1 /* 2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface 3 * 4 * MCP2510 support and bug fixes by Christian Pellegrin 5 * <chripell@evolware.org> 6 * 7 * Copyright 2009 Christian Pellegrin EVOL S.r.l. 8 * 9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved. 10 * Written under contract by: 11 * Chris Elston, Katalix Systems, Ltd. 12 * 13 * Based on Microchip MCP251x CAN controller driver written by 14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd. 15 * 16 * Based on CAN bus driver for the CCAN controller written by 17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix 18 * - Simon Kallweit, intefo AG 19 * Copyright 2007 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the version 2 of the GNU General Public License 23 * as published by the Free Software Foundation 24 * 25 * This program is distributed in the hope that it will be useful, 26 * but WITHOUT ANY WARRANTY; without even the implied warranty of 27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 28 * GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with this program; if not, see <http://www.gnu.org/licenses/>. 32 * 33 * 34 * 35 * Your platform definition file should specify something like: 36 * 37 * static struct mcp251x_platform_data mcp251x_info = { 38 * .oscillator_frequency = 8000000, 39 * }; 40 * 41 * static struct spi_board_info spi_board_info[] = { 42 * { 43 * .modalias = "mcp2510", 44 * // or "mcp2515" depending on your controller 45 * .platform_data = &mcp251x_info, 46 * .irq = IRQ_EINT13, 47 * .max_speed_hz = 2*1000*1000, 48 * .chip_select = 2, 49 * }, 50 * }; 51 * 52 * Please see mcp251x.h for a description of the fields in 53 * struct mcp251x_platform_data. 54 * 55 */ 56 57 #include <linux/can/core.h> 58 #include <linux/can/dev.h> 59 #include <linux/can/led.h> 60 #include <linux/can/platform/mcp251x.h> 61 #include <linux/clk.h> 62 #include <linux/completion.h> 63 #include <linux/delay.h> 64 #include <linux/device.h> 65 #include <linux/dma-mapping.h> 66 #include <linux/freezer.h> 67 #include <linux/interrupt.h> 68 #include <linux/io.h> 69 #include <linux/kernel.h> 70 #include <linux/module.h> 71 #include <linux/netdevice.h> 72 #include <linux/of.h> 73 #include <linux/of_device.h> 74 #include <linux/platform_device.h> 75 #include <linux/slab.h> 76 #include <linux/spi/spi.h> 77 #include <linux/uaccess.h> 78 #include <linux/regulator/consumer.h> 79 80 /* SPI interface instruction set */ 81 #define INSTRUCTION_WRITE 0x02 82 #define INSTRUCTION_READ 0x03 83 #define INSTRUCTION_BIT_MODIFY 0x05 84 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n)) 85 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94) 86 #define INSTRUCTION_RESET 0xC0 87 #define RTS_TXB0 0x01 88 #define RTS_TXB1 0x02 89 #define RTS_TXB2 0x04 90 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07)) 91 92 93 /* MPC251x registers */ 94 #define CANSTAT 0x0e 95 #define CANCTRL 0x0f 96 # define CANCTRL_REQOP_MASK 0xe0 97 # define CANCTRL_REQOP_CONF 0x80 98 # define CANCTRL_REQOP_LISTEN_ONLY 0x60 99 # define CANCTRL_REQOP_LOOPBACK 0x40 100 # define CANCTRL_REQOP_SLEEP 0x20 101 # define CANCTRL_REQOP_NORMAL 0x00 102 # define CANCTRL_OSM 0x08 103 # define CANCTRL_ABAT 0x10 104 #define TEC 0x1c 105 #define REC 0x1d 106 #define CNF1 0x2a 107 # define CNF1_SJW_SHIFT 6 108 #define CNF2 0x29 109 # define CNF2_BTLMODE 0x80 110 # define CNF2_SAM 0x40 111 # define CNF2_PS1_SHIFT 3 112 #define CNF3 0x28 113 # define CNF3_SOF 0x08 114 # define CNF3_WAKFIL 0x04 115 # define CNF3_PHSEG2_MASK 0x07 116 #define CANINTE 0x2b 117 # define CANINTE_MERRE 0x80 118 # define CANINTE_WAKIE 0x40 119 # define CANINTE_ERRIE 0x20 120 # define CANINTE_TX2IE 0x10 121 # define CANINTE_TX1IE 0x08 122 # define CANINTE_TX0IE 0x04 123 # define CANINTE_RX1IE 0x02 124 # define CANINTE_RX0IE 0x01 125 #define CANINTF 0x2c 126 # define CANINTF_MERRF 0x80 127 # define CANINTF_WAKIF 0x40 128 # define CANINTF_ERRIF 0x20 129 # define CANINTF_TX2IF 0x10 130 # define CANINTF_TX1IF 0x08 131 # define CANINTF_TX0IF 0x04 132 # define CANINTF_RX1IF 0x02 133 # define CANINTF_RX0IF 0x01 134 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF) 135 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF) 136 # define CANINTF_ERR (CANINTF_ERRIF) 137 #define EFLG 0x2d 138 # define EFLG_EWARN 0x01 139 # define EFLG_RXWAR 0x02 140 # define EFLG_TXWAR 0x04 141 # define EFLG_RXEP 0x08 142 # define EFLG_TXEP 0x10 143 # define EFLG_TXBO 0x20 144 # define EFLG_RX0OVR 0x40 145 # define EFLG_RX1OVR 0x80 146 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF) 147 # define TXBCTRL_ABTF 0x40 148 # define TXBCTRL_MLOA 0x20 149 # define TXBCTRL_TXERR 0x10 150 # define TXBCTRL_TXREQ 0x08 151 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF) 152 # define SIDH_SHIFT 3 153 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF) 154 # define SIDL_SID_MASK 7 155 # define SIDL_SID_SHIFT 5 156 # define SIDL_EXIDE_SHIFT 3 157 # define SIDL_EID_SHIFT 16 158 # define SIDL_EID_MASK 3 159 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF) 160 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF) 161 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF) 162 # define DLC_RTR_SHIFT 6 163 #define TXBCTRL_OFF 0 164 #define TXBSIDH_OFF 1 165 #define TXBSIDL_OFF 2 166 #define TXBEID8_OFF 3 167 #define TXBEID0_OFF 4 168 #define TXBDLC_OFF 5 169 #define TXBDAT_OFF 6 170 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF) 171 # define RXBCTRL_BUKT 0x04 172 # define RXBCTRL_RXM0 0x20 173 # define RXBCTRL_RXM1 0x40 174 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF) 175 # define RXBSIDH_SHIFT 3 176 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF) 177 # define RXBSIDL_IDE 0x08 178 # define RXBSIDL_SRR 0x10 179 # define RXBSIDL_EID 3 180 # define RXBSIDL_SHIFT 5 181 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF) 182 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF) 183 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF) 184 # define RXBDLC_LEN_MASK 0x0f 185 # define RXBDLC_RTR 0x40 186 #define RXBCTRL_OFF 0 187 #define RXBSIDH_OFF 1 188 #define RXBSIDL_OFF 2 189 #define RXBEID8_OFF 3 190 #define RXBEID0_OFF 4 191 #define RXBDLC_OFF 5 192 #define RXBDAT_OFF 6 193 #define RXFSID(n) ((n < 3) ? 0 : 4) 194 #define RXFSIDH(n) ((n) * 4 + RXFSID(n)) 195 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n)) 196 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n)) 197 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n)) 198 #define RXMSIDH(n) ((n) * 4 + 0x20) 199 #define RXMSIDL(n) ((n) * 4 + 0x21) 200 #define RXMEID8(n) ((n) * 4 + 0x22) 201 #define RXMEID0(n) ((n) * 4 + 0x23) 202 203 #define GET_BYTE(val, byte) \ 204 (((val) >> ((byte) * 8)) & 0xff) 205 #define SET_BYTE(val, byte) \ 206 (((val) & 0xff) << ((byte) * 8)) 207 208 /* 209 * Buffer size required for the largest SPI transfer (i.e., reading a 210 * frame) 211 */ 212 #define CAN_FRAME_MAX_DATA_LEN 8 213 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN) 214 #define CAN_FRAME_MAX_BITS 128 215 216 #define TX_ECHO_SKB_MAX 1 217 218 #define MCP251X_OST_DELAY_MS (5) 219 220 #define DEVICE_NAME "mcp251x" 221 222 static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */ 223 module_param(mcp251x_enable_dma, int, S_IRUGO); 224 MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)"); 225 226 static const struct can_bittiming_const mcp251x_bittiming_const = { 227 .name = DEVICE_NAME, 228 .tseg1_min = 3, 229 .tseg1_max = 16, 230 .tseg2_min = 2, 231 .tseg2_max = 8, 232 .sjw_max = 4, 233 .brp_min = 1, 234 .brp_max = 64, 235 .brp_inc = 1, 236 }; 237 238 enum mcp251x_model { 239 CAN_MCP251X_MCP2510 = 0x2510, 240 CAN_MCP251X_MCP2515 = 0x2515, 241 }; 242 243 struct mcp251x_priv { 244 struct can_priv can; 245 struct net_device *net; 246 struct spi_device *spi; 247 enum mcp251x_model model; 248 249 struct mutex mcp_lock; /* SPI device lock */ 250 251 u8 *spi_tx_buf; 252 u8 *spi_rx_buf; 253 dma_addr_t spi_tx_dma; 254 dma_addr_t spi_rx_dma; 255 256 struct sk_buff *tx_skb; 257 int tx_len; 258 259 struct workqueue_struct *wq; 260 struct work_struct tx_work; 261 struct work_struct restart_work; 262 263 int force_quit; 264 int after_suspend; 265 #define AFTER_SUSPEND_UP 1 266 #define AFTER_SUSPEND_DOWN 2 267 #define AFTER_SUSPEND_POWER 4 268 #define AFTER_SUSPEND_RESTART 8 269 int restart_tx; 270 struct regulator *power; 271 struct regulator *transceiver; 272 struct clk *clk; 273 }; 274 275 #define MCP251X_IS(_model) \ 276 static inline int mcp251x_is_##_model(struct spi_device *spi) \ 277 { \ 278 struct mcp251x_priv *priv = spi_get_drvdata(spi); \ 279 return priv->model == CAN_MCP251X_MCP##_model; \ 280 } 281 282 MCP251X_IS(2510); 283 MCP251X_IS(2515); 284 285 static void mcp251x_clean(struct net_device *net) 286 { 287 struct mcp251x_priv *priv = netdev_priv(net); 288 289 if (priv->tx_skb || priv->tx_len) 290 net->stats.tx_errors++; 291 if (priv->tx_skb) 292 dev_kfree_skb(priv->tx_skb); 293 if (priv->tx_len) 294 can_free_echo_skb(priv->net, 0); 295 priv->tx_skb = NULL; 296 priv->tx_len = 0; 297 } 298 299 /* 300 * Note about handling of error return of mcp251x_spi_trans: accessing 301 * registers via SPI is not really different conceptually than using 302 * normal I/O assembler instructions, although it's much more 303 * complicated from a practical POV. So it's not advisable to always 304 * check the return value of this function. Imagine that every 305 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0) 306 * error();", it would be a great mess (well there are some situation 307 * when exception handling C++ like could be useful after all). So we 308 * just check that transfers are OK at the beginning of our 309 * conversation with the chip and to avoid doing really nasty things 310 * (like injecting bogus packets in the network stack). 311 */ 312 static int mcp251x_spi_trans(struct spi_device *spi, int len) 313 { 314 struct mcp251x_priv *priv = spi_get_drvdata(spi); 315 struct spi_transfer t = { 316 .tx_buf = priv->spi_tx_buf, 317 .rx_buf = priv->spi_rx_buf, 318 .len = len, 319 .cs_change = 0, 320 }; 321 struct spi_message m; 322 int ret; 323 324 spi_message_init(&m); 325 326 if (mcp251x_enable_dma) { 327 t.tx_dma = priv->spi_tx_dma; 328 t.rx_dma = priv->spi_rx_dma; 329 m.is_dma_mapped = 1; 330 } 331 332 spi_message_add_tail(&t, &m); 333 334 ret = spi_sync(spi, &m); 335 if (ret) 336 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret); 337 return ret; 338 } 339 340 static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg) 341 { 342 struct mcp251x_priv *priv = spi_get_drvdata(spi); 343 u8 val = 0; 344 345 priv->spi_tx_buf[0] = INSTRUCTION_READ; 346 priv->spi_tx_buf[1] = reg; 347 348 mcp251x_spi_trans(spi, 3); 349 val = priv->spi_rx_buf[2]; 350 351 return val; 352 } 353 354 static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg, 355 uint8_t *v1, uint8_t *v2) 356 { 357 struct mcp251x_priv *priv = spi_get_drvdata(spi); 358 359 priv->spi_tx_buf[0] = INSTRUCTION_READ; 360 priv->spi_tx_buf[1] = reg; 361 362 mcp251x_spi_trans(spi, 4); 363 364 *v1 = priv->spi_rx_buf[2]; 365 *v2 = priv->spi_rx_buf[3]; 366 } 367 368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val) 369 { 370 struct mcp251x_priv *priv = spi_get_drvdata(spi); 371 372 priv->spi_tx_buf[0] = INSTRUCTION_WRITE; 373 priv->spi_tx_buf[1] = reg; 374 priv->spi_tx_buf[2] = val; 375 376 mcp251x_spi_trans(spi, 3); 377 } 378 379 static void mcp251x_write_bits(struct spi_device *spi, u8 reg, 380 u8 mask, uint8_t val) 381 { 382 struct mcp251x_priv *priv = spi_get_drvdata(spi); 383 384 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY; 385 priv->spi_tx_buf[1] = reg; 386 priv->spi_tx_buf[2] = mask; 387 priv->spi_tx_buf[3] = val; 388 389 mcp251x_spi_trans(spi, 4); 390 } 391 392 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf, 393 int len, int tx_buf_idx) 394 { 395 struct mcp251x_priv *priv = spi_get_drvdata(spi); 396 397 if (mcp251x_is_2510(spi)) { 398 int i; 399 400 for (i = 1; i < TXBDAT_OFF + len; i++) 401 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i, 402 buf[i]); 403 } else { 404 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len); 405 mcp251x_spi_trans(spi, TXBDAT_OFF + len); 406 } 407 } 408 409 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame, 410 int tx_buf_idx) 411 { 412 struct mcp251x_priv *priv = spi_get_drvdata(spi); 413 u32 sid, eid, exide, rtr; 414 u8 buf[SPI_TRANSFER_BUF_LEN]; 415 416 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */ 417 if (exide) 418 sid = (frame->can_id & CAN_EFF_MASK) >> 18; 419 else 420 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */ 421 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */ 422 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */ 423 424 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx); 425 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT; 426 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) | 427 (exide << SIDL_EXIDE_SHIFT) | 428 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK); 429 buf[TXBEID8_OFF] = GET_BYTE(eid, 1); 430 buf[TXBEID0_OFF] = GET_BYTE(eid, 0); 431 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc; 432 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc); 433 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx); 434 435 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */ 436 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx); 437 mcp251x_spi_trans(priv->spi, 1); 438 } 439 440 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf, 441 int buf_idx) 442 { 443 struct mcp251x_priv *priv = spi_get_drvdata(spi); 444 445 if (mcp251x_is_2510(spi)) { 446 int i, len; 447 448 for (i = 1; i < RXBDAT_OFF; i++) 449 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); 450 451 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); 452 for (; i < (RXBDAT_OFF + len); i++) 453 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); 454 } else { 455 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx); 456 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN); 457 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN); 458 } 459 } 460 461 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx) 462 { 463 struct mcp251x_priv *priv = spi_get_drvdata(spi); 464 struct sk_buff *skb; 465 struct can_frame *frame; 466 u8 buf[SPI_TRANSFER_BUF_LEN]; 467 468 skb = alloc_can_skb(priv->net, &frame); 469 if (!skb) { 470 dev_err(&spi->dev, "cannot allocate RX skb\n"); 471 priv->net->stats.rx_dropped++; 472 return; 473 } 474 475 mcp251x_hw_rx_frame(spi, buf, buf_idx); 476 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) { 477 /* Extended ID format */ 478 frame->can_id = CAN_EFF_FLAG; 479 frame->can_id |= 480 /* Extended ID part */ 481 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) | 482 SET_BYTE(buf[RXBEID8_OFF], 1) | 483 SET_BYTE(buf[RXBEID0_OFF], 0) | 484 /* Standard ID part */ 485 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | 486 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18); 487 /* Remote transmission request */ 488 if (buf[RXBDLC_OFF] & RXBDLC_RTR) 489 frame->can_id |= CAN_RTR_FLAG; 490 } else { 491 /* Standard ID format */ 492 frame->can_id = 493 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | 494 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT); 495 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR) 496 frame->can_id |= CAN_RTR_FLAG; 497 } 498 /* Data length */ 499 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); 500 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc); 501 502 priv->net->stats.rx_packets++; 503 priv->net->stats.rx_bytes += frame->can_dlc; 504 505 can_led_event(priv->net, CAN_LED_EVENT_RX); 506 507 netif_rx_ni(skb); 508 } 509 510 static void mcp251x_hw_sleep(struct spi_device *spi) 511 { 512 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP); 513 } 514 515 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb, 516 struct net_device *net) 517 { 518 struct mcp251x_priv *priv = netdev_priv(net); 519 struct spi_device *spi = priv->spi; 520 521 if (priv->tx_skb || priv->tx_len) { 522 dev_warn(&spi->dev, "hard_xmit called while tx busy\n"); 523 return NETDEV_TX_BUSY; 524 } 525 526 if (can_dropped_invalid_skb(net, skb)) 527 return NETDEV_TX_OK; 528 529 netif_stop_queue(net); 530 priv->tx_skb = skb; 531 queue_work(priv->wq, &priv->tx_work); 532 533 return NETDEV_TX_OK; 534 } 535 536 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode) 537 { 538 struct mcp251x_priv *priv = netdev_priv(net); 539 540 switch (mode) { 541 case CAN_MODE_START: 542 mcp251x_clean(net); 543 /* We have to delay work since SPI I/O may sleep */ 544 priv->can.state = CAN_STATE_ERROR_ACTIVE; 545 priv->restart_tx = 1; 546 if (priv->can.restart_ms == 0) 547 priv->after_suspend = AFTER_SUSPEND_RESTART; 548 queue_work(priv->wq, &priv->restart_work); 549 break; 550 default: 551 return -EOPNOTSUPP; 552 } 553 554 return 0; 555 } 556 557 static int mcp251x_set_normal_mode(struct spi_device *spi) 558 { 559 struct mcp251x_priv *priv = spi_get_drvdata(spi); 560 unsigned long timeout; 561 562 /* Enable interrupts */ 563 mcp251x_write_reg(spi, CANINTE, 564 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE | 565 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE); 566 567 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 568 /* Put device into loopback mode */ 569 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK); 570 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) { 571 /* Put device into listen-only mode */ 572 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY); 573 } else { 574 /* Put device into normal mode */ 575 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL); 576 577 /* Wait for the device to enter normal mode */ 578 timeout = jiffies + HZ; 579 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) { 580 schedule(); 581 if (time_after(jiffies, timeout)) { 582 dev_err(&spi->dev, "MCP251x didn't" 583 " enter in normal mode\n"); 584 return -EBUSY; 585 } 586 } 587 } 588 priv->can.state = CAN_STATE_ERROR_ACTIVE; 589 return 0; 590 } 591 592 static int mcp251x_do_set_bittiming(struct net_device *net) 593 { 594 struct mcp251x_priv *priv = netdev_priv(net); 595 struct can_bittiming *bt = &priv->can.bittiming; 596 struct spi_device *spi = priv->spi; 597 598 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) | 599 (bt->brp - 1)); 600 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE | 601 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ? 602 CNF2_SAM : 0) | 603 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) | 604 (bt->prop_seg - 1)); 605 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK, 606 (bt->phase_seg2 - 1)); 607 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n", 608 mcp251x_read_reg(spi, CNF1), 609 mcp251x_read_reg(spi, CNF2), 610 mcp251x_read_reg(spi, CNF3)); 611 612 return 0; 613 } 614 615 static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv, 616 struct spi_device *spi) 617 { 618 mcp251x_do_set_bittiming(net); 619 620 mcp251x_write_reg(spi, RXBCTRL(0), 621 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1); 622 mcp251x_write_reg(spi, RXBCTRL(1), 623 RXBCTRL_RXM0 | RXBCTRL_RXM1); 624 return 0; 625 } 626 627 static int mcp251x_hw_reset(struct spi_device *spi) 628 { 629 struct mcp251x_priv *priv = spi_get_drvdata(spi); 630 u8 reg; 631 int ret; 632 633 /* Wait for oscillator startup timer after power up */ 634 mdelay(MCP251X_OST_DELAY_MS); 635 636 priv->spi_tx_buf[0] = INSTRUCTION_RESET; 637 ret = mcp251x_spi_trans(spi, 1); 638 if (ret) 639 return ret; 640 641 /* Wait for oscillator startup timer after reset */ 642 mdelay(MCP251X_OST_DELAY_MS); 643 644 reg = mcp251x_read_reg(spi, CANSTAT); 645 if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF) 646 return -ENODEV; 647 648 return 0; 649 } 650 651 static int mcp251x_hw_probe(struct spi_device *spi) 652 { 653 u8 ctrl; 654 int ret; 655 656 ret = mcp251x_hw_reset(spi); 657 if (ret) 658 return ret; 659 660 ctrl = mcp251x_read_reg(spi, CANCTRL); 661 662 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl); 663 664 /* Check for power up default value */ 665 if ((ctrl & 0x17) != 0x07) 666 return -ENODEV; 667 668 return 0; 669 } 670 671 static int mcp251x_power_enable(struct regulator *reg, int enable) 672 { 673 if (IS_ERR_OR_NULL(reg)) 674 return 0; 675 676 if (enable) 677 return regulator_enable(reg); 678 else 679 return regulator_disable(reg); 680 } 681 682 static void mcp251x_open_clean(struct net_device *net) 683 { 684 struct mcp251x_priv *priv = netdev_priv(net); 685 struct spi_device *spi = priv->spi; 686 687 free_irq(spi->irq, priv); 688 mcp251x_hw_sleep(spi); 689 mcp251x_power_enable(priv->transceiver, 0); 690 close_candev(net); 691 } 692 693 static int mcp251x_stop(struct net_device *net) 694 { 695 struct mcp251x_priv *priv = netdev_priv(net); 696 struct spi_device *spi = priv->spi; 697 698 close_candev(net); 699 700 priv->force_quit = 1; 701 free_irq(spi->irq, priv); 702 destroy_workqueue(priv->wq); 703 priv->wq = NULL; 704 705 mutex_lock(&priv->mcp_lock); 706 707 /* Disable and clear pending interrupts */ 708 mcp251x_write_reg(spi, CANINTE, 0x00); 709 mcp251x_write_reg(spi, CANINTF, 0x00); 710 711 mcp251x_write_reg(spi, TXBCTRL(0), 0); 712 mcp251x_clean(net); 713 714 mcp251x_hw_sleep(spi); 715 716 mcp251x_power_enable(priv->transceiver, 0); 717 718 priv->can.state = CAN_STATE_STOPPED; 719 720 mutex_unlock(&priv->mcp_lock); 721 722 can_led_event(net, CAN_LED_EVENT_STOP); 723 724 return 0; 725 } 726 727 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1) 728 { 729 struct sk_buff *skb; 730 struct can_frame *frame; 731 732 skb = alloc_can_err_skb(net, &frame); 733 if (skb) { 734 frame->can_id |= can_id; 735 frame->data[1] = data1; 736 netif_rx_ni(skb); 737 } else { 738 netdev_err(net, "cannot allocate error skb\n"); 739 } 740 } 741 742 static void mcp251x_tx_work_handler(struct work_struct *ws) 743 { 744 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, 745 tx_work); 746 struct spi_device *spi = priv->spi; 747 struct net_device *net = priv->net; 748 struct can_frame *frame; 749 750 mutex_lock(&priv->mcp_lock); 751 if (priv->tx_skb) { 752 if (priv->can.state == CAN_STATE_BUS_OFF) { 753 mcp251x_clean(net); 754 } else { 755 frame = (struct can_frame *)priv->tx_skb->data; 756 757 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN) 758 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN; 759 mcp251x_hw_tx(spi, frame, 0); 760 priv->tx_len = 1 + frame->can_dlc; 761 can_put_echo_skb(priv->tx_skb, net, 0); 762 priv->tx_skb = NULL; 763 } 764 } 765 mutex_unlock(&priv->mcp_lock); 766 } 767 768 static void mcp251x_restart_work_handler(struct work_struct *ws) 769 { 770 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, 771 restart_work); 772 struct spi_device *spi = priv->spi; 773 struct net_device *net = priv->net; 774 775 mutex_lock(&priv->mcp_lock); 776 if (priv->after_suspend) { 777 mcp251x_hw_reset(spi); 778 mcp251x_setup(net, priv, spi); 779 if (priv->after_suspend & AFTER_SUSPEND_RESTART) { 780 mcp251x_set_normal_mode(spi); 781 } else if (priv->after_suspend & AFTER_SUSPEND_UP) { 782 netif_device_attach(net); 783 mcp251x_clean(net); 784 mcp251x_set_normal_mode(spi); 785 netif_wake_queue(net); 786 } else { 787 mcp251x_hw_sleep(spi); 788 } 789 priv->after_suspend = 0; 790 priv->force_quit = 0; 791 } 792 793 if (priv->restart_tx) { 794 priv->restart_tx = 0; 795 mcp251x_write_reg(spi, TXBCTRL(0), 0); 796 mcp251x_clean(net); 797 netif_wake_queue(net); 798 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0); 799 } 800 mutex_unlock(&priv->mcp_lock); 801 } 802 803 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id) 804 { 805 struct mcp251x_priv *priv = dev_id; 806 struct spi_device *spi = priv->spi; 807 struct net_device *net = priv->net; 808 809 mutex_lock(&priv->mcp_lock); 810 while (!priv->force_quit) { 811 enum can_state new_state; 812 u8 intf, eflag; 813 u8 clear_intf = 0; 814 int can_id = 0, data1 = 0; 815 816 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag); 817 818 /* mask out flags we don't care about */ 819 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR; 820 821 /* receive buffer 0 */ 822 if (intf & CANINTF_RX0IF) { 823 mcp251x_hw_rx(spi, 0); 824 /* 825 * Free one buffer ASAP 826 * (The MCP2515 does this automatically.) 827 */ 828 if (mcp251x_is_2510(spi)) 829 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00); 830 } 831 832 /* receive buffer 1 */ 833 if (intf & CANINTF_RX1IF) { 834 mcp251x_hw_rx(spi, 1); 835 /* the MCP2515 does this automatically */ 836 if (mcp251x_is_2510(spi)) 837 clear_intf |= CANINTF_RX1IF; 838 } 839 840 /* any error or tx interrupt we need to clear? */ 841 if (intf & (CANINTF_ERR | CANINTF_TX)) 842 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX); 843 if (clear_intf) 844 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00); 845 846 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) 847 mcp251x_write_bits(spi, EFLG, eflag, 0x00); 848 849 /* Update can state */ 850 if (eflag & EFLG_TXBO) { 851 new_state = CAN_STATE_BUS_OFF; 852 can_id |= CAN_ERR_BUSOFF; 853 } else if (eflag & EFLG_TXEP) { 854 new_state = CAN_STATE_ERROR_PASSIVE; 855 can_id |= CAN_ERR_CRTL; 856 data1 |= CAN_ERR_CRTL_TX_PASSIVE; 857 } else if (eflag & EFLG_RXEP) { 858 new_state = CAN_STATE_ERROR_PASSIVE; 859 can_id |= CAN_ERR_CRTL; 860 data1 |= CAN_ERR_CRTL_RX_PASSIVE; 861 } else if (eflag & EFLG_TXWAR) { 862 new_state = CAN_STATE_ERROR_WARNING; 863 can_id |= CAN_ERR_CRTL; 864 data1 |= CAN_ERR_CRTL_TX_WARNING; 865 } else if (eflag & EFLG_RXWAR) { 866 new_state = CAN_STATE_ERROR_WARNING; 867 can_id |= CAN_ERR_CRTL; 868 data1 |= CAN_ERR_CRTL_RX_WARNING; 869 } else { 870 new_state = CAN_STATE_ERROR_ACTIVE; 871 } 872 873 /* Update can state statistics */ 874 switch (priv->can.state) { 875 case CAN_STATE_ERROR_ACTIVE: 876 if (new_state >= CAN_STATE_ERROR_WARNING && 877 new_state <= CAN_STATE_BUS_OFF) 878 priv->can.can_stats.error_warning++; 879 case CAN_STATE_ERROR_WARNING: /* fallthrough */ 880 if (new_state >= CAN_STATE_ERROR_PASSIVE && 881 new_state <= CAN_STATE_BUS_OFF) 882 priv->can.can_stats.error_passive++; 883 break; 884 default: 885 break; 886 } 887 priv->can.state = new_state; 888 889 if (intf & CANINTF_ERRIF) { 890 /* Handle overflow counters */ 891 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) { 892 if (eflag & EFLG_RX0OVR) { 893 net->stats.rx_over_errors++; 894 net->stats.rx_errors++; 895 } 896 if (eflag & EFLG_RX1OVR) { 897 net->stats.rx_over_errors++; 898 net->stats.rx_errors++; 899 } 900 can_id |= CAN_ERR_CRTL; 901 data1 |= CAN_ERR_CRTL_RX_OVERFLOW; 902 } 903 mcp251x_error_skb(net, can_id, data1); 904 } 905 906 if (priv->can.state == CAN_STATE_BUS_OFF) { 907 if (priv->can.restart_ms == 0) { 908 priv->force_quit = 1; 909 priv->can.can_stats.bus_off++; 910 can_bus_off(net); 911 mcp251x_hw_sleep(spi); 912 break; 913 } 914 } 915 916 if (intf == 0) 917 break; 918 919 if (intf & CANINTF_TX) { 920 net->stats.tx_packets++; 921 net->stats.tx_bytes += priv->tx_len - 1; 922 can_led_event(net, CAN_LED_EVENT_TX); 923 if (priv->tx_len) { 924 can_get_echo_skb(net, 0); 925 priv->tx_len = 0; 926 } 927 netif_wake_queue(net); 928 } 929 930 } 931 mutex_unlock(&priv->mcp_lock); 932 return IRQ_HANDLED; 933 } 934 935 static int mcp251x_open(struct net_device *net) 936 { 937 struct mcp251x_priv *priv = netdev_priv(net); 938 struct spi_device *spi = priv->spi; 939 unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING; 940 int ret; 941 942 ret = open_candev(net); 943 if (ret) { 944 dev_err(&spi->dev, "unable to set initial baudrate!\n"); 945 return ret; 946 } 947 948 mutex_lock(&priv->mcp_lock); 949 mcp251x_power_enable(priv->transceiver, 1); 950 951 priv->force_quit = 0; 952 priv->tx_skb = NULL; 953 priv->tx_len = 0; 954 955 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist, 956 flags | IRQF_ONESHOT, DEVICE_NAME, priv); 957 if (ret) { 958 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq); 959 mcp251x_power_enable(priv->transceiver, 0); 960 close_candev(net); 961 goto open_unlock; 962 } 963 964 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM, 965 0); 966 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler); 967 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler); 968 969 ret = mcp251x_hw_reset(spi); 970 if (ret) { 971 mcp251x_open_clean(net); 972 goto open_unlock; 973 } 974 ret = mcp251x_setup(net, priv, spi); 975 if (ret) { 976 mcp251x_open_clean(net); 977 goto open_unlock; 978 } 979 ret = mcp251x_set_normal_mode(spi); 980 if (ret) { 981 mcp251x_open_clean(net); 982 goto open_unlock; 983 } 984 985 can_led_event(net, CAN_LED_EVENT_OPEN); 986 987 netif_wake_queue(net); 988 989 open_unlock: 990 mutex_unlock(&priv->mcp_lock); 991 return ret; 992 } 993 994 static const struct net_device_ops mcp251x_netdev_ops = { 995 .ndo_open = mcp251x_open, 996 .ndo_stop = mcp251x_stop, 997 .ndo_start_xmit = mcp251x_hard_start_xmit, 998 .ndo_change_mtu = can_change_mtu, 999 }; 1000 1001 static const struct of_device_id mcp251x_of_match[] = { 1002 { 1003 .compatible = "microchip,mcp2510", 1004 .data = (void *)CAN_MCP251X_MCP2510, 1005 }, 1006 { 1007 .compatible = "microchip,mcp2515", 1008 .data = (void *)CAN_MCP251X_MCP2515, 1009 }, 1010 { } 1011 }; 1012 MODULE_DEVICE_TABLE(of, mcp251x_of_match); 1013 1014 static const struct spi_device_id mcp251x_id_table[] = { 1015 { 1016 .name = "mcp2510", 1017 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510, 1018 }, 1019 { 1020 .name = "mcp2515", 1021 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515, 1022 }, 1023 { } 1024 }; 1025 MODULE_DEVICE_TABLE(spi, mcp251x_id_table); 1026 1027 static int mcp251x_can_probe(struct spi_device *spi) 1028 { 1029 const struct of_device_id *of_id = of_match_device(mcp251x_of_match, 1030 &spi->dev); 1031 struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev); 1032 struct net_device *net; 1033 struct mcp251x_priv *priv; 1034 struct clk *clk; 1035 int freq, ret; 1036 1037 clk = devm_clk_get(&spi->dev, NULL); 1038 if (IS_ERR(clk)) { 1039 if (pdata) 1040 freq = pdata->oscillator_frequency; 1041 else 1042 return PTR_ERR(clk); 1043 } else { 1044 freq = clk_get_rate(clk); 1045 } 1046 1047 /* Sanity check */ 1048 if (freq < 1000000 || freq > 25000000) 1049 return -ERANGE; 1050 1051 /* Allocate can/net device */ 1052 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX); 1053 if (!net) 1054 return -ENOMEM; 1055 1056 if (!IS_ERR(clk)) { 1057 ret = clk_prepare_enable(clk); 1058 if (ret) 1059 goto out_free; 1060 } 1061 1062 net->netdev_ops = &mcp251x_netdev_ops; 1063 net->flags |= IFF_ECHO; 1064 1065 priv = netdev_priv(net); 1066 priv->can.bittiming_const = &mcp251x_bittiming_const; 1067 priv->can.do_set_mode = mcp251x_do_set_mode; 1068 priv->can.clock.freq = freq / 2; 1069 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | 1070 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY; 1071 if (of_id) 1072 priv->model = (enum mcp251x_model)of_id->data; 1073 else 1074 priv->model = spi_get_device_id(spi)->driver_data; 1075 priv->net = net; 1076 priv->clk = clk; 1077 1078 spi_set_drvdata(spi, priv); 1079 1080 /* Configure the SPI bus */ 1081 spi->bits_per_word = 8; 1082 if (mcp251x_is_2510(spi)) 1083 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000; 1084 else 1085 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000; 1086 ret = spi_setup(spi); 1087 if (ret) 1088 goto out_clk; 1089 1090 priv->power = devm_regulator_get_optional(&spi->dev, "vdd"); 1091 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver"); 1092 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) || 1093 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) { 1094 ret = -EPROBE_DEFER; 1095 goto out_clk; 1096 } 1097 1098 ret = mcp251x_power_enable(priv->power, 1); 1099 if (ret) 1100 goto out_clk; 1101 1102 priv->spi = spi; 1103 mutex_init(&priv->mcp_lock); 1104 1105 /* If requested, allocate DMA buffers */ 1106 if (mcp251x_enable_dma) { 1107 spi->dev.coherent_dma_mask = ~0; 1108 1109 /* 1110 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate 1111 * that much and share it between Tx and Rx DMA buffers. 1112 */ 1113 priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev, 1114 PAGE_SIZE, 1115 &priv->spi_tx_dma, 1116 GFP_DMA); 1117 1118 if (priv->spi_tx_buf) { 1119 priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2)); 1120 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma + 1121 (PAGE_SIZE / 2)); 1122 } else { 1123 /* Fall back to non-DMA */ 1124 mcp251x_enable_dma = 0; 1125 } 1126 } 1127 1128 /* Allocate non-DMA buffers */ 1129 if (!mcp251x_enable_dma) { 1130 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, 1131 GFP_KERNEL); 1132 if (!priv->spi_tx_buf) { 1133 ret = -ENOMEM; 1134 goto error_probe; 1135 } 1136 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, 1137 GFP_KERNEL); 1138 if (!priv->spi_rx_buf) { 1139 ret = -ENOMEM; 1140 goto error_probe; 1141 } 1142 } 1143 1144 SET_NETDEV_DEV(net, &spi->dev); 1145 1146 /* Here is OK to not lock the MCP, no one knows about it yet */ 1147 ret = mcp251x_hw_probe(spi); 1148 if (ret) 1149 goto error_probe; 1150 1151 mcp251x_hw_sleep(spi); 1152 1153 ret = register_candev(net); 1154 if (ret) 1155 goto error_probe; 1156 1157 devm_can_led_init(net); 1158 1159 return 0; 1160 1161 error_probe: 1162 mcp251x_power_enable(priv->power, 0); 1163 1164 out_clk: 1165 if (!IS_ERR(clk)) 1166 clk_disable_unprepare(clk); 1167 1168 out_free: 1169 free_candev(net); 1170 1171 return ret; 1172 } 1173 1174 static int mcp251x_can_remove(struct spi_device *spi) 1175 { 1176 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1177 struct net_device *net = priv->net; 1178 1179 unregister_candev(net); 1180 1181 mcp251x_power_enable(priv->power, 0); 1182 1183 if (!IS_ERR(priv->clk)) 1184 clk_disable_unprepare(priv->clk); 1185 1186 free_candev(net); 1187 1188 return 0; 1189 } 1190 1191 static int __maybe_unused mcp251x_can_suspend(struct device *dev) 1192 { 1193 struct spi_device *spi = to_spi_device(dev); 1194 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1195 struct net_device *net = priv->net; 1196 1197 priv->force_quit = 1; 1198 disable_irq(spi->irq); 1199 /* 1200 * Note: at this point neither IST nor workqueues are running. 1201 * open/stop cannot be called anyway so locking is not needed 1202 */ 1203 if (netif_running(net)) { 1204 netif_device_detach(net); 1205 1206 mcp251x_hw_sleep(spi); 1207 mcp251x_power_enable(priv->transceiver, 0); 1208 priv->after_suspend = AFTER_SUSPEND_UP; 1209 } else { 1210 priv->after_suspend = AFTER_SUSPEND_DOWN; 1211 } 1212 1213 if (!IS_ERR_OR_NULL(priv->power)) { 1214 regulator_disable(priv->power); 1215 priv->after_suspend |= AFTER_SUSPEND_POWER; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int __maybe_unused mcp251x_can_resume(struct device *dev) 1222 { 1223 struct spi_device *spi = to_spi_device(dev); 1224 struct mcp251x_priv *priv = spi_get_drvdata(spi); 1225 1226 if (priv->after_suspend & AFTER_SUSPEND_POWER) 1227 mcp251x_power_enable(priv->power, 1); 1228 1229 if (priv->after_suspend & AFTER_SUSPEND_UP) { 1230 mcp251x_power_enable(priv->transceiver, 1); 1231 queue_work(priv->wq, &priv->restart_work); 1232 } else { 1233 priv->after_suspend = 0; 1234 } 1235 1236 priv->force_quit = 0; 1237 enable_irq(spi->irq); 1238 return 0; 1239 } 1240 1241 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend, 1242 mcp251x_can_resume); 1243 1244 static struct spi_driver mcp251x_can_driver = { 1245 .driver = { 1246 .name = DEVICE_NAME, 1247 .of_match_table = mcp251x_of_match, 1248 .pm = &mcp251x_can_pm_ops, 1249 }, 1250 .id_table = mcp251x_id_table, 1251 .probe = mcp251x_can_probe, 1252 .remove = mcp251x_can_remove, 1253 }; 1254 module_spi_driver(mcp251x_can_driver); 1255 1256 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, " 1257 "Christian Pellegrin <chripell@evolware.org>"); 1258 MODULE_DESCRIPTION("Microchip 251x CAN driver"); 1259 MODULE_LICENSE("GPL v2"); 1260