1 /* 2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface 3 * 4 * MCP2510 support and bug fixes by Christian Pellegrin 5 * <chripell@evolware.org> 6 * 7 * Copyright 2009 Christian Pellegrin EVOL S.r.l. 8 * 9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved. 10 * Written under contract by: 11 * Chris Elston, Katalix Systems, Ltd. 12 * 13 * Based on Microchip MCP251x CAN controller driver written by 14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd. 15 * 16 * Based on CAN bus driver for the CCAN controller written by 17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix 18 * - Simon Kallweit, intefo AG 19 * Copyright 2007 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the version 2 of the GNU General Public License 23 * as published by the Free Software Foundation 24 * 25 * This program is distributed in the hope that it will be useful, 26 * but WITHOUT ANY WARRANTY; without even the implied warranty of 27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 28 * GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with this program; if not, see <http://www.gnu.org/licenses/>. 32 * 33 * 34 * 35 * Your platform definition file should specify something like: 36 * 37 * static struct mcp251x_platform_data mcp251x_info = { 38 * .oscillator_frequency = 8000000, 39 * }; 40 * 41 * static struct spi_board_info spi_board_info[] = { 42 * { 43 * .modalias = "mcp2510", 44 * // or "mcp2515" depending on your controller 45 * .platform_data = &mcp251x_info, 46 * .irq = IRQ_EINT13, 47 * .max_speed_hz = 2*1000*1000, 48 * .chip_select = 2, 49 * }, 50 * }; 51 * 52 * Please see mcp251x.h for a description of the fields in 53 * struct mcp251x_platform_data. 54 * 55 */ 56 57 #include <linux/can/core.h> 58 #include <linux/can/dev.h> 59 #include <linux/can/led.h> 60 #include <linux/can/platform/mcp251x.h> 61 #include <linux/clk.h> 62 #include <linux/completion.h> 63 #include <linux/delay.h> 64 #include <linux/device.h> 65 #include <linux/dma-mapping.h> 66 #include <linux/freezer.h> 67 #include <linux/interrupt.h> 68 #include <linux/io.h> 69 #include <linux/kernel.h> 70 #include <linux/module.h> 71 #include <linux/netdevice.h> 72 #include <linux/of.h> 73 #include <linux/of_device.h> 74 #include <linux/platform_device.h> 75 #include <linux/slab.h> 76 #include <linux/spi/spi.h> 77 #include <linux/uaccess.h> 78 #include <linux/regulator/consumer.h> 79 80 /* SPI interface instruction set */ 81 #define INSTRUCTION_WRITE 0x02 82 #define INSTRUCTION_READ 0x03 83 #define INSTRUCTION_BIT_MODIFY 0x05 84 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n)) 85 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94) 86 #define INSTRUCTION_RESET 0xC0 87 #define RTS_TXB0 0x01 88 #define RTS_TXB1 0x02 89 #define RTS_TXB2 0x04 90 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07)) 91 92 93 /* MPC251x registers */ 94 #define CANSTAT 0x0e 95 #define CANCTRL 0x0f 96 # define CANCTRL_REQOP_MASK 0xe0 97 # define CANCTRL_REQOP_CONF 0x80 98 # define CANCTRL_REQOP_LISTEN_ONLY 0x60 99 # define CANCTRL_REQOP_LOOPBACK 0x40 100 # define CANCTRL_REQOP_SLEEP 0x20 101 # define CANCTRL_REQOP_NORMAL 0x00 102 # define CANCTRL_OSM 0x08 103 # define CANCTRL_ABAT 0x10 104 #define TEC 0x1c 105 #define REC 0x1d 106 #define CNF1 0x2a 107 # define CNF1_SJW_SHIFT 6 108 #define CNF2 0x29 109 # define CNF2_BTLMODE 0x80 110 # define CNF2_SAM 0x40 111 # define CNF2_PS1_SHIFT 3 112 #define CNF3 0x28 113 # define CNF3_SOF 0x08 114 # define CNF3_WAKFIL 0x04 115 # define CNF3_PHSEG2_MASK 0x07 116 #define CANINTE 0x2b 117 # define CANINTE_MERRE 0x80 118 # define CANINTE_WAKIE 0x40 119 # define CANINTE_ERRIE 0x20 120 # define CANINTE_TX2IE 0x10 121 # define CANINTE_TX1IE 0x08 122 # define CANINTE_TX0IE 0x04 123 # define CANINTE_RX1IE 0x02 124 # define CANINTE_RX0IE 0x01 125 #define CANINTF 0x2c 126 # define CANINTF_MERRF 0x80 127 # define CANINTF_WAKIF 0x40 128 # define CANINTF_ERRIF 0x20 129 # define CANINTF_TX2IF 0x10 130 # define CANINTF_TX1IF 0x08 131 # define CANINTF_TX0IF 0x04 132 # define CANINTF_RX1IF 0x02 133 # define CANINTF_RX0IF 0x01 134 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF) 135 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF) 136 # define CANINTF_ERR (CANINTF_ERRIF) 137 #define EFLG 0x2d 138 # define EFLG_EWARN 0x01 139 # define EFLG_RXWAR 0x02 140 # define EFLG_TXWAR 0x04 141 # define EFLG_RXEP 0x08 142 # define EFLG_TXEP 0x10 143 # define EFLG_TXBO 0x20 144 # define EFLG_RX0OVR 0x40 145 # define EFLG_RX1OVR 0x80 146 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF) 147 # define TXBCTRL_ABTF 0x40 148 # define TXBCTRL_MLOA 0x20 149 # define TXBCTRL_TXERR 0x10 150 # define TXBCTRL_TXREQ 0x08 151 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF) 152 # define SIDH_SHIFT 3 153 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF) 154 # define SIDL_SID_MASK 7 155 # define SIDL_SID_SHIFT 5 156 # define SIDL_EXIDE_SHIFT 3 157 # define SIDL_EID_SHIFT 16 158 # define SIDL_EID_MASK 3 159 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF) 160 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF) 161 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF) 162 # define DLC_RTR_SHIFT 6 163 #define TXBCTRL_OFF 0 164 #define TXBSIDH_OFF 1 165 #define TXBSIDL_OFF 2 166 #define TXBEID8_OFF 3 167 #define TXBEID0_OFF 4 168 #define TXBDLC_OFF 5 169 #define TXBDAT_OFF 6 170 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF) 171 # define RXBCTRL_BUKT 0x04 172 # define RXBCTRL_RXM0 0x20 173 # define RXBCTRL_RXM1 0x40 174 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF) 175 # define RXBSIDH_SHIFT 3 176 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF) 177 # define RXBSIDL_IDE 0x08 178 # define RXBSIDL_SRR 0x10 179 # define RXBSIDL_EID 3 180 # define RXBSIDL_SHIFT 5 181 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF) 182 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF) 183 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF) 184 # define RXBDLC_LEN_MASK 0x0f 185 # define RXBDLC_RTR 0x40 186 #define RXBCTRL_OFF 0 187 #define RXBSIDH_OFF 1 188 #define RXBSIDL_OFF 2 189 #define RXBEID8_OFF 3 190 #define RXBEID0_OFF 4 191 #define RXBDLC_OFF 5 192 #define RXBDAT_OFF 6 193 #define RXFSIDH(n) ((n) * 4) 194 #define RXFSIDL(n) ((n) * 4 + 1) 195 #define RXFEID8(n) ((n) * 4 + 2) 196 #define RXFEID0(n) ((n) * 4 + 3) 197 #define RXMSIDH(n) ((n) * 4 + 0x20) 198 #define RXMSIDL(n) ((n) * 4 + 0x21) 199 #define RXMEID8(n) ((n) * 4 + 0x22) 200 #define RXMEID0(n) ((n) * 4 + 0x23) 201 202 #define GET_BYTE(val, byte) \ 203 (((val) >> ((byte) * 8)) & 0xff) 204 #define SET_BYTE(val, byte) \ 205 (((val) & 0xff) << ((byte) * 8)) 206 207 /* 208 * Buffer size required for the largest SPI transfer (i.e., reading a 209 * frame) 210 */ 211 #define CAN_FRAME_MAX_DATA_LEN 8 212 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN) 213 #define CAN_FRAME_MAX_BITS 128 214 215 #define TX_ECHO_SKB_MAX 1 216 217 #define MCP251X_OST_DELAY_MS (5) 218 219 #define DEVICE_NAME "mcp251x" 220 221 static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */ 222 module_param(mcp251x_enable_dma, int, S_IRUGO); 223 MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)"); 224 225 static const struct can_bittiming_const mcp251x_bittiming_const = { 226 .name = DEVICE_NAME, 227 .tseg1_min = 3, 228 .tseg1_max = 16, 229 .tseg2_min = 2, 230 .tseg2_max = 8, 231 .sjw_max = 4, 232 .brp_min = 1, 233 .brp_max = 64, 234 .brp_inc = 1, 235 }; 236 237 enum mcp251x_model { 238 CAN_MCP251X_MCP2510 = 0x2510, 239 CAN_MCP251X_MCP2515 = 0x2515, 240 }; 241 242 struct mcp251x_priv { 243 struct can_priv can; 244 struct net_device *net; 245 struct spi_device *spi; 246 enum mcp251x_model model; 247 248 struct mutex mcp_lock; /* SPI device lock */ 249 250 u8 *spi_tx_buf; 251 u8 *spi_rx_buf; 252 dma_addr_t spi_tx_dma; 253 dma_addr_t spi_rx_dma; 254 255 struct sk_buff *tx_skb; 256 int tx_len; 257 258 struct workqueue_struct *wq; 259 struct work_struct tx_work; 260 struct work_struct restart_work; 261 262 int force_quit; 263 int after_suspend; 264 #define AFTER_SUSPEND_UP 1 265 #define AFTER_SUSPEND_DOWN 2 266 #define AFTER_SUSPEND_POWER 4 267 #define AFTER_SUSPEND_RESTART 8 268 int restart_tx; 269 struct regulator *power; 270 struct regulator *transceiver; 271 struct clk *clk; 272 }; 273 274 #define MCP251X_IS(_model) \ 275 static inline int mcp251x_is_##_model(struct spi_device *spi) \ 276 { \ 277 struct mcp251x_priv *priv = spi_get_drvdata(spi); \ 278 return priv->model == CAN_MCP251X_MCP##_model; \ 279 } 280 281 MCP251X_IS(2510); 282 MCP251X_IS(2515); 283 284 static void mcp251x_clean(struct net_device *net) 285 { 286 struct mcp251x_priv *priv = netdev_priv(net); 287 288 if (priv->tx_skb || priv->tx_len) 289 net->stats.tx_errors++; 290 if (priv->tx_skb) 291 dev_kfree_skb(priv->tx_skb); 292 if (priv->tx_len) 293 can_free_echo_skb(priv->net, 0); 294 priv->tx_skb = NULL; 295 priv->tx_len = 0; 296 } 297 298 /* 299 * Note about handling of error return of mcp251x_spi_trans: accessing 300 * registers via SPI is not really different conceptually than using 301 * normal I/O assembler instructions, although it's much more 302 * complicated from a practical POV. So it's not advisable to always 303 * check the return value of this function. Imagine that every 304 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0) 305 * error();", it would be a great mess (well there are some situation 306 * when exception handling C++ like could be useful after all). So we 307 * just check that transfers are OK at the beginning of our 308 * conversation with the chip and to avoid doing really nasty things 309 * (like injecting bogus packets in the network stack). 310 */ 311 static int mcp251x_spi_trans(struct spi_device *spi, int len) 312 { 313 struct mcp251x_priv *priv = spi_get_drvdata(spi); 314 struct spi_transfer t = { 315 .tx_buf = priv->spi_tx_buf, 316 .rx_buf = priv->spi_rx_buf, 317 .len = len, 318 .cs_change = 0, 319 }; 320 struct spi_message m; 321 int ret; 322 323 spi_message_init(&m); 324 325 if (mcp251x_enable_dma) { 326 t.tx_dma = priv->spi_tx_dma; 327 t.rx_dma = priv->spi_rx_dma; 328 m.is_dma_mapped = 1; 329 } 330 331 spi_message_add_tail(&t, &m); 332 333 ret = spi_sync(spi, &m); 334 if (ret) 335 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret); 336 return ret; 337 } 338 339 static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg) 340 { 341 struct mcp251x_priv *priv = spi_get_drvdata(spi); 342 u8 val = 0; 343 344 priv->spi_tx_buf[0] = INSTRUCTION_READ; 345 priv->spi_tx_buf[1] = reg; 346 347 mcp251x_spi_trans(spi, 3); 348 val = priv->spi_rx_buf[2]; 349 350 return val; 351 } 352 353 static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg, 354 uint8_t *v1, uint8_t *v2) 355 { 356 struct mcp251x_priv *priv = spi_get_drvdata(spi); 357 358 priv->spi_tx_buf[0] = INSTRUCTION_READ; 359 priv->spi_tx_buf[1] = reg; 360 361 mcp251x_spi_trans(spi, 4); 362 363 *v1 = priv->spi_rx_buf[2]; 364 *v2 = priv->spi_rx_buf[3]; 365 } 366 367 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val) 368 { 369 struct mcp251x_priv *priv = spi_get_drvdata(spi); 370 371 priv->spi_tx_buf[0] = INSTRUCTION_WRITE; 372 priv->spi_tx_buf[1] = reg; 373 priv->spi_tx_buf[2] = val; 374 375 mcp251x_spi_trans(spi, 3); 376 } 377 378 static void mcp251x_write_bits(struct spi_device *spi, u8 reg, 379 u8 mask, uint8_t val) 380 { 381 struct mcp251x_priv *priv = spi_get_drvdata(spi); 382 383 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY; 384 priv->spi_tx_buf[1] = reg; 385 priv->spi_tx_buf[2] = mask; 386 priv->spi_tx_buf[3] = val; 387 388 mcp251x_spi_trans(spi, 4); 389 } 390 391 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf, 392 int len, int tx_buf_idx) 393 { 394 struct mcp251x_priv *priv = spi_get_drvdata(spi); 395 396 if (mcp251x_is_2510(spi)) { 397 int i; 398 399 for (i = 1; i < TXBDAT_OFF + len; i++) 400 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i, 401 buf[i]); 402 } else { 403 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len); 404 mcp251x_spi_trans(spi, TXBDAT_OFF + len); 405 } 406 } 407 408 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame, 409 int tx_buf_idx) 410 { 411 struct mcp251x_priv *priv = spi_get_drvdata(spi); 412 u32 sid, eid, exide, rtr; 413 u8 buf[SPI_TRANSFER_BUF_LEN]; 414 415 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */ 416 if (exide) 417 sid = (frame->can_id & CAN_EFF_MASK) >> 18; 418 else 419 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */ 420 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */ 421 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */ 422 423 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx); 424 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT; 425 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) | 426 (exide << SIDL_EXIDE_SHIFT) | 427 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK); 428 buf[TXBEID8_OFF] = GET_BYTE(eid, 1); 429 buf[TXBEID0_OFF] = GET_BYTE(eid, 0); 430 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc; 431 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc); 432 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx); 433 434 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */ 435 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx); 436 mcp251x_spi_trans(priv->spi, 1); 437 } 438 439 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf, 440 int buf_idx) 441 { 442 struct mcp251x_priv *priv = spi_get_drvdata(spi); 443 444 if (mcp251x_is_2510(spi)) { 445 int i, len; 446 447 for (i = 1; i < RXBDAT_OFF; i++) 448 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); 449 450 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); 451 for (; i < (RXBDAT_OFF + len); i++) 452 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); 453 } else { 454 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx); 455 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN); 456 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN); 457 } 458 } 459 460 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx) 461 { 462 struct mcp251x_priv *priv = spi_get_drvdata(spi); 463 struct sk_buff *skb; 464 struct can_frame *frame; 465 u8 buf[SPI_TRANSFER_BUF_LEN]; 466 467 skb = alloc_can_skb(priv->net, &frame); 468 if (!skb) { 469 dev_err(&spi->dev, "cannot allocate RX skb\n"); 470 priv->net->stats.rx_dropped++; 471 return; 472 } 473 474 mcp251x_hw_rx_frame(spi, buf, buf_idx); 475 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) { 476 /* Extended ID format */ 477 frame->can_id = CAN_EFF_FLAG; 478 frame->can_id |= 479 /* Extended ID part */ 480 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) | 481 SET_BYTE(buf[RXBEID8_OFF], 1) | 482 SET_BYTE(buf[RXBEID0_OFF], 0) | 483 /* Standard ID part */ 484 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | 485 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18); 486 /* Remote transmission request */ 487 if (buf[RXBDLC_OFF] & RXBDLC_RTR) 488 frame->can_id |= CAN_RTR_FLAG; 489 } else { 490 /* Standard ID format */ 491 frame->can_id = 492 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | 493 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT); 494 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR) 495 frame->can_id |= CAN_RTR_FLAG; 496 } 497 /* Data length */ 498 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); 499 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc); 500 501 priv->net->stats.rx_packets++; 502 priv->net->stats.rx_bytes += frame->can_dlc; 503 504 can_led_event(priv->net, CAN_LED_EVENT_RX); 505 506 netif_rx_ni(skb); 507 } 508 509 static void mcp251x_hw_sleep(struct spi_device *spi) 510 { 511 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP); 512 } 513 514 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb, 515 struct net_device *net) 516 { 517 struct mcp251x_priv *priv = netdev_priv(net); 518 struct spi_device *spi = priv->spi; 519 520 if (priv->tx_skb || priv->tx_len) { 521 dev_warn(&spi->dev, "hard_xmit called while tx busy\n"); 522 return NETDEV_TX_BUSY; 523 } 524 525 if (can_dropped_invalid_skb(net, skb)) 526 return NETDEV_TX_OK; 527 528 netif_stop_queue(net); 529 priv->tx_skb = skb; 530 queue_work(priv->wq, &priv->tx_work); 531 532 return NETDEV_TX_OK; 533 } 534 535 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode) 536 { 537 struct mcp251x_priv *priv = netdev_priv(net); 538 539 switch (mode) { 540 case CAN_MODE_START: 541 mcp251x_clean(net); 542 /* We have to delay work since SPI I/O may sleep */ 543 priv->can.state = CAN_STATE_ERROR_ACTIVE; 544 priv->restart_tx = 1; 545 if (priv->can.restart_ms == 0) 546 priv->after_suspend = AFTER_SUSPEND_RESTART; 547 queue_work(priv->wq, &priv->restart_work); 548 break; 549 default: 550 return -EOPNOTSUPP; 551 } 552 553 return 0; 554 } 555 556 static int mcp251x_set_normal_mode(struct spi_device *spi) 557 { 558 struct mcp251x_priv *priv = spi_get_drvdata(spi); 559 unsigned long timeout; 560 561 /* Enable interrupts */ 562 mcp251x_write_reg(spi, CANINTE, 563 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE | 564 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE); 565 566 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 567 /* Put device into loopback mode */ 568 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK); 569 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) { 570 /* Put device into listen-only mode */ 571 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY); 572 } else { 573 /* Put device into normal mode */ 574 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL); 575 576 /* Wait for the device to enter normal mode */ 577 timeout = jiffies + HZ; 578 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) { 579 schedule(); 580 if (time_after(jiffies, timeout)) { 581 dev_err(&spi->dev, "MCP251x didn't" 582 " enter in normal mode\n"); 583 return -EBUSY; 584 } 585 } 586 } 587 priv->can.state = CAN_STATE_ERROR_ACTIVE; 588 return 0; 589 } 590 591 static int mcp251x_do_set_bittiming(struct net_device *net) 592 { 593 struct mcp251x_priv *priv = netdev_priv(net); 594 struct can_bittiming *bt = &priv->can.bittiming; 595 struct spi_device *spi = priv->spi; 596 597 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) | 598 (bt->brp - 1)); 599 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE | 600 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ? 601 CNF2_SAM : 0) | 602 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) | 603 (bt->prop_seg - 1)); 604 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK, 605 (bt->phase_seg2 - 1)); 606 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n", 607 mcp251x_read_reg(spi, CNF1), 608 mcp251x_read_reg(spi, CNF2), 609 mcp251x_read_reg(spi, CNF3)); 610 611 return 0; 612 } 613 614 static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv, 615 struct spi_device *spi) 616 { 617 mcp251x_do_set_bittiming(net); 618 619 mcp251x_write_reg(spi, RXBCTRL(0), 620 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1); 621 mcp251x_write_reg(spi, RXBCTRL(1), 622 RXBCTRL_RXM0 | RXBCTRL_RXM1); 623 return 0; 624 } 625 626 static int mcp251x_hw_reset(struct spi_device *spi) 627 { 628 struct mcp251x_priv *priv = spi_get_drvdata(spi); 629 u8 reg; 630 int ret; 631 632 /* Wait for oscillator startup timer after power up */ 633 mdelay(MCP251X_OST_DELAY_MS); 634 635 priv->spi_tx_buf[0] = INSTRUCTION_RESET; 636 ret = mcp251x_spi_trans(spi, 1); 637 if (ret) 638 return ret; 639 640 /* Wait for oscillator startup timer after reset */ 641 mdelay(MCP251X_OST_DELAY_MS); 642 643 reg = mcp251x_read_reg(spi, CANSTAT); 644 if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF) 645 return -ENODEV; 646 647 return 0; 648 } 649 650 static int mcp251x_hw_probe(struct spi_device *spi) 651 { 652 u8 ctrl; 653 int ret; 654 655 ret = mcp251x_hw_reset(spi); 656 if (ret) 657 return ret; 658 659 ctrl = mcp251x_read_reg(spi, CANCTRL); 660 661 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl); 662 663 /* Check for power up default value */ 664 if ((ctrl & 0x17) != 0x07) 665 return -ENODEV; 666 667 return 0; 668 } 669 670 static int mcp251x_power_enable(struct regulator *reg, int enable) 671 { 672 if (IS_ERR_OR_NULL(reg)) 673 return 0; 674 675 if (enable) 676 return regulator_enable(reg); 677 else 678 return regulator_disable(reg); 679 } 680 681 static void mcp251x_open_clean(struct net_device *net) 682 { 683 struct mcp251x_priv *priv = netdev_priv(net); 684 struct spi_device *spi = priv->spi; 685 686 free_irq(spi->irq, priv); 687 mcp251x_hw_sleep(spi); 688 mcp251x_power_enable(priv->transceiver, 0); 689 close_candev(net); 690 } 691 692 static int mcp251x_stop(struct net_device *net) 693 { 694 struct mcp251x_priv *priv = netdev_priv(net); 695 struct spi_device *spi = priv->spi; 696 697 close_candev(net); 698 699 priv->force_quit = 1; 700 free_irq(spi->irq, priv); 701 destroy_workqueue(priv->wq); 702 priv->wq = NULL; 703 704 mutex_lock(&priv->mcp_lock); 705 706 /* Disable and clear pending interrupts */ 707 mcp251x_write_reg(spi, CANINTE, 0x00); 708 mcp251x_write_reg(spi, CANINTF, 0x00); 709 710 mcp251x_write_reg(spi, TXBCTRL(0), 0); 711 mcp251x_clean(net); 712 713 mcp251x_hw_sleep(spi); 714 715 mcp251x_power_enable(priv->transceiver, 0); 716 717 priv->can.state = CAN_STATE_STOPPED; 718 719 mutex_unlock(&priv->mcp_lock); 720 721 can_led_event(net, CAN_LED_EVENT_STOP); 722 723 return 0; 724 } 725 726 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1) 727 { 728 struct sk_buff *skb; 729 struct can_frame *frame; 730 731 skb = alloc_can_err_skb(net, &frame); 732 if (skb) { 733 frame->can_id |= can_id; 734 frame->data[1] = data1; 735 netif_rx_ni(skb); 736 } else { 737 netdev_err(net, "cannot allocate error skb\n"); 738 } 739 } 740 741 static void mcp251x_tx_work_handler(struct work_struct *ws) 742 { 743 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, 744 tx_work); 745 struct spi_device *spi = priv->spi; 746 struct net_device *net = priv->net; 747 struct can_frame *frame; 748 749 mutex_lock(&priv->mcp_lock); 750 if (priv->tx_skb) { 751 if (priv->can.state == CAN_STATE_BUS_OFF) { 752 mcp251x_clean(net); 753 } else { 754 frame = (struct can_frame *)priv->tx_skb->data; 755 756 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN) 757 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN; 758 mcp251x_hw_tx(spi, frame, 0); 759 priv->tx_len = 1 + frame->can_dlc; 760 can_put_echo_skb(priv->tx_skb, net, 0); 761 priv->tx_skb = NULL; 762 } 763 } 764 mutex_unlock(&priv->mcp_lock); 765 } 766 767 static void mcp251x_restart_work_handler(struct work_struct *ws) 768 { 769 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, 770 restart_work); 771 struct spi_device *spi = priv->spi; 772 struct net_device *net = priv->net; 773 774 mutex_lock(&priv->mcp_lock); 775 if (priv->after_suspend) { 776 mcp251x_hw_reset(spi); 777 mcp251x_setup(net, priv, spi); 778 if (priv->after_suspend & AFTER_SUSPEND_RESTART) { 779 mcp251x_set_normal_mode(spi); 780 } else if (priv->after_suspend & AFTER_SUSPEND_UP) { 781 netif_device_attach(net); 782 mcp251x_clean(net); 783 mcp251x_set_normal_mode(spi); 784 netif_wake_queue(net); 785 } else { 786 mcp251x_hw_sleep(spi); 787 } 788 priv->after_suspend = 0; 789 priv->force_quit = 0; 790 } 791 792 if (priv->restart_tx) { 793 priv->restart_tx = 0; 794 mcp251x_write_reg(spi, TXBCTRL(0), 0); 795 mcp251x_clean(net); 796 netif_wake_queue(net); 797 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0); 798 } 799 mutex_unlock(&priv->mcp_lock); 800 } 801 802 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id) 803 { 804 struct mcp251x_priv *priv = dev_id; 805 struct spi_device *spi = priv->spi; 806 struct net_device *net = priv->net; 807 808 mutex_lock(&priv->mcp_lock); 809 while (!priv->force_quit) { 810 enum can_state new_state; 811 u8 intf, eflag; 812 u8 clear_intf = 0; 813 int can_id = 0, data1 = 0; 814 815 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag); 816 817 /* mask out flags we don't care about */ 818 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR; 819 820 /* receive buffer 0 */ 821 if (intf & CANINTF_RX0IF) { 822 mcp251x_hw_rx(spi, 0); 823 /* 824 * Free one buffer ASAP 825 * (The MCP2515 does this automatically.) 826 */ 827 if (mcp251x_is_2510(spi)) 828 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00); 829 } 830 831 /* receive buffer 1 */ 832 if (intf & CANINTF_RX1IF) { 833 mcp251x_hw_rx(spi, 1); 834 /* the MCP2515 does this automatically */ 835 if (mcp251x_is_2510(spi)) 836 clear_intf |= CANINTF_RX1IF; 837 } 838 839 /* any error or tx interrupt we need to clear? */ 840 if (intf & (CANINTF_ERR | CANINTF_TX)) 841 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX); 842 if (clear_intf) 843 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00); 844 845 if (eflag) 846 mcp251x_write_bits(spi, EFLG, eflag, 0x00); 847 848 /* Update can state */ 849 if (eflag & EFLG_TXBO) { 850 new_state = CAN_STATE_BUS_OFF; 851 can_id |= CAN_ERR_BUSOFF; 852 } else if (eflag & EFLG_TXEP) { 853 new_state = CAN_STATE_ERROR_PASSIVE; 854 can_id |= CAN_ERR_CRTL; 855 data1 |= CAN_ERR_CRTL_TX_PASSIVE; 856 } else if (eflag & EFLG_RXEP) { 857 new_state = CAN_STATE_ERROR_PASSIVE; 858 can_id |= CAN_ERR_CRTL; 859 data1 |= CAN_ERR_CRTL_RX_PASSIVE; 860 } else if (eflag & EFLG_TXWAR) { 861 new_state = CAN_STATE_ERROR_WARNING; 862 can_id |= CAN_ERR_CRTL; 863 data1 |= CAN_ERR_CRTL_TX_WARNING; 864 } else if (eflag & EFLG_RXWAR) { 865 new_state = CAN_STATE_ERROR_WARNING; 866 can_id |= CAN_ERR_CRTL; 867 data1 |= CAN_ERR_CRTL_RX_WARNING; 868 } else { 869 new_state = CAN_STATE_ERROR_ACTIVE; 870 } 871 872 /* Update can state statistics */ 873 switch (priv->can.state) { 874 case CAN_STATE_ERROR_ACTIVE: 875 if (new_state >= CAN_STATE_ERROR_WARNING && 876 new_state <= CAN_STATE_BUS_OFF) 877 priv->can.can_stats.error_warning++; 878 case CAN_STATE_ERROR_WARNING: /* fallthrough */ 879 if (new_state >= CAN_STATE_ERROR_PASSIVE && 880 new_state <= CAN_STATE_BUS_OFF) 881 priv->can.can_stats.error_passive++; 882 break; 883 default: 884 break; 885 } 886 priv->can.state = new_state; 887 888 if (intf & CANINTF_ERRIF) { 889 /* Handle overflow counters */ 890 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) { 891 if (eflag & EFLG_RX0OVR) { 892 net->stats.rx_over_errors++; 893 net->stats.rx_errors++; 894 } 895 if (eflag & EFLG_RX1OVR) { 896 net->stats.rx_over_errors++; 897 net->stats.rx_errors++; 898 } 899 can_id |= CAN_ERR_CRTL; 900 data1 |= CAN_ERR_CRTL_RX_OVERFLOW; 901 } 902 mcp251x_error_skb(net, can_id, data1); 903 } 904 905 if (priv->can.state == CAN_STATE_BUS_OFF) { 906 if (priv->can.restart_ms == 0) { 907 priv->force_quit = 1; 908 can_bus_off(net); 909 mcp251x_hw_sleep(spi); 910 break; 911 } 912 } 913 914 if (intf == 0) 915 break; 916 917 if (intf & CANINTF_TX) { 918 net->stats.tx_packets++; 919 net->stats.tx_bytes += priv->tx_len - 1; 920 can_led_event(net, CAN_LED_EVENT_TX); 921 if (priv->tx_len) { 922 can_get_echo_skb(net, 0); 923 priv->tx_len = 0; 924 } 925 netif_wake_queue(net); 926 } 927 928 } 929 mutex_unlock(&priv->mcp_lock); 930 return IRQ_HANDLED; 931 } 932 933 static int mcp251x_open(struct net_device *net) 934 { 935 struct mcp251x_priv *priv = netdev_priv(net); 936 struct spi_device *spi = priv->spi; 937 unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING; 938 int ret; 939 940 ret = open_candev(net); 941 if (ret) { 942 dev_err(&spi->dev, "unable to set initial baudrate!\n"); 943 return ret; 944 } 945 946 mutex_lock(&priv->mcp_lock); 947 mcp251x_power_enable(priv->transceiver, 1); 948 949 priv->force_quit = 0; 950 priv->tx_skb = NULL; 951 priv->tx_len = 0; 952 953 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist, 954 flags | IRQF_ONESHOT, DEVICE_NAME, priv); 955 if (ret) { 956 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq); 957 mcp251x_power_enable(priv->transceiver, 0); 958 close_candev(net); 959 goto open_unlock; 960 } 961 962 priv->wq = create_freezable_workqueue("mcp251x_wq"); 963 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler); 964 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler); 965 966 ret = mcp251x_hw_reset(spi); 967 if (ret) { 968 mcp251x_open_clean(net); 969 goto open_unlock; 970 } 971 ret = mcp251x_setup(net, priv, spi); 972 if (ret) { 973 mcp251x_open_clean(net); 974 goto open_unlock; 975 } 976 ret = mcp251x_set_normal_mode(spi); 977 if (ret) { 978 mcp251x_open_clean(net); 979 goto open_unlock; 980 } 981 982 can_led_event(net, CAN_LED_EVENT_OPEN); 983 984 netif_wake_queue(net); 985 986 open_unlock: 987 mutex_unlock(&priv->mcp_lock); 988 return ret; 989 } 990 991 static const struct net_device_ops mcp251x_netdev_ops = { 992 .ndo_open = mcp251x_open, 993 .ndo_stop = mcp251x_stop, 994 .ndo_start_xmit = mcp251x_hard_start_xmit, 995 .ndo_change_mtu = can_change_mtu, 996 }; 997 998 static const struct of_device_id mcp251x_of_match[] = { 999 { 1000 .compatible = "microchip,mcp2510", 1001 .data = (void *)CAN_MCP251X_MCP2510, 1002 }, 1003 { 1004 .compatible = "microchip,mcp2515", 1005 .data = (void *)CAN_MCP251X_MCP2515, 1006 }, 1007 { } 1008 }; 1009 MODULE_DEVICE_TABLE(of, mcp251x_of_match); 1010 1011 static const struct spi_device_id mcp251x_id_table[] = { 1012 { 1013 .name = "mcp2510", 1014 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510, 1015 }, 1016 { 1017 .name = "mcp2515", 1018 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515, 1019 }, 1020 { } 1021 }; 1022 MODULE_DEVICE_TABLE(spi, mcp251x_id_table); 1023 1024 static int mcp251x_can_probe(struct spi_device *spi) 1025 { 1026 const struct of_device_id *of_id = of_match_device(mcp251x_of_match, 1027 &spi->dev); 1028 struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev); 1029 struct net_device *net; 1030 struct mcp251x_priv *priv; 1031 struct clk *clk; 1032 int freq, ret; 1033 1034 clk = devm_clk_get(&spi->dev, NULL); 1035 if (IS_ERR(clk)) { 1036 if (pdata) 1037 freq = pdata->oscillator_frequency; 1038 else 1039 return PTR_ERR(clk); 1040 } else { 1041 freq = clk_get_rate(clk); 1042 } 1043 1044 /* Sanity check */ 1045 if (freq < 1000000 || freq > 25000000) 1046 return -ERANGE; 1047 1048 /* Allocate can/net device */ 1049 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX); 1050 if (!net) 1051 return -ENOMEM; 1052 1053 if (!IS_ERR(clk)) { 1054 ret = clk_prepare_enable(clk); 1055 if (ret) 1056 goto out_free; 1057 } 1058 1059 net->netdev_ops = &mcp251x_netdev_ops; 1060 net->flags |= IFF_ECHO; 1061 1062 priv = netdev_priv(net); 1063 priv->can.bittiming_const = &mcp251x_bittiming_const; 1064 priv->can.do_set_mode = mcp251x_do_set_mode; 1065 priv->can.clock.freq = freq / 2; 1066 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | 1067 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY; 1068 if (of_id) 1069 priv->model = (enum mcp251x_model)of_id->data; 1070 else 1071 priv->model = spi_get_device_id(spi)->driver_data; 1072 priv->net = net; 1073 priv->clk = clk; 1074 1075 spi_set_drvdata(spi, priv); 1076 1077 /* Configure the SPI bus */ 1078 spi->bits_per_word = 8; 1079 if (mcp251x_is_2510(spi)) 1080 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000; 1081 else 1082 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000; 1083 ret = spi_setup(spi); 1084 if (ret) 1085 goto out_clk; 1086 1087 priv->power = devm_regulator_get(&spi->dev, "vdd"); 1088 priv->transceiver = devm_regulator_get(&spi->dev, "xceiver"); 1089 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) || 1090 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) { 1091 ret = -EPROBE_DEFER; 1092 goto out_clk; 1093 } 1094 1095 ret = mcp251x_power_enable(priv->power, 1); 1096 if (ret) 1097 goto out_clk; 1098 1099 priv->spi = spi; 1100 mutex_init(&priv->mcp_lock); 1101 1102 /* If requested, allocate DMA buffers */ 1103 if (mcp251x_enable_dma) { 1104 spi->dev.coherent_dma_mask = ~0; 1105 1106 /* 1107 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate 1108 * that much and share it between Tx and Rx DMA buffers. 1109 */ 1110 priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev, 1111 PAGE_SIZE, 1112 &priv->spi_tx_dma, 1113 GFP_DMA); 1114 1115 if (priv->spi_tx_buf) { 1116 priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2)); 1117 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma + 1118 (PAGE_SIZE / 2)); 1119 } else { 1120 /* Fall back to non-DMA */ 1121 mcp251x_enable_dma = 0; 1122 } 1123 } 1124 1125 /* Allocate non-DMA buffers */ 1126 if (!mcp251x_enable_dma) { 1127 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, 1128 GFP_KERNEL); 1129 if (!priv->spi_tx_buf) { 1130 ret = -ENOMEM; 1131 goto error_probe; 1132 } 1133 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, 1134 GFP_KERNEL); 1135 if (!priv->spi_rx_buf) { 1136 ret = -ENOMEM; 1137 goto error_probe; 1138 } 1139 } 1140 1141 SET_NETDEV_DEV(net, &spi->dev); 1142 1143 /* Here is OK to not lock the MCP, no one knows about it yet */ 1144 ret = mcp251x_hw_probe(spi); 1145 if (ret) 1146 goto error_probe; 1147 1148 mcp251x_hw_sleep(spi); 1149 1150 ret = register_candev(net); 1151 if (ret) 1152 goto error_probe; 1153 1154 devm_can_led_init(net); 1155 1156 return 0; 1157 1158 error_probe: 1159 mcp251x_power_enable(priv->power, 0); 1160 1161 out_clk: 1162 if (!IS_ERR(clk)) 1163 clk_disable_unprepare(clk); 1164 1165 out_free: 1166 free_candev(net); 1167 1168 return ret; 1169 } 1170 1171 static int mcp251x_can_remove(struct spi_device *spi) 1172 { 1173 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1174 struct net_device *net = priv->net; 1175 1176 unregister_candev(net); 1177 1178 mcp251x_power_enable(priv->power, 0); 1179 1180 if (!IS_ERR(priv->clk)) 1181 clk_disable_unprepare(priv->clk); 1182 1183 free_candev(net); 1184 1185 return 0; 1186 } 1187 1188 static int __maybe_unused mcp251x_can_suspend(struct device *dev) 1189 { 1190 struct spi_device *spi = to_spi_device(dev); 1191 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1192 struct net_device *net = priv->net; 1193 1194 priv->force_quit = 1; 1195 disable_irq(spi->irq); 1196 /* 1197 * Note: at this point neither IST nor workqueues are running. 1198 * open/stop cannot be called anyway so locking is not needed 1199 */ 1200 if (netif_running(net)) { 1201 netif_device_detach(net); 1202 1203 mcp251x_hw_sleep(spi); 1204 mcp251x_power_enable(priv->transceiver, 0); 1205 priv->after_suspend = AFTER_SUSPEND_UP; 1206 } else { 1207 priv->after_suspend = AFTER_SUSPEND_DOWN; 1208 } 1209 1210 if (!IS_ERR_OR_NULL(priv->power)) { 1211 regulator_disable(priv->power); 1212 priv->after_suspend |= AFTER_SUSPEND_POWER; 1213 } 1214 1215 return 0; 1216 } 1217 1218 static int __maybe_unused mcp251x_can_resume(struct device *dev) 1219 { 1220 struct spi_device *spi = to_spi_device(dev); 1221 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1222 1223 if (priv->after_suspend & AFTER_SUSPEND_POWER) { 1224 mcp251x_power_enable(priv->power, 1); 1225 queue_work(priv->wq, &priv->restart_work); 1226 } else { 1227 if (priv->after_suspend & AFTER_SUSPEND_UP) { 1228 mcp251x_power_enable(priv->transceiver, 1); 1229 queue_work(priv->wq, &priv->restart_work); 1230 } else { 1231 priv->after_suspend = 0; 1232 } 1233 } 1234 priv->force_quit = 0; 1235 enable_irq(spi->irq); 1236 return 0; 1237 } 1238 1239 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend, 1240 mcp251x_can_resume); 1241 1242 static struct spi_driver mcp251x_can_driver = { 1243 .driver = { 1244 .name = DEVICE_NAME, 1245 .owner = THIS_MODULE, 1246 .of_match_table = mcp251x_of_match, 1247 .pm = &mcp251x_can_pm_ops, 1248 }, 1249 .id_table = mcp251x_id_table, 1250 .probe = mcp251x_can_probe, 1251 .remove = mcp251x_can_remove, 1252 }; 1253 module_spi_driver(mcp251x_can_driver); 1254 1255 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, " 1256 "Christian Pellegrin <chripell@evolware.org>"); 1257 MODULE_DESCRIPTION("Microchip 251x CAN driver"); 1258 MODULE_LICENSE("GPL v2"); 1259