 {
626 	u8 ctrl;
627 	int ret;
628 
629 	ret = mcp251x_hw_reset(spi);
630 	if (ret)
631 		return ret;
632 
633 	ctrl = mcp251x_read_reg(spi, CANCTRL);
634 
635 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
636 
637 	/* Check for power up default value */
638 	if ((ctrl & 0x17) != 0x07)
639 		return -ENODEV;
640 
641 	return 0;
642 }
643 
644 static int mcp251x_power_enable(struct regulator *reg, int enable)
645 {
646 	if (IS_ERR_OR_NULL(reg))
647 		return 0;
648 
649 	if (enable)
650 		return regulator_enable(reg);
651 	else
652 		return regulator_disable(reg);
653 }
654 
655 static int mcp251x_stop(struct net_device *net)
656 {
657 	struct mcp251x_priv *priv = netdev_priv(net);
658 	struct spi_device *spi = priv->spi;
659 
660 	close_candev(net);
661 
662 	priv->force_quit = 1;
663 	free_irq(spi->irq, priv);
664 	destroy_workqueue(priv->wq);
665 	priv->wq = NULL;
666 
667 	mutex_lock(&priv->mcp_lock);
668 
669 	/* Disable and clear pending interrupts */
670 	mcp251x_write_reg(spi, CANINTE, 0x00);
671 	mcp251x_write_reg(spi, CANINTF, 0x00);
672 
673 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
674 	mcp251x_clean(net);
675 
676 	mcp251x_hw_sleep(spi);
677 
678 	mcp251x_power_enable(priv->transceiver, 0);
679 
680 	priv->can.state = CAN_STATE_STOPPED;
681 
682 	mutex_unlock(&priv->mcp_lock);
683 
684 	can_led_event(net, CAN_LED_EVENT_STOP);
685 
686 	return 0;
687 }
688 
689 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
690 {
691 	struct sk_buff *skb;
692 	struct can_frame *frame;
693 
694 	skb = alloc_can_err_skb(net, &frame);
695 	if (skb) {
696 		frame->can_id |= can_id;
697 		frame->data[1] = data1;
698 		netif_rx_ni(skb);
699 	} else {
700 		netdev_err(net, "cannot allocate error skb\n");
701 	}
702 }
703 
704 static void mcp251x_tx_work_handler(struct work_struct *ws)
705 {
706 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
707 						 tx_work);
708 	struct spi_device *spi = priv->spi;
709 	struct net_device *net = priv->net;
710 	struct can_frame *frame;
711 
712 	mutex_lock(&priv->mcp_lock);
713 	if (priv->tx_skb) {
714 		if (priv->can.state == CAN_STATE_BUS_OFF) {
715 			mcp251x_clean(net);
716 		} else {
717 			frame = (struct can_frame *)priv->tx_skb->data;
718 
719 			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
720 				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
721 			mcp251x_hw_tx(spi, frame, 0);
722 			priv->tx_len = 1 + frame->can_dlc;
723 			can_put_echo_skb(priv->tx_skb, net, 0);
724 			priv->tx_skb = NULL;
725 		}
726 	}
727 	mutex_unlock(&priv->mcp_lock);
728 }
729 
730 static void mcp251x_restart_work_handler(struct work_struct *ws)
731 {
732 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
733 						 restart_work);
734 	struct spi_device *spi = priv->spi;
735 	struct net_device *net = priv->net;
736 
737 	mutex_lock(&priv->mcp_lock);
738 	if (priv->after_suspend) {
739 		mcp251x_hw_reset(spi);
740 		mcp251x_setup(net, spi);
741 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
742 			mcp251x_set_normal_mode(spi);
743 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
744 			netif_device_attach(net);
745 			mcp251x_clean(net);
746 			mcp251x_set_normal_mode(spi);
747 			netif_wake_queue(net);
748 		} else {
749 			mcp251x_hw_sleep(spi);
750 		}
751 		priv->after_suspend = 0;
752 		priv->force_quit = 0;
753 	}
754 
755 	if (priv->restart_tx) {
756 		priv->restart_tx = 0;
757 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
758 		mcp251x_clean(net);
759 		netif_wake_queue(net);
760 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
761 	}
762 	mutex_unlock(&priv->mcp_lock);
763 }
764 
765 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
766 {
767 	struct mcp251x_priv *priv = dev_id;
768 	struct spi_device *spi = priv->spi;
769 	struct net_device *net = priv->net;
770 
771 	mutex_lock(&priv->mcp_lock);
772 	while (!priv->force_quit) {
773 		enum can_state new_state;
774 		u8 intf, eflag;
775 		u8 clear_intf = 0;
776 		int can_id = 0, data1 = 0;
777 
778 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
779 
780 		/* mask out flags we don't care about */
781 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
782 
783 		/* receive buffer 0 */
784 		if (intf & CANINTF_RX0IF) {
785 			mcp251x_hw_rx(spi, 0);
786 			/* Free one buffer ASAP
787 			 * (The MCP2515/25625 does this automatically.)
788 			 */
789 			if (mcp251x_is_2510(spi))
790 				mcp251x_write_bits(spi, CANINTF,
791 						   CANINTF_RX0IF, 0x00);
792 		}
793 
794 		/* receive buffer 1 */
795 		if (intf & CANINTF_RX1IF) {
796 			mcp251x_hw_rx(spi, 1);
797 			/* The MCP2515/25625 does this automatically. */
798 			if (mcp251x_is_2510(spi))
799 				clear_intf |= CANINTF_RX1IF;
800 		}
801 
802 		/* any error or tx interrupt we need to clear? */
803 		if (intf & (CANINTF_ERR | CANINTF_TX))
804 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
805 		if (clear_intf)
806 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
807 
808 		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
809 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
810 
811 		/* Update can state */
812 		if (eflag & EFLG_TXBO) {
813 			new_state = CAN_STATE_BUS_OFF;
814 			can_id |= CAN_ERR_BUSOFF;
815 		} else if (eflag & EFLG_TXEP) {
816 			new_state = CAN_STATE_ERROR_PASSIVE;
817 			can_id |= CAN_ERR_CRTL;
818 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
819 		} else if (eflag & EFLG_RXEP) {
820 			new_state = CAN_STATE_ERROR_PASSIVE;
821 			can_id |= CAN_ERR_CRTL;
822 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
823 		} else if (eflag & EFLG_TXWAR) {
824 			new_state = CAN_STATE_ERROR_WARNING;
825 			can_id |= CAN_ERR_CRTL;
826 			data1 |= CAN_ERR_CRTL_TX_WARNING;
827 		} else if (eflag & EFLG_RXWAR) {
828 			new_state = CAN_STATE_ERROR_WARNING;
829 			can_id |= CAN_ERR_CRTL;
830 			data1 |= CAN_ERR_CRTL_RX_WARNING;
831 		} else {
832 			new_state = CAN_STATE_ERROR_ACTIVE;
833 		}
834 
835 		/* Update can state statistics */
836 		switch (priv->can.state) {
837 		case CAN_STATE_ERROR_ACTIVE:
838 			if (new_state >= CAN_STATE_ERROR_WARNING &&
839 			    new_state <= CAN_STATE_BUS_OFF)
840 				priv->can.can_stats.error_warning++;
841 			/* fall through */
842 		case CAN_STATE_ERROR_WARNING:
843 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
844 			    new_state <= CAN_STATE_BUS_OFF)
845 				priv->can.can_stats.error_passive++;
846 			break;
847 		default:
848 			break;
849 		}
850 		priv->can.state = new_state;
851 
852 		if (intf & CANINTF_ERRIF) {
853 			/* Handle overflow counters */
854 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
855 				if (eflag & EFLG_RX0OVR) {
856 					net->stats.rx_over_errors++;
857 					net->stats.rx_errors++;
858 				}
859 				if (eflag & EFLG_RX1OVR) {
860 					net->stats.rx_over_errors++;
861 					net->stats.rx_errors++;
862 				}
863 				can_id |= CAN_ERR_CRTL;
864 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
865 			}
866 			mcp251x_error_skb(net, can_id, data1);
867 		}
868 
869 		if (priv->can.state == CAN_STATE_BUS_OFF) {
870 			if (priv->can.restart_ms == 0) {
871 				priv->force_quit = 1;
872 				priv->can.can_stats.bus_off++;
873 				can_bus_off(net);
874 				mcp251x_hw_sleep(spi);
875 				break;
876 			}
877 		}
878 
879 		if (intf == 0)
880 			break;
881 
882 		if (intf & CANINTF_TX) {
883 			net->stats.tx_packets++;
884 			net->stats.tx_bytes += priv->tx_len - 1;
885 			can_led_event(net, CAN_LED_EVENT_TX);
886 			if (priv->tx_len) {
887 				can_get_echo_skb(net, 0);
888 				priv->tx_len = 0;
889 			}
890 			netif_wake_queue(net);
891 		}
892 	}
893 	mutex_unlock(&priv->mcp_lock);
894 	return IRQ_HANDLED;
895 }
896 
897 static int mcp251x_open(struct net_device *net)
898 {
899 	struct mcp251x_priv *priv = netdev_priv(net);
900 	struct spi_device *spi = priv->spi;
901 	unsigned long flags = 0;
902 	int ret;
903 
904 	ret = open_candev(net);
905 	if (ret) {
906 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
907 		return ret;
908 	}
909 
910 	mutex_lock(&priv->mcp_lock);
911 	mcp251x_power_enable(priv->transceiver, 1);
912 
913 	priv->force_quit = 0;
914 	priv->tx_skb = NULL;
915 	priv->tx_len = 0;
916 
917 	if (!spi->dev.of_node)
918 		flags = IRQF_TRIGGER_FALLING;
919 
920 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
921 				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
922 				   priv);
923 	if (ret) {
924 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
925 		goto out_close;
926 	}
927 
928 	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
929 				   0);
930 	if (!priv->wq) {
931 		ret = -ENOMEM;
932 		goto out_clean;
933 	}
934 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
935 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
936 
937 	ret = mcp251x_hw_reset(spi);
938 	if (ret)
939 		goto out_free_wq;
940 	ret = mcp251x_setup(net, spi);
941 	if (ret)
942 		goto out_free_wq;
943 	ret = mcp251x_set_normal_mode(spi);
944 	if (ret)
945 		goto out_free_wq;
946 
947 	can_led_event(net, CAN_LED_EVENT_OPEN);
948 
949 	netif_wake_queue(net);
950 	mutex_unlock(&priv->mcp_lock);
951 
952 	return 0;
953 
954 out_free_wq:
955 	destroy_workqueue(priv->wq);
956 out_clean:
957 	free_irq(spi->irq, priv);
958 	mcp251x_hw_sleep(spi);
959 out_close:
960 	mcp251x_power_enable(priv->transceiver, 0);
961 	close_candev(net);
962 	mutex_unlock(&priv->mcp_lock);
963 	return ret;
964 }
965 
966 static const struct net_device_ops mcp251x_netdev_ops = {
967 	.ndo_open = mcp251x_open,
968 	.ndo_stop = mcp251x_stop,
969 	.ndo_start_xmit = mcp251x_hard_start_xmit,
970 	.ndo_change_mtu = can_change_mtu,
971 };
972 
973 static const struct of_device_id mcp251x_of_match[] = {
974 	{
975 		.compatible	= "microchip,mcp2510",
976 		.data		= (void *)CAN_MCP251X_MCP2510,
977 	},
978 	{
979 		.compatible	= "microchip,mcp2515",
980 		.data		= (void *)CAN_MCP251X_MCP2515,
981 	},
982 	{
983 		.compatible	= "microchip,mcp25625",
984 		.data		= (void *)CAN_MCP251X_MCP25625,
985 	},
986 	{ }
987 };
988 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
989 
990 static const struct spi_device_id mcp251x_id_table[] = {
991 	{
992 		.name		= "mcp2510",
993 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
994 	},
995 	{
996 		.name		= "mcp2515",
997 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
998 	},
999 	{
1000 		.name		= "mcp25625",
1001 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1002 	},
1003 	{ }
1004 };
1005 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1006 
1007 static int mcp251x_can_probe(struct spi_device *spi)
1008 {
1009 	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1010 							   &spi->dev);
1011 	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1012 	struct net_device *net;
1013 	struct mcp251x_priv *priv;
1014 	struct clk *clk;
1015 	int freq, ret;
1016 
1017 	clk = devm_clk_get(&spi->dev, NULL);
1018 	if (IS_ERR(clk)) {
1019 		if (pdata)
1020 			freq = pdata->oscillator_frequency;
1021 		else
1022 			return PTR_ERR(clk);
1023 	} else {
1024 		freq = clk_get_rate(clk);
1025 	}
1026 
1027 	/* Sanity check */
1028 	if (freq < 1000000 || freq > 25000000)
1029 		return -ERANGE;
1030 
1031 	/* Allocate can/net device */
1032 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1033 	if (!net)
1034 		return -ENOMEM;
1035 
1036 	if (!IS_ERR(clk)) {
1037 		ret = clk_prepare_enable(clk);
1038 		if (ret)
1039 			goto out_free;
1040 	}
1041 
1042 	net->netdev_ops = &mcp251x_netdev_ops;
1043 	net->flags |= IFF_ECHO;
1044 
1045 	priv = netdev_priv(net);
1046 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1047 	priv->can.do_set_mode = mcp251x_do_set_mode;
1048 	priv->can.clock.freq = freq / 2;
1049 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1050 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1051 	if (of_id)
1052 		priv->model = (enum mcp251x_model)of_id->data;
1053 	else
1054 		priv->model = spi_get_device_id(spi)->driver_data;
1055 	priv->net = net;
1056 	priv->clk = clk;
1057 
1058 	spi_set_drvdata(spi, priv);
1059 
1060 	/* Configure the SPI bus */
1061 	spi->bits_per_word = 8;
1062 	if (mcp251x_is_2510(spi))
1063 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1064 	else
1065 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1066 	ret = spi_setup(spi);
1067 	if (ret)
1068 		goto out_clk;
1069 
1070 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1071 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1072 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1073 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1074 		ret = -EPROBE_DEFER;
1075 		goto out_clk;
1076 	}
1077 
1078 	ret = mcp251x_power_enable(priv->power, 1);
1079 	if (ret)
1080 		goto out_clk;
1081 
1082 	priv->spi = spi;
1083 	mutex_init(&priv->mcp_lock);
1084 
1085 	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1086 					GFP_KERNEL);
1087 	if (!priv->spi_tx_buf) {
1088 		ret = -ENOMEM;
1089 		goto error_probe;
1090 	}
1091 
1092 	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1093 					GFP_KERNEL);
1094 	if (!priv->spi_rx_buf) {
1095 		ret = -ENOMEM;
1096 		goto error_probe;
1097 	}
1098 
1099 	SET_NETDEV_DEV(net, &spi->dev);
1100 
1101 	/* Here is OK to not lock the MCP, no one knows about it yet */
1102 	ret = mcp251x_hw_probe(spi);
1103 	if (ret) {
1104 		if (ret == -ENODEV)
1105 			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1106 				priv->model);
1107 		goto error_probe;
1108 	}
1109 
1110 	mcp251x_hw_sleep(spi);
1111 
1112 	ret = register_candev(net);
1113 	if (ret)
1114 		goto error_probe;
1115 
1116 	devm_can_led_init(net);
1117 
1118 	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1119 	return 0;
1120 
1121 error_probe:
1122 	mcp251x_power_enable(priv->power, 0);
1123 
1124 out_clk:
1125 	if (!IS_ERR(clk))
1126 		clk_disable_unprepare(clk);
1127 
1128 out_free:
1129 	free_candev(net);
1130 
1131 	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1132 	return ret;
1133 }
1134 
1135 static int mcp251x_can_remove(struct spi_device *spi)
1136 {
1137 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1138 	struct net_device *net = priv->net;
1139 
1140 	unregister_candev(net);
1141 
1142 	mcp251x_power_enable(priv->power, 0);
1143 
1144 	if (!IS_ERR(priv->clk))
1145 		clk_disable_unprepare(priv->clk);
1146 
1147 	free_candev(net);
1148 
1149 	return 0;
1150 }
1151 
1152 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1153 {
1154 	struct spi_device *spi = to_spi_device(dev);
1155 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1156 	struct net_device *net = priv->net;
1157 
1158 	priv->force_quit = 1;
1159 	disable_irq(spi->irq);
1160 	/* Note: at this point neither IST nor workqueues are running.
1161 	 * open/stop cannot be called anyway so locking is not needed
1162 	 */
1163 	if (netif_running(net)) {
1164 		netif_device_detach(net);
1165 
1166 		mcp251x_hw_sleep(spi);
1167 		mcp251x_power_enable(priv->transceiver, 0);
1168 		priv->after_suspend = AFTER_SUSPEND_UP;
1169 	} else {
1170 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1171 	}
1172 
1173 	if (!IS_ERR_OR_NULL(priv->power)) {
1174 		regulator_disable(priv->power);
1175 		priv->after_suspend |= AFTER_SUSPEND_POWER;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1182 {
1183 	struct spi_device *spi = to_spi_device(dev);
1184 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1185 
1186 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1187 		mcp251x_power_enable(priv->power, 1);
1188 
1189 	if (priv->after_suspend & AFTER_SUSPEND_UP) {
1190 		mcp251x_power_enable(priv->transceiver, 1);
1191 		queue_work(priv->wq, &priv->restart_work);
1192 	} else {
1193 		priv->after_suspend = 0;
1194 	}
1195 
1196 	priv->force_quit = 0;
1197 	enable_irq(spi->irq);
1198 	return 0;
1199 }
1200 
1201 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1202 	mcp251x_can_resume);
1203 
1204 static struct spi_driver mcp251x_can_driver = {
1205 	.driver = {
1206 		.name = DEVICE_NAME,
1207 		.of_match_table = mcp251x_of_match,
1208 		.pm = &mcp251x_can_pm_ops,
1209 	},
1210 	.id_table = mcp251x_id_table,
1211 	.probe = mcp251x_can_probe,
1212 	.remove = mcp251x_can_remove,
1213 };
1214 module_spi_driver(mcp251x_can_driver);
1215 
1216 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1217 	      "Christian Pellegrin <chripell@evolware.org>");
1218 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1219 MODULE_LICENSE("GPL v2");
1220