xref: /openbmc/linux/drivers/net/can/spi/mcp251x.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the version 2 of the GNU General Public License
23  * as published by the Free Software Foundation
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, see <http://www.gnu.org/licenses/>.
32  *
33  *
34  *
35  * Your platform definition file should specify something like:
36  *
37  * static struct mcp251x_platform_data mcp251x_info = {
38  *         .oscillator_frequency = 8000000,
39  * };
40  *
41  * static struct spi_board_info spi_board_info[] = {
42  *         {
43  *                 .modalias = "mcp2510",
44  *			// or "mcp2515" depending on your controller
45  *                 .platform_data = &mcp251x_info,
46  *                 .irq = IRQ_EINT13,
47  *                 .max_speed_hz = 2*1000*1000,
48  *                 .chip_select = 2,
49  *         },
50  * };
51  *
52  * Please see mcp251x.h for a description of the fields in
53  * struct mcp251x_platform_data.
54  *
55  */
56 
57 #include <linux/can/core.h>
58 #include <linux/can/dev.h>
59 #include <linux/can/led.h>
60 #include <linux/can/platform/mcp251x.h>
61 #include <linux/clk.h>
62 #include <linux/completion.h>
63 #include <linux/delay.h>
64 #include <linux/device.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/freezer.h>
67 #include <linux/interrupt.h>
68 #include <linux/io.h>
69 #include <linux/kernel.h>
70 #include <linux/module.h>
71 #include <linux/netdevice.h>
72 #include <linux/of.h>
73 #include <linux/of_device.h>
74 #include <linux/platform_device.h>
75 #include <linux/slab.h>
76 #include <linux/spi/spi.h>
77 #include <linux/uaccess.h>
78 #include <linux/regulator/consumer.h>
79 
80 /* SPI interface instruction set */
81 #define INSTRUCTION_WRITE	0x02
82 #define INSTRUCTION_READ	0x03
83 #define INSTRUCTION_BIT_MODIFY	0x05
84 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
85 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
86 #define INSTRUCTION_RESET	0xC0
87 #define RTS_TXB0		0x01
88 #define RTS_TXB1		0x02
89 #define RTS_TXB2		0x04
90 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
91 
92 
93 /* MPC251x registers */
94 #define CANSTAT	      0x0e
95 #define CANCTRL	      0x0f
96 #  define CANCTRL_REQOP_MASK	    0xe0
97 #  define CANCTRL_REQOP_CONF	    0x80
98 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
99 #  define CANCTRL_REQOP_LOOPBACK    0x40
100 #  define CANCTRL_REQOP_SLEEP	    0x20
101 #  define CANCTRL_REQOP_NORMAL	    0x00
102 #  define CANCTRL_OSM		    0x08
103 #  define CANCTRL_ABAT		    0x10
104 #define TEC	      0x1c
105 #define REC	      0x1d
106 #define CNF1	      0x2a
107 #  define CNF1_SJW_SHIFT   6
108 #define CNF2	      0x29
109 #  define CNF2_BTLMODE	   0x80
110 #  define CNF2_SAM         0x40
111 #  define CNF2_PS1_SHIFT   3
112 #define CNF3	      0x28
113 #  define CNF3_SOF	   0x08
114 #  define CNF3_WAKFIL	   0x04
115 #  define CNF3_PHSEG2_MASK 0x07
116 #define CANINTE	      0x2b
117 #  define CANINTE_MERRE 0x80
118 #  define CANINTE_WAKIE 0x40
119 #  define CANINTE_ERRIE 0x20
120 #  define CANINTE_TX2IE 0x10
121 #  define CANINTE_TX1IE 0x08
122 #  define CANINTE_TX0IE 0x04
123 #  define CANINTE_RX1IE 0x02
124 #  define CANINTE_RX0IE 0x01
125 #define CANINTF	      0x2c
126 #  define CANINTF_MERRF 0x80
127 #  define CANINTF_WAKIF 0x40
128 #  define CANINTF_ERRIF 0x20
129 #  define CANINTF_TX2IF 0x10
130 #  define CANINTF_TX1IF 0x08
131 #  define CANINTF_TX0IF 0x04
132 #  define CANINTF_RX1IF 0x02
133 #  define CANINTF_RX0IF 0x01
134 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
135 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
136 #  define CANINTF_ERR (CANINTF_ERRIF)
137 #define EFLG	      0x2d
138 #  define EFLG_EWARN	0x01
139 #  define EFLG_RXWAR	0x02
140 #  define EFLG_TXWAR	0x04
141 #  define EFLG_RXEP	0x08
142 #  define EFLG_TXEP	0x10
143 #  define EFLG_TXBO	0x20
144 #  define EFLG_RX0OVR	0x40
145 #  define EFLG_RX1OVR	0x80
146 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
147 #  define TXBCTRL_ABTF	0x40
148 #  define TXBCTRL_MLOA	0x20
149 #  define TXBCTRL_TXERR 0x10
150 #  define TXBCTRL_TXREQ 0x08
151 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
152 #  define SIDH_SHIFT    3
153 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
154 #  define SIDL_SID_MASK    7
155 #  define SIDL_SID_SHIFT   5
156 #  define SIDL_EXIDE_SHIFT 3
157 #  define SIDL_EID_SHIFT   16
158 #  define SIDL_EID_MASK    3
159 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
160 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
161 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
162 #  define DLC_RTR_SHIFT    6
163 #define TXBCTRL_OFF 0
164 #define TXBSIDH_OFF 1
165 #define TXBSIDL_OFF 2
166 #define TXBEID8_OFF 3
167 #define TXBEID0_OFF 4
168 #define TXBDLC_OFF  5
169 #define TXBDAT_OFF  6
170 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
171 #  define RXBCTRL_BUKT	0x04
172 #  define RXBCTRL_RXM0	0x20
173 #  define RXBCTRL_RXM1	0x40
174 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
175 #  define RXBSIDH_SHIFT 3
176 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
177 #  define RXBSIDL_IDE   0x08
178 #  define RXBSIDL_SRR   0x10
179 #  define RXBSIDL_EID   3
180 #  define RXBSIDL_SHIFT 5
181 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
182 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
183 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
184 #  define RXBDLC_LEN_MASK  0x0f
185 #  define RXBDLC_RTR       0x40
186 #define RXBCTRL_OFF 0
187 #define RXBSIDH_OFF 1
188 #define RXBSIDL_OFF 2
189 #define RXBEID8_OFF 3
190 #define RXBEID0_OFF 4
191 #define RXBDLC_OFF  5
192 #define RXBDAT_OFF  6
193 #define RXFSID(n) ((n < 3) ? 0 : 4)
194 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
195 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
196 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
197 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
198 #define RXMSIDH(n) ((n) * 4 + 0x20)
199 #define RXMSIDL(n) ((n) * 4 + 0x21)
200 #define RXMEID8(n) ((n) * 4 + 0x22)
201 #define RXMEID0(n) ((n) * 4 + 0x23)
202 
203 #define GET_BYTE(val, byte)			\
204 	(((val) >> ((byte) * 8)) & 0xff)
205 #define SET_BYTE(val, byte)			\
206 	(((val) & 0xff) << ((byte) * 8))
207 
208 /*
209  * Buffer size required for the largest SPI transfer (i.e., reading a
210  * frame)
211  */
212 #define CAN_FRAME_MAX_DATA_LEN	8
213 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
214 #define CAN_FRAME_MAX_BITS	128
215 
216 #define TX_ECHO_SKB_MAX	1
217 
218 #define MCP251X_OST_DELAY_MS	(5)
219 
220 #define DEVICE_NAME "mcp251x"
221 
222 static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
223 module_param(mcp251x_enable_dma, int, S_IRUGO);
224 MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
225 
226 static const struct can_bittiming_const mcp251x_bittiming_const = {
227 	.name = DEVICE_NAME,
228 	.tseg1_min = 3,
229 	.tseg1_max = 16,
230 	.tseg2_min = 2,
231 	.tseg2_max = 8,
232 	.sjw_max = 4,
233 	.brp_min = 1,
234 	.brp_max = 64,
235 	.brp_inc = 1,
236 };
237 
238 enum mcp251x_model {
239 	CAN_MCP251X_MCP2510	= 0x2510,
240 	CAN_MCP251X_MCP2515	= 0x2515,
241 };
242 
243 struct mcp251x_priv {
244 	struct can_priv	   can;
245 	struct net_device *net;
246 	struct spi_device *spi;
247 	enum mcp251x_model model;
248 
249 	struct mutex mcp_lock; /* SPI device lock */
250 
251 	u8 *spi_tx_buf;
252 	u8 *spi_rx_buf;
253 	dma_addr_t spi_tx_dma;
254 	dma_addr_t spi_rx_dma;
255 
256 	struct sk_buff *tx_skb;
257 	int tx_len;
258 
259 	struct workqueue_struct *wq;
260 	struct work_struct tx_work;
261 	struct work_struct restart_work;
262 
263 	int force_quit;
264 	int after_suspend;
265 #define AFTER_SUSPEND_UP 1
266 #define AFTER_SUSPEND_DOWN 2
267 #define AFTER_SUSPEND_POWER 4
268 #define AFTER_SUSPEND_RESTART 8
269 	int restart_tx;
270 	struct regulator *power;
271 	struct regulator *transceiver;
272 	struct clk *clk;
273 };
274 
275 #define MCP251X_IS(_model) \
276 static inline int mcp251x_is_##_model(struct spi_device *spi) \
277 { \
278 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
279 	return priv->model == CAN_MCP251X_MCP##_model; \
280 }
281 
282 MCP251X_IS(2510);
283 MCP251X_IS(2515);
284 
285 static void mcp251x_clean(struct net_device *net)
286 {
287 	struct mcp251x_priv *priv = netdev_priv(net);
288 
289 	if (priv->tx_skb || priv->tx_len)
290 		net->stats.tx_errors++;
291 	if (priv->tx_skb)
292 		dev_kfree_skb(priv->tx_skb);
293 	if (priv->tx_len)
294 		can_free_echo_skb(priv->net, 0);
295 	priv->tx_skb = NULL;
296 	priv->tx_len = 0;
297 }
298 
299 /*
300  * Note about handling of error return of mcp251x_spi_trans: accessing
301  * registers via SPI is not really different conceptually than using
302  * normal I/O assembler instructions, although it's much more
303  * complicated from a practical POV. So it's not advisable to always
304  * check the return value of this function. Imagine that every
305  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
306  * error();", it would be a great mess (well there are some situation
307  * when exception handling C++ like could be useful after all). So we
308  * just check that transfers are OK at the beginning of our
309  * conversation with the chip and to avoid doing really nasty things
310  * (like injecting bogus packets in the network stack).
311  */
312 static int mcp251x_spi_trans(struct spi_device *spi, int len)
313 {
314 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
315 	struct spi_transfer t = {
316 		.tx_buf = priv->spi_tx_buf,
317 		.rx_buf = priv->spi_rx_buf,
318 		.len = len,
319 		.cs_change = 0,
320 	};
321 	struct spi_message m;
322 	int ret;
323 
324 	spi_message_init(&m);
325 
326 	if (mcp251x_enable_dma) {
327 		t.tx_dma = priv->spi_tx_dma;
328 		t.rx_dma = priv->spi_rx_dma;
329 		m.is_dma_mapped = 1;
330 	}
331 
332 	spi_message_add_tail(&t, &m);
333 
334 	ret = spi_sync(spi, &m);
335 	if (ret)
336 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
337 	return ret;
338 }
339 
340 static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
341 {
342 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
343 	u8 val = 0;
344 
345 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
346 	priv->spi_tx_buf[1] = reg;
347 
348 	mcp251x_spi_trans(spi, 3);
349 	val = priv->spi_rx_buf[2];
350 
351 	return val;
352 }
353 
354 static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
355 		uint8_t *v1, uint8_t *v2)
356 {
357 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
358 
359 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
360 	priv->spi_tx_buf[1] = reg;
361 
362 	mcp251x_spi_trans(spi, 4);
363 
364 	*v1 = priv->spi_rx_buf[2];
365 	*v2 = priv->spi_rx_buf[3];
366 }
367 
368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
369 {
370 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
371 
372 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373 	priv->spi_tx_buf[1] = reg;
374 	priv->spi_tx_buf[2] = val;
375 
376 	mcp251x_spi_trans(spi, 3);
377 }
378 
379 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
380 			       u8 mask, uint8_t val)
381 {
382 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
383 
384 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
385 	priv->spi_tx_buf[1] = reg;
386 	priv->spi_tx_buf[2] = mask;
387 	priv->spi_tx_buf[3] = val;
388 
389 	mcp251x_spi_trans(spi, 4);
390 }
391 
392 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
393 				int len, int tx_buf_idx)
394 {
395 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
396 
397 	if (mcp251x_is_2510(spi)) {
398 		int i;
399 
400 		for (i = 1; i < TXBDAT_OFF + len; i++)
401 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
402 					  buf[i]);
403 	} else {
404 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
405 		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
406 	}
407 }
408 
409 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
410 			  int tx_buf_idx)
411 {
412 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
413 	u32 sid, eid, exide, rtr;
414 	u8 buf[SPI_TRANSFER_BUF_LEN];
415 
416 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
417 	if (exide)
418 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
419 	else
420 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
421 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
422 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
423 
424 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
425 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
426 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
427 		(exide << SIDL_EXIDE_SHIFT) |
428 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
429 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
430 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
431 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
432 	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
433 	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
434 
435 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
436 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
437 	mcp251x_spi_trans(priv->spi, 1);
438 }
439 
440 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
441 				int buf_idx)
442 {
443 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
444 
445 	if (mcp251x_is_2510(spi)) {
446 		int i, len;
447 
448 		for (i = 1; i < RXBDAT_OFF; i++)
449 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
450 
451 		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
452 		for (; i < (RXBDAT_OFF + len); i++)
453 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
454 	} else {
455 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
456 		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
457 		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
458 	}
459 }
460 
461 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
462 {
463 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
464 	struct sk_buff *skb;
465 	struct can_frame *frame;
466 	u8 buf[SPI_TRANSFER_BUF_LEN];
467 
468 	skb = alloc_can_skb(priv->net, &frame);
469 	if (!skb) {
470 		dev_err(&spi->dev, "cannot allocate RX skb\n");
471 		priv->net->stats.rx_dropped++;
472 		return;
473 	}
474 
475 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
476 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
477 		/* Extended ID format */
478 		frame->can_id = CAN_EFF_FLAG;
479 		frame->can_id |=
480 			/* Extended ID part */
481 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
482 			SET_BYTE(buf[RXBEID8_OFF], 1) |
483 			SET_BYTE(buf[RXBEID0_OFF], 0) |
484 			/* Standard ID part */
485 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
486 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
487 		/* Remote transmission request */
488 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
489 			frame->can_id |= CAN_RTR_FLAG;
490 	} else {
491 		/* Standard ID format */
492 		frame->can_id =
493 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
494 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
495 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
496 			frame->can_id |= CAN_RTR_FLAG;
497 	}
498 	/* Data length */
499 	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
500 	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
501 
502 	priv->net->stats.rx_packets++;
503 	priv->net->stats.rx_bytes += frame->can_dlc;
504 
505 	can_led_event(priv->net, CAN_LED_EVENT_RX);
506 
507 	netif_rx_ni(skb);
508 }
509 
510 static void mcp251x_hw_sleep(struct spi_device *spi)
511 {
512 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
513 }
514 
515 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
516 					   struct net_device *net)
517 {
518 	struct mcp251x_priv *priv = netdev_priv(net);
519 	struct spi_device *spi = priv->spi;
520 
521 	if (priv->tx_skb || priv->tx_len) {
522 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
523 		return NETDEV_TX_BUSY;
524 	}
525 
526 	if (can_dropped_invalid_skb(net, skb))
527 		return NETDEV_TX_OK;
528 
529 	netif_stop_queue(net);
530 	priv->tx_skb = skb;
531 	queue_work(priv->wq, &priv->tx_work);
532 
533 	return NETDEV_TX_OK;
534 }
535 
536 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
537 {
538 	struct mcp251x_priv *priv = netdev_priv(net);
539 
540 	switch (mode) {
541 	case CAN_MODE_START:
542 		mcp251x_clean(net);
543 		/* We have to delay work since SPI I/O may sleep */
544 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
545 		priv->restart_tx = 1;
546 		if (priv->can.restart_ms == 0)
547 			priv->after_suspend = AFTER_SUSPEND_RESTART;
548 		queue_work(priv->wq, &priv->restart_work);
549 		break;
550 	default:
551 		return -EOPNOTSUPP;
552 	}
553 
554 	return 0;
555 }
556 
557 static int mcp251x_set_normal_mode(struct spi_device *spi)
558 {
559 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
560 	unsigned long timeout;
561 
562 	/* Enable interrupts */
563 	mcp251x_write_reg(spi, CANINTE,
564 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
565 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
566 
567 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
568 		/* Put device into loopback mode */
569 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
570 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
571 		/* Put device into listen-only mode */
572 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
573 	} else {
574 		/* Put device into normal mode */
575 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
576 
577 		/* Wait for the device to enter normal mode */
578 		timeout = jiffies + HZ;
579 		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
580 			schedule();
581 			if (time_after(jiffies, timeout)) {
582 				dev_err(&spi->dev, "MCP251x didn't"
583 					" enter in normal mode\n");
584 				return -EBUSY;
585 			}
586 		}
587 	}
588 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
589 	return 0;
590 }
591 
592 static int mcp251x_do_set_bittiming(struct net_device *net)
593 {
594 	struct mcp251x_priv *priv = netdev_priv(net);
595 	struct can_bittiming *bt = &priv->can.bittiming;
596 	struct spi_device *spi = priv->spi;
597 
598 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
599 			  (bt->brp - 1));
600 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
601 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
602 			   CNF2_SAM : 0) |
603 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
604 			  (bt->prop_seg - 1));
605 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
606 			   (bt->phase_seg2 - 1));
607 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
608 		mcp251x_read_reg(spi, CNF1),
609 		mcp251x_read_reg(spi, CNF2),
610 		mcp251x_read_reg(spi, CNF3));
611 
612 	return 0;
613 }
614 
615 static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
616 			 struct spi_device *spi)
617 {
618 	mcp251x_do_set_bittiming(net);
619 
620 	mcp251x_write_reg(spi, RXBCTRL(0),
621 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
622 	mcp251x_write_reg(spi, RXBCTRL(1),
623 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
624 	return 0;
625 }
626 
627 static int mcp251x_hw_reset(struct spi_device *spi)
628 {
629 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
630 	u8 reg;
631 	int ret;
632 
633 	/* Wait for oscillator startup timer after power up */
634 	mdelay(MCP251X_OST_DELAY_MS);
635 
636 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
637 	ret = mcp251x_spi_trans(spi, 1);
638 	if (ret)
639 		return ret;
640 
641 	/* Wait for oscillator startup timer after reset */
642 	mdelay(MCP251X_OST_DELAY_MS);
643 
644 	reg = mcp251x_read_reg(spi, CANSTAT);
645 	if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
646 		return -ENODEV;
647 
648 	return 0;
649 }
650 
651 static int mcp251x_hw_probe(struct spi_device *spi)
652 {
653 	u8 ctrl;
654 	int ret;
655 
656 	ret = mcp251x_hw_reset(spi);
657 	if (ret)
658 		return ret;
659 
660 	ctrl = mcp251x_read_reg(spi, CANCTRL);
661 
662 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
663 
664 	/* Check for power up default value */
665 	if ((ctrl & 0x17) != 0x07)
666 		return -ENODEV;
667 
668 	return 0;
669 }
670 
671 static int mcp251x_power_enable(struct regulator *reg, int enable)
672 {
673 	if (IS_ERR_OR_NULL(reg))
674 		return 0;
675 
676 	if (enable)
677 		return regulator_enable(reg);
678 	else
679 		return regulator_disable(reg);
680 }
681 
682 static void mcp251x_open_clean(struct net_device *net)
683 {
684 	struct mcp251x_priv *priv = netdev_priv(net);
685 	struct spi_device *spi = priv->spi;
686 
687 	free_irq(spi->irq, priv);
688 	mcp251x_hw_sleep(spi);
689 	mcp251x_power_enable(priv->transceiver, 0);
690 	close_candev(net);
691 }
692 
693 static int mcp251x_stop(struct net_device *net)
694 {
695 	struct mcp251x_priv *priv = netdev_priv(net);
696 	struct spi_device *spi = priv->spi;
697 
698 	close_candev(net);
699 
700 	priv->force_quit = 1;
701 	free_irq(spi->irq, priv);
702 	destroy_workqueue(priv->wq);
703 	priv->wq = NULL;
704 
705 	mutex_lock(&priv->mcp_lock);
706 
707 	/* Disable and clear pending interrupts */
708 	mcp251x_write_reg(spi, CANINTE, 0x00);
709 	mcp251x_write_reg(spi, CANINTF, 0x00);
710 
711 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
712 	mcp251x_clean(net);
713 
714 	mcp251x_hw_sleep(spi);
715 
716 	mcp251x_power_enable(priv->transceiver, 0);
717 
718 	priv->can.state = CAN_STATE_STOPPED;
719 
720 	mutex_unlock(&priv->mcp_lock);
721 
722 	can_led_event(net, CAN_LED_EVENT_STOP);
723 
724 	return 0;
725 }
726 
727 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
728 {
729 	struct sk_buff *skb;
730 	struct can_frame *frame;
731 
732 	skb = alloc_can_err_skb(net, &frame);
733 	if (skb) {
734 		frame->can_id |= can_id;
735 		frame->data[1] = data1;
736 		netif_rx_ni(skb);
737 	} else {
738 		netdev_err(net, "cannot allocate error skb\n");
739 	}
740 }
741 
742 static void mcp251x_tx_work_handler(struct work_struct *ws)
743 {
744 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
745 						 tx_work);
746 	struct spi_device *spi = priv->spi;
747 	struct net_device *net = priv->net;
748 	struct can_frame *frame;
749 
750 	mutex_lock(&priv->mcp_lock);
751 	if (priv->tx_skb) {
752 		if (priv->can.state == CAN_STATE_BUS_OFF) {
753 			mcp251x_clean(net);
754 		} else {
755 			frame = (struct can_frame *)priv->tx_skb->data;
756 
757 			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
758 				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
759 			mcp251x_hw_tx(spi, frame, 0);
760 			priv->tx_len = 1 + frame->can_dlc;
761 			can_put_echo_skb(priv->tx_skb, net, 0);
762 			priv->tx_skb = NULL;
763 		}
764 	}
765 	mutex_unlock(&priv->mcp_lock);
766 }
767 
768 static void mcp251x_restart_work_handler(struct work_struct *ws)
769 {
770 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
771 						 restart_work);
772 	struct spi_device *spi = priv->spi;
773 	struct net_device *net = priv->net;
774 
775 	mutex_lock(&priv->mcp_lock);
776 	if (priv->after_suspend) {
777 		mcp251x_hw_reset(spi);
778 		mcp251x_setup(net, priv, spi);
779 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
780 			mcp251x_set_normal_mode(spi);
781 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
782 			netif_device_attach(net);
783 			mcp251x_clean(net);
784 			mcp251x_set_normal_mode(spi);
785 			netif_wake_queue(net);
786 		} else {
787 			mcp251x_hw_sleep(spi);
788 		}
789 		priv->after_suspend = 0;
790 		priv->force_quit = 0;
791 	}
792 
793 	if (priv->restart_tx) {
794 		priv->restart_tx = 0;
795 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
796 		mcp251x_clean(net);
797 		netif_wake_queue(net);
798 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
799 	}
800 	mutex_unlock(&priv->mcp_lock);
801 }
802 
803 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
804 {
805 	struct mcp251x_priv *priv = dev_id;
806 	struct spi_device *spi = priv->spi;
807 	struct net_device *net = priv->net;
808 
809 	mutex_lock(&priv->mcp_lock);
810 	while (!priv->force_quit) {
811 		enum can_state new_state;
812 		u8 intf, eflag;
813 		u8 clear_intf = 0;
814 		int can_id = 0, data1 = 0;
815 
816 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
817 
818 		/* mask out flags we don't care about */
819 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
820 
821 		/* receive buffer 0 */
822 		if (intf & CANINTF_RX0IF) {
823 			mcp251x_hw_rx(spi, 0);
824 			/*
825 			 * Free one buffer ASAP
826 			 * (The MCP2515 does this automatically.)
827 			 */
828 			if (mcp251x_is_2510(spi))
829 				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
830 		}
831 
832 		/* receive buffer 1 */
833 		if (intf & CANINTF_RX1IF) {
834 			mcp251x_hw_rx(spi, 1);
835 			/* the MCP2515 does this automatically */
836 			if (mcp251x_is_2510(spi))
837 				clear_intf |= CANINTF_RX1IF;
838 		}
839 
840 		/* any error or tx interrupt we need to clear? */
841 		if (intf & (CANINTF_ERR | CANINTF_TX))
842 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
843 		if (clear_intf)
844 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
845 
846 		if (eflag)
847 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
848 
849 		/* Update can state */
850 		if (eflag & EFLG_TXBO) {
851 			new_state = CAN_STATE_BUS_OFF;
852 			can_id |= CAN_ERR_BUSOFF;
853 		} else if (eflag & EFLG_TXEP) {
854 			new_state = CAN_STATE_ERROR_PASSIVE;
855 			can_id |= CAN_ERR_CRTL;
856 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
857 		} else if (eflag & EFLG_RXEP) {
858 			new_state = CAN_STATE_ERROR_PASSIVE;
859 			can_id |= CAN_ERR_CRTL;
860 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
861 		} else if (eflag & EFLG_TXWAR) {
862 			new_state = CAN_STATE_ERROR_WARNING;
863 			can_id |= CAN_ERR_CRTL;
864 			data1 |= CAN_ERR_CRTL_TX_WARNING;
865 		} else if (eflag & EFLG_RXWAR) {
866 			new_state = CAN_STATE_ERROR_WARNING;
867 			can_id |= CAN_ERR_CRTL;
868 			data1 |= CAN_ERR_CRTL_RX_WARNING;
869 		} else {
870 			new_state = CAN_STATE_ERROR_ACTIVE;
871 		}
872 
873 		/* Update can state statistics */
874 		switch (priv->can.state) {
875 		case CAN_STATE_ERROR_ACTIVE:
876 			if (new_state >= CAN_STATE_ERROR_WARNING &&
877 			    new_state <= CAN_STATE_BUS_OFF)
878 				priv->can.can_stats.error_warning++;
879 		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
880 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
881 			    new_state <= CAN_STATE_BUS_OFF)
882 				priv->can.can_stats.error_passive++;
883 			break;
884 		default:
885 			break;
886 		}
887 		priv->can.state = new_state;
888 
889 		if (intf & CANINTF_ERRIF) {
890 			/* Handle overflow counters */
891 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
892 				if (eflag & EFLG_RX0OVR) {
893 					net->stats.rx_over_errors++;
894 					net->stats.rx_errors++;
895 				}
896 				if (eflag & EFLG_RX1OVR) {
897 					net->stats.rx_over_errors++;
898 					net->stats.rx_errors++;
899 				}
900 				can_id |= CAN_ERR_CRTL;
901 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
902 			}
903 			mcp251x_error_skb(net, can_id, data1);
904 		}
905 
906 		if (priv->can.state == CAN_STATE_BUS_OFF) {
907 			if (priv->can.restart_ms == 0) {
908 				priv->force_quit = 1;
909 				priv->can.can_stats.bus_off++;
910 				can_bus_off(net);
911 				mcp251x_hw_sleep(spi);
912 				break;
913 			}
914 		}
915 
916 		if (intf == 0)
917 			break;
918 
919 		if (intf & CANINTF_TX) {
920 			net->stats.tx_packets++;
921 			net->stats.tx_bytes += priv->tx_len - 1;
922 			can_led_event(net, CAN_LED_EVENT_TX);
923 			if (priv->tx_len) {
924 				can_get_echo_skb(net, 0);
925 				priv->tx_len = 0;
926 			}
927 			netif_wake_queue(net);
928 		}
929 
930 	}
931 	mutex_unlock(&priv->mcp_lock);
932 	return IRQ_HANDLED;
933 }
934 
935 static int mcp251x_open(struct net_device *net)
936 {
937 	struct mcp251x_priv *priv = netdev_priv(net);
938 	struct spi_device *spi = priv->spi;
939 	unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
940 	int ret;
941 
942 	ret = open_candev(net);
943 	if (ret) {
944 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
945 		return ret;
946 	}
947 
948 	mutex_lock(&priv->mcp_lock);
949 	mcp251x_power_enable(priv->transceiver, 1);
950 
951 	priv->force_quit = 0;
952 	priv->tx_skb = NULL;
953 	priv->tx_len = 0;
954 
955 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
956 				   flags | IRQF_ONESHOT, DEVICE_NAME, priv);
957 	if (ret) {
958 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
959 		mcp251x_power_enable(priv->transceiver, 0);
960 		close_candev(net);
961 		goto open_unlock;
962 	}
963 
964 	priv->wq = create_freezable_workqueue("mcp251x_wq");
965 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
966 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
967 
968 	ret = mcp251x_hw_reset(spi);
969 	if (ret) {
970 		mcp251x_open_clean(net);
971 		goto open_unlock;
972 	}
973 	ret = mcp251x_setup(net, priv, spi);
974 	if (ret) {
975 		mcp251x_open_clean(net);
976 		goto open_unlock;
977 	}
978 	ret = mcp251x_set_normal_mode(spi);
979 	if (ret) {
980 		mcp251x_open_clean(net);
981 		goto open_unlock;
982 	}
983 
984 	can_led_event(net, CAN_LED_EVENT_OPEN);
985 
986 	netif_wake_queue(net);
987 
988 open_unlock:
989 	mutex_unlock(&priv->mcp_lock);
990 	return ret;
991 }
992 
993 static const struct net_device_ops mcp251x_netdev_ops = {
994 	.ndo_open = mcp251x_open,
995 	.ndo_stop = mcp251x_stop,
996 	.ndo_start_xmit = mcp251x_hard_start_xmit,
997 	.ndo_change_mtu = can_change_mtu,
998 };
999 
1000 static const struct of_device_id mcp251x_of_match[] = {
1001 	{
1002 		.compatible	= "microchip,mcp2510",
1003 		.data		= (void *)CAN_MCP251X_MCP2510,
1004 	},
1005 	{
1006 		.compatible	= "microchip,mcp2515",
1007 		.data		= (void *)CAN_MCP251X_MCP2515,
1008 	},
1009 	{ }
1010 };
1011 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1012 
1013 static const struct spi_device_id mcp251x_id_table[] = {
1014 	{
1015 		.name		= "mcp2510",
1016 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1017 	},
1018 	{
1019 		.name		= "mcp2515",
1020 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1021 	},
1022 	{ }
1023 };
1024 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1025 
1026 static int mcp251x_can_probe(struct spi_device *spi)
1027 {
1028 	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1029 							   &spi->dev);
1030 	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1031 	struct net_device *net;
1032 	struct mcp251x_priv *priv;
1033 	struct clk *clk;
1034 	int freq, ret;
1035 
1036 	clk = devm_clk_get(&spi->dev, NULL);
1037 	if (IS_ERR(clk)) {
1038 		if (pdata)
1039 			freq = pdata->oscillator_frequency;
1040 		else
1041 			return PTR_ERR(clk);
1042 	} else {
1043 		freq = clk_get_rate(clk);
1044 	}
1045 
1046 	/* Sanity check */
1047 	if (freq < 1000000 || freq > 25000000)
1048 		return -ERANGE;
1049 
1050 	/* Allocate can/net device */
1051 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1052 	if (!net)
1053 		return -ENOMEM;
1054 
1055 	if (!IS_ERR(clk)) {
1056 		ret = clk_prepare_enable(clk);
1057 		if (ret)
1058 			goto out_free;
1059 	}
1060 
1061 	net->netdev_ops = &mcp251x_netdev_ops;
1062 	net->flags |= IFF_ECHO;
1063 
1064 	priv = netdev_priv(net);
1065 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1066 	priv->can.do_set_mode = mcp251x_do_set_mode;
1067 	priv->can.clock.freq = freq / 2;
1068 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1069 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1070 	if (of_id)
1071 		priv->model = (enum mcp251x_model)of_id->data;
1072 	else
1073 		priv->model = spi_get_device_id(spi)->driver_data;
1074 	priv->net = net;
1075 	priv->clk = clk;
1076 
1077 	spi_set_drvdata(spi, priv);
1078 
1079 	/* Configure the SPI bus */
1080 	spi->bits_per_word = 8;
1081 	if (mcp251x_is_2510(spi))
1082 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1083 	else
1084 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1085 	ret = spi_setup(spi);
1086 	if (ret)
1087 		goto out_clk;
1088 
1089 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1090 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1091 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1092 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1093 		ret = -EPROBE_DEFER;
1094 		goto out_clk;
1095 	}
1096 
1097 	ret = mcp251x_power_enable(priv->power, 1);
1098 	if (ret)
1099 		goto out_clk;
1100 
1101 	priv->spi = spi;
1102 	mutex_init(&priv->mcp_lock);
1103 
1104 	/* If requested, allocate DMA buffers */
1105 	if (mcp251x_enable_dma) {
1106 		spi->dev.coherent_dma_mask = ~0;
1107 
1108 		/*
1109 		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1110 		 * that much and share it between Tx and Rx DMA buffers.
1111 		 */
1112 		priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
1113 						       PAGE_SIZE,
1114 						       &priv->spi_tx_dma,
1115 						       GFP_DMA);
1116 
1117 		if (priv->spi_tx_buf) {
1118 			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1119 			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1120 							(PAGE_SIZE / 2));
1121 		} else {
1122 			/* Fall back to non-DMA */
1123 			mcp251x_enable_dma = 0;
1124 		}
1125 	}
1126 
1127 	/* Allocate non-DMA buffers */
1128 	if (!mcp251x_enable_dma) {
1129 		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1130 						GFP_KERNEL);
1131 		if (!priv->spi_tx_buf) {
1132 			ret = -ENOMEM;
1133 			goto error_probe;
1134 		}
1135 		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1136 						GFP_KERNEL);
1137 		if (!priv->spi_rx_buf) {
1138 			ret = -ENOMEM;
1139 			goto error_probe;
1140 		}
1141 	}
1142 
1143 	SET_NETDEV_DEV(net, &spi->dev);
1144 
1145 	/* Here is OK to not lock the MCP, no one knows about it yet */
1146 	ret = mcp251x_hw_probe(spi);
1147 	if (ret)
1148 		goto error_probe;
1149 
1150 	mcp251x_hw_sleep(spi);
1151 
1152 	ret = register_candev(net);
1153 	if (ret)
1154 		goto error_probe;
1155 
1156 	devm_can_led_init(net);
1157 
1158 	return 0;
1159 
1160 error_probe:
1161 	mcp251x_power_enable(priv->power, 0);
1162 
1163 out_clk:
1164 	if (!IS_ERR(clk))
1165 		clk_disable_unprepare(clk);
1166 
1167 out_free:
1168 	free_candev(net);
1169 
1170 	return ret;
1171 }
1172 
1173 static int mcp251x_can_remove(struct spi_device *spi)
1174 {
1175 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1176 	struct net_device *net = priv->net;
1177 
1178 	unregister_candev(net);
1179 
1180 	mcp251x_power_enable(priv->power, 0);
1181 
1182 	if (!IS_ERR(priv->clk))
1183 		clk_disable_unprepare(priv->clk);
1184 
1185 	free_candev(net);
1186 
1187 	return 0;
1188 }
1189 
1190 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1191 {
1192 	struct spi_device *spi = to_spi_device(dev);
1193 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1194 	struct net_device *net = priv->net;
1195 
1196 	priv->force_quit = 1;
1197 	disable_irq(spi->irq);
1198 	/*
1199 	 * Note: at this point neither IST nor workqueues are running.
1200 	 * open/stop cannot be called anyway so locking is not needed
1201 	 */
1202 	if (netif_running(net)) {
1203 		netif_device_detach(net);
1204 
1205 		mcp251x_hw_sleep(spi);
1206 		mcp251x_power_enable(priv->transceiver, 0);
1207 		priv->after_suspend = AFTER_SUSPEND_UP;
1208 	} else {
1209 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1210 	}
1211 
1212 	if (!IS_ERR_OR_NULL(priv->power)) {
1213 		regulator_disable(priv->power);
1214 		priv->after_suspend |= AFTER_SUSPEND_POWER;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1221 {
1222 	struct spi_device *spi = to_spi_device(dev);
1223 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1224 
1225 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1226 		mcp251x_power_enable(priv->power, 1);
1227 
1228 	if (priv->after_suspend & AFTER_SUSPEND_UP) {
1229 		mcp251x_power_enable(priv->transceiver, 1);
1230 		queue_work(priv->wq, &priv->restart_work);
1231 	} else {
1232 		priv->after_suspend = 0;
1233 	}
1234 
1235 	priv->force_quit = 0;
1236 	enable_irq(spi->irq);
1237 	return 0;
1238 }
1239 
1240 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1241 	mcp251x_can_resume);
1242 
1243 static struct spi_driver mcp251x_can_driver = {
1244 	.driver = {
1245 		.name = DEVICE_NAME,
1246 		.of_match_table = mcp251x_of_match,
1247 		.pm = &mcp251x_can_pm_ops,
1248 	},
1249 	.id_table = mcp251x_id_table,
1250 	.probe = mcp251x_can_probe,
1251 	.remove = mcp251x_can_remove,
1252 };
1253 module_spi_driver(mcp251x_can_driver);
1254 
1255 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1256 	      "Christian Pellegrin <chripell@evolware.org>");
1257 MODULE_DESCRIPTION("Microchip 251x CAN driver");
1258 MODULE_LICENSE("GPL v2");
1259