xref: /openbmc/linux/drivers/net/can/spi/mcp251x.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/can/led.h>
26 #include <linux/clk.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/gpio.h>
32 #include <linux/gpio/driver.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/netdevice.h>
39 #include <linux/platform_device.h>
40 #include <linux/property.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/slab.h>
43 #include <linux/spi/spi.h>
44 #include <linux/uaccess.h>
45 
46 /* SPI interface instruction set */
47 #define INSTRUCTION_WRITE	0x02
48 #define INSTRUCTION_READ	0x03
49 #define INSTRUCTION_BIT_MODIFY	0x05
50 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
51 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
52 #define INSTRUCTION_RESET	0xC0
53 #define RTS_TXB0		0x01
54 #define RTS_TXB1		0x02
55 #define RTS_TXB2		0x04
56 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
57 
58 /* MPC251x registers */
59 #define BFPCTRL			0x0c
60 #  define BFPCTRL_B0BFM		BIT(0)
61 #  define BFPCTRL_B1BFM		BIT(1)
62 #  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
63 #  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
64 #  define BFPCTRL_B0BFE		BIT(2)
65 #  define BFPCTRL_B1BFE		BIT(3)
66 #  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
67 #  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
68 #  define BFPCTRL_B0BFS		BIT(4)
69 #  define BFPCTRL_B1BFS		BIT(5)
70 #  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
71 #  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
72 #define TXRTSCTRL		0x0d
73 #  define TXRTSCTRL_B0RTSM	BIT(0)
74 #  define TXRTSCTRL_B1RTSM	BIT(1)
75 #  define TXRTSCTRL_B2RTSM	BIT(2)
76 #  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
77 #  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
78 #  define TXRTSCTRL_B0RTS	BIT(3)
79 #  define TXRTSCTRL_B1RTS	BIT(4)
80 #  define TXRTSCTRL_B2RTS	BIT(5)
81 #  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
82 #  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
83 #define CANSTAT	      0x0e
84 #define CANCTRL	      0x0f
85 #  define CANCTRL_REQOP_MASK	    0xe0
86 #  define CANCTRL_REQOP_CONF	    0x80
87 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
88 #  define CANCTRL_REQOP_LOOPBACK    0x40
89 #  define CANCTRL_REQOP_SLEEP	    0x20
90 #  define CANCTRL_REQOP_NORMAL	    0x00
91 #  define CANCTRL_OSM		    0x08
92 #  define CANCTRL_ABAT		    0x10
93 #define TEC	      0x1c
94 #define REC	      0x1d
95 #define CNF1	      0x2a
96 #  define CNF1_SJW_SHIFT   6
97 #define CNF2	      0x29
98 #  define CNF2_BTLMODE	   0x80
99 #  define CNF2_SAM         0x40
100 #  define CNF2_PS1_SHIFT   3
101 #define CNF3	      0x28
102 #  define CNF3_SOF	   0x08
103 #  define CNF3_WAKFIL	   0x04
104 #  define CNF3_PHSEG2_MASK 0x07
105 #define CANINTE	      0x2b
106 #  define CANINTE_MERRE 0x80
107 #  define CANINTE_WAKIE 0x40
108 #  define CANINTE_ERRIE 0x20
109 #  define CANINTE_TX2IE 0x10
110 #  define CANINTE_TX1IE 0x08
111 #  define CANINTE_TX0IE 0x04
112 #  define CANINTE_RX1IE 0x02
113 #  define CANINTE_RX0IE 0x01
114 #define CANINTF	      0x2c
115 #  define CANINTF_MERRF 0x80
116 #  define CANINTF_WAKIF 0x40
117 #  define CANINTF_ERRIF 0x20
118 #  define CANINTF_TX2IF 0x10
119 #  define CANINTF_TX1IF 0x08
120 #  define CANINTF_TX0IF 0x04
121 #  define CANINTF_RX1IF 0x02
122 #  define CANINTF_RX0IF 0x01
123 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
124 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
125 #  define CANINTF_ERR (CANINTF_ERRIF)
126 #define EFLG	      0x2d
127 #  define EFLG_EWARN	0x01
128 #  define EFLG_RXWAR	0x02
129 #  define EFLG_TXWAR	0x04
130 #  define EFLG_RXEP	0x08
131 #  define EFLG_TXEP	0x10
132 #  define EFLG_TXBO	0x20
133 #  define EFLG_RX0OVR	0x40
134 #  define EFLG_RX1OVR	0x80
135 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
136 #  define TXBCTRL_ABTF	0x40
137 #  define TXBCTRL_MLOA	0x20
138 #  define TXBCTRL_TXERR 0x10
139 #  define TXBCTRL_TXREQ 0x08
140 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
141 #  define SIDH_SHIFT    3
142 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
143 #  define SIDL_SID_MASK    7
144 #  define SIDL_SID_SHIFT   5
145 #  define SIDL_EXIDE_SHIFT 3
146 #  define SIDL_EID_SHIFT   16
147 #  define SIDL_EID_MASK    3
148 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
149 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
150 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
151 #  define DLC_RTR_SHIFT    6
152 #define TXBCTRL_OFF 0
153 #define TXBSIDH_OFF 1
154 #define TXBSIDL_OFF 2
155 #define TXBEID8_OFF 3
156 #define TXBEID0_OFF 4
157 #define TXBDLC_OFF  5
158 #define TXBDAT_OFF  6
159 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
160 #  define RXBCTRL_BUKT	0x04
161 #  define RXBCTRL_RXM0	0x20
162 #  define RXBCTRL_RXM1	0x40
163 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
164 #  define RXBSIDH_SHIFT 3
165 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
166 #  define RXBSIDL_IDE   0x08
167 #  define RXBSIDL_SRR   0x10
168 #  define RXBSIDL_EID   3
169 #  define RXBSIDL_SHIFT 5
170 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
171 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
172 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
173 #  define RXBDLC_LEN_MASK  0x0f
174 #  define RXBDLC_RTR       0x40
175 #define RXBCTRL_OFF 0
176 #define RXBSIDH_OFF 1
177 #define RXBSIDL_OFF 2
178 #define RXBEID8_OFF 3
179 #define RXBEID0_OFF 4
180 #define RXBDLC_OFF  5
181 #define RXBDAT_OFF  6
182 #define RXFSID(n) ((n < 3) ? 0 : 4)
183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187 #define RXMSIDH(n) ((n) * 4 + 0x20)
188 #define RXMSIDL(n) ((n) * 4 + 0x21)
189 #define RXMEID8(n) ((n) * 4 + 0x22)
190 #define RXMEID0(n) ((n) * 4 + 0x23)
191 
192 #define GET_BYTE(val, byte)			\
193 	(((val) >> ((byte) * 8)) & 0xff)
194 #define SET_BYTE(val, byte)			\
195 	(((val) & 0xff) << ((byte) * 8))
196 
197 /* Buffer size required for the largest SPI transfer (i.e., reading a
198  * frame)
199  */
200 #define CAN_FRAME_MAX_DATA_LEN	8
201 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
202 #define CAN_FRAME_MAX_BITS	128
203 
204 #define TX_ECHO_SKB_MAX	1
205 
206 #define MCP251X_OST_DELAY_MS	(5)
207 
208 #define DEVICE_NAME "mcp251x"
209 
210 static const struct can_bittiming_const mcp251x_bittiming_const = {
211 	.name = DEVICE_NAME,
212 	.tseg1_min = 3,
213 	.tseg1_max = 16,
214 	.tseg2_min = 2,
215 	.tseg2_max = 8,
216 	.sjw_max = 4,
217 	.brp_min = 1,
218 	.brp_max = 64,
219 	.brp_inc = 1,
220 };
221 
222 enum mcp251x_model {
223 	CAN_MCP251X_MCP2510	= 0x2510,
224 	CAN_MCP251X_MCP2515	= 0x2515,
225 	CAN_MCP251X_MCP25625	= 0x25625,
226 };
227 
228 struct mcp251x_priv {
229 	struct can_priv	   can;
230 	struct net_device *net;
231 	struct spi_device *spi;
232 	enum mcp251x_model model;
233 
234 	struct mutex mcp_lock; /* SPI device lock */
235 
236 	u8 *spi_tx_buf;
237 	u8 *spi_rx_buf;
238 
239 	struct sk_buff *tx_skb;
240 	int tx_len;
241 
242 	struct workqueue_struct *wq;
243 	struct work_struct tx_work;
244 	struct work_struct restart_work;
245 
246 	int force_quit;
247 	int after_suspend;
248 #define AFTER_SUSPEND_UP 1
249 #define AFTER_SUSPEND_DOWN 2
250 #define AFTER_SUSPEND_POWER 4
251 #define AFTER_SUSPEND_RESTART 8
252 	int restart_tx;
253 	struct regulator *power;
254 	struct regulator *transceiver;
255 	struct clk *clk;
256 #ifdef CONFIG_GPIOLIB
257 	struct gpio_chip gpio;
258 	u8 reg_bfpctrl;
259 #endif
260 };
261 
262 #define MCP251X_IS(_model) \
263 static inline int mcp251x_is_##_model(struct spi_device *spi) \
264 { \
265 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 	return priv->model == CAN_MCP251X_MCP##_model; \
267 }
268 
269 MCP251X_IS(2510);
270 
271 static void mcp251x_clean(struct net_device *net)
272 {
273 	struct mcp251x_priv *priv = netdev_priv(net);
274 
275 	if (priv->tx_skb || priv->tx_len)
276 		net->stats.tx_errors++;
277 	dev_kfree_skb(priv->tx_skb);
278 	if (priv->tx_len)
279 		can_free_echo_skb(priv->net, 0);
280 	priv->tx_skb = NULL;
281 	priv->tx_len = 0;
282 }
283 
284 /* Note about handling of error return of mcp251x_spi_trans: accessing
285  * registers via SPI is not really different conceptually than using
286  * normal I/O assembler instructions, although it's much more
287  * complicated from a practical POV. So it's not advisable to always
288  * check the return value of this function. Imagine that every
289  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290  * error();", it would be a great mess (well there are some situation
291  * when exception handling C++ like could be useful after all). So we
292  * just check that transfers are OK at the beginning of our
293  * conversation with the chip and to avoid doing really nasty things
294  * (like injecting bogus packets in the network stack).
295  */
296 static int mcp251x_spi_trans(struct spi_device *spi, int len)
297 {
298 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 	struct spi_transfer t = {
300 		.tx_buf = priv->spi_tx_buf,
301 		.rx_buf = priv->spi_rx_buf,
302 		.len = len,
303 		.cs_change = 0,
304 	};
305 	struct spi_message m;
306 	int ret;
307 
308 	spi_message_init(&m);
309 	spi_message_add_tail(&t, &m);
310 
311 	ret = spi_sync(spi, &m);
312 	if (ret)
313 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
314 	return ret;
315 }
316 
317 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
318 {
319 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
320 	u8 val = 0;
321 
322 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
323 	priv->spi_tx_buf[1] = reg;
324 
325 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
326 		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
327 	} else {
328 		mcp251x_spi_trans(spi, 3);
329 		val = priv->spi_rx_buf[2];
330 	}
331 
332 	return val;
333 }
334 
335 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
336 {
337 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
338 
339 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
340 	priv->spi_tx_buf[1] = reg;
341 
342 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
343 		u8 val[2] = { 0 };
344 
345 		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
346 		*v1 = val[0];
347 		*v2 = val[1];
348 	} else {
349 		mcp251x_spi_trans(spi, 4);
350 
351 		*v1 = priv->spi_rx_buf[2];
352 		*v2 = priv->spi_rx_buf[3];
353 	}
354 }
355 
356 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
357 {
358 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
359 
360 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
361 	priv->spi_tx_buf[1] = reg;
362 	priv->spi_tx_buf[2] = val;
363 
364 	mcp251x_spi_trans(spi, 3);
365 }
366 
367 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
368 {
369 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
370 
371 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
372 	priv->spi_tx_buf[1] = reg;
373 	priv->spi_tx_buf[2] = v1;
374 	priv->spi_tx_buf[3] = v2;
375 
376 	mcp251x_spi_trans(spi, 4);
377 }
378 
379 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
380 			       u8 mask, u8 val)
381 {
382 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
383 
384 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
385 	priv->spi_tx_buf[1] = reg;
386 	priv->spi_tx_buf[2] = mask;
387 	priv->spi_tx_buf[3] = val;
388 
389 	mcp251x_spi_trans(spi, 4);
390 }
391 
392 static u8 mcp251x_read_stat(struct spi_device *spi)
393 {
394 	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
395 }
396 
397 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
398 	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
399 			   delay_us, timeout_us)
400 
401 #ifdef CONFIG_GPIOLIB
402 enum {
403 	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
404 	MCP251X_GPIO_TX1RTS,
405 	MCP251X_GPIO_TX2RTS,
406 	MCP251X_GPIO_RX0BF,			/* outputs */
407 	MCP251X_GPIO_RX1BF,
408 };
409 
410 #define MCP251X_GPIO_INPUT_MASK \
411 	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
412 #define MCP251X_GPIO_OUTPUT_MASK \
413 	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
414 
415 static const char * const mcp251x_gpio_names[] = {
416 	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
417 	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
418 	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
419 	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
420 	[MCP251X_GPIO_RX1BF] = "RX1BF",
421 };
422 
423 static inline bool mcp251x_gpio_is_input(unsigned int offset)
424 {
425 	return offset <= MCP251X_GPIO_TX2RTS;
426 }
427 
428 static int mcp251x_gpio_request(struct gpio_chip *chip,
429 				unsigned int offset)
430 {
431 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
432 	u8 val;
433 
434 	/* nothing to be done for inputs */
435 	if (mcp251x_gpio_is_input(offset))
436 		return 0;
437 
438 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
439 
440 	mutex_lock(&priv->mcp_lock);
441 	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
442 	mutex_unlock(&priv->mcp_lock);
443 
444 	priv->reg_bfpctrl |= val;
445 
446 	return 0;
447 }
448 
449 static void mcp251x_gpio_free(struct gpio_chip *chip,
450 			      unsigned int offset)
451 {
452 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
453 	u8 val;
454 
455 	/* nothing to be done for inputs */
456 	if (mcp251x_gpio_is_input(offset))
457 		return;
458 
459 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
460 
461 	mutex_lock(&priv->mcp_lock);
462 	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
463 	mutex_unlock(&priv->mcp_lock);
464 
465 	priv->reg_bfpctrl &= ~val;
466 }
467 
468 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
469 				      unsigned int offset)
470 {
471 	if (mcp251x_gpio_is_input(offset))
472 		return GPIOF_DIR_IN;
473 
474 	return GPIOF_DIR_OUT;
475 }
476 
477 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
478 {
479 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
480 	u8 reg, mask, val;
481 
482 	if (mcp251x_gpio_is_input(offset)) {
483 		reg = TXRTSCTRL;
484 		mask = TXRTSCTRL_RTS(offset);
485 	} else {
486 		reg = BFPCTRL;
487 		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
488 	}
489 
490 	mutex_lock(&priv->mcp_lock);
491 	val = mcp251x_read_reg(priv->spi, reg);
492 	mutex_unlock(&priv->mcp_lock);
493 
494 	return !!(val & mask);
495 }
496 
497 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
498 				     unsigned long *maskp, unsigned long *bitsp)
499 {
500 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
501 	unsigned long bits = 0;
502 	u8 val;
503 
504 	mutex_lock(&priv->mcp_lock);
505 	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
506 		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
507 		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
508 		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
509 	}
510 	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
511 		val = mcp251x_read_reg(priv->spi, BFPCTRL);
512 		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
513 		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
514 	}
515 	mutex_unlock(&priv->mcp_lock);
516 
517 	bitsp[0] = bits;
518 	return 0;
519 }
520 
521 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
522 			     int value)
523 {
524 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
525 	u8 mask, val;
526 
527 	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
528 	val = value ? mask : 0;
529 
530 	mutex_lock(&priv->mcp_lock);
531 	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
532 	mutex_unlock(&priv->mcp_lock);
533 
534 	priv->reg_bfpctrl &= ~mask;
535 	priv->reg_bfpctrl |= val;
536 }
537 
538 static void
539 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
540 			  unsigned long *maskp, unsigned long *bitsp)
541 {
542 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
543 	u8 mask, val;
544 
545 	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
546 	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
547 
548 	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
549 	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
550 
551 	if (!mask)
552 		return;
553 
554 	mutex_lock(&priv->mcp_lock);
555 	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
556 	mutex_unlock(&priv->mcp_lock);
557 
558 	priv->reg_bfpctrl &= ~mask;
559 	priv->reg_bfpctrl |= val;
560 }
561 
562 static void mcp251x_gpio_restore(struct spi_device *spi)
563 {
564 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
565 
566 	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
567 }
568 
569 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
570 {
571 	struct gpio_chip *gpio = &priv->gpio;
572 
573 	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
574 		return 0;
575 
576 	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
577 	gpio->label = priv->spi->modalias;
578 	gpio->parent = &priv->spi->dev;
579 	gpio->owner = THIS_MODULE;
580 	gpio->request = mcp251x_gpio_request;
581 	gpio->free = mcp251x_gpio_free;
582 	gpio->get_direction = mcp251x_gpio_get_direction;
583 	gpio->get = mcp251x_gpio_get;
584 	gpio->get_multiple = mcp251x_gpio_get_multiple;
585 	gpio->set = mcp251x_gpio_set;
586 	gpio->set_multiple = mcp251x_gpio_set_multiple;
587 	gpio->base = -1;
588 	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
589 	gpio->names = mcp251x_gpio_names;
590 	gpio->can_sleep = true;
591 #ifdef CONFIG_OF_GPIO
592 	gpio->of_node = priv->spi->dev.of_node;
593 #endif
594 
595 	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
596 }
597 #else
598 static inline void mcp251x_gpio_restore(struct spi_device *spi)
599 {
600 }
601 
602 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
603 {
604 	return 0;
605 }
606 #endif
607 
608 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
609 				int len, int tx_buf_idx)
610 {
611 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
612 
613 	if (mcp251x_is_2510(spi)) {
614 		int i;
615 
616 		for (i = 1; i < TXBDAT_OFF + len; i++)
617 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
618 					  buf[i]);
619 	} else {
620 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
621 		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
622 	}
623 }
624 
625 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
626 			  int tx_buf_idx)
627 {
628 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
629 	u32 sid, eid, exide, rtr;
630 	u8 buf[SPI_TRANSFER_BUF_LEN];
631 
632 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
633 	if (exide)
634 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
635 	else
636 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
637 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
638 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
639 
640 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
641 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
642 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
643 		(exide << SIDL_EXIDE_SHIFT) |
644 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
645 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
646 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
647 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
648 	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
649 	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
650 
651 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
652 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
653 	mcp251x_spi_trans(priv->spi, 1);
654 }
655 
656 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
657 				int buf_idx)
658 {
659 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
660 
661 	if (mcp251x_is_2510(spi)) {
662 		int i, len;
663 
664 		for (i = 1; i < RXBDAT_OFF; i++)
665 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
666 
667 		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
668 		for (; i < (RXBDAT_OFF + len); i++)
669 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
670 	} else {
671 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
672 		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
673 			spi_write_then_read(spi, priv->spi_tx_buf, 1,
674 					    priv->spi_rx_buf,
675 					    SPI_TRANSFER_BUF_LEN);
676 			memcpy(buf + 1, priv->spi_rx_buf,
677 			       SPI_TRANSFER_BUF_LEN - 1);
678 		} else {
679 			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
680 			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
681 		}
682 	}
683 }
684 
685 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
686 {
687 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
688 	struct sk_buff *skb;
689 	struct can_frame *frame;
690 	u8 buf[SPI_TRANSFER_BUF_LEN];
691 
692 	skb = alloc_can_skb(priv->net, &frame);
693 	if (!skb) {
694 		dev_err(&spi->dev, "cannot allocate RX skb\n");
695 		priv->net->stats.rx_dropped++;
696 		return;
697 	}
698 
699 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
700 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
701 		/* Extended ID format */
702 		frame->can_id = CAN_EFF_FLAG;
703 		frame->can_id |=
704 			/* Extended ID part */
705 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
706 			SET_BYTE(buf[RXBEID8_OFF], 1) |
707 			SET_BYTE(buf[RXBEID0_OFF], 0) |
708 			/* Standard ID part */
709 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
710 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
711 		/* Remote transmission request */
712 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
713 			frame->can_id |= CAN_RTR_FLAG;
714 	} else {
715 		/* Standard ID format */
716 		frame->can_id =
717 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
718 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
719 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
720 			frame->can_id |= CAN_RTR_FLAG;
721 	}
722 	/* Data length */
723 	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
724 	memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
725 
726 	priv->net->stats.rx_packets++;
727 	priv->net->stats.rx_bytes += frame->len;
728 
729 	can_led_event(priv->net, CAN_LED_EVENT_RX);
730 
731 	netif_rx_ni(skb);
732 }
733 
734 static void mcp251x_hw_sleep(struct spi_device *spi)
735 {
736 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
737 }
738 
739 /* May only be called when device is sleeping! */
740 static int mcp251x_hw_wake(struct spi_device *spi)
741 {
742 	u8 value;
743 	int ret;
744 
745 	/* Force wakeup interrupt to wake device, but don't execute IST */
746 	disable_irq(spi->irq);
747 	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
748 
749 	/* Wait for oscillator startup timer after wake up */
750 	mdelay(MCP251X_OST_DELAY_MS);
751 
752 	/* Put device into config mode */
753 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
754 
755 	/* Wait for the device to enter config mode */
756 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
757 					     MCP251X_OST_DELAY_MS * 1000,
758 					     USEC_PER_SEC);
759 	if (ret) {
760 		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
761 		return ret;
762 	}
763 
764 	/* Disable and clear pending interrupts */
765 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
766 	enable_irq(spi->irq);
767 
768 	return 0;
769 }
770 
771 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
772 					   struct net_device *net)
773 {
774 	struct mcp251x_priv *priv = netdev_priv(net);
775 	struct spi_device *spi = priv->spi;
776 
777 	if (priv->tx_skb || priv->tx_len) {
778 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
779 		return NETDEV_TX_BUSY;
780 	}
781 
782 	if (can_dropped_invalid_skb(net, skb))
783 		return NETDEV_TX_OK;
784 
785 	netif_stop_queue(net);
786 	priv->tx_skb = skb;
787 	queue_work(priv->wq, &priv->tx_work);
788 
789 	return NETDEV_TX_OK;
790 }
791 
792 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
793 {
794 	struct mcp251x_priv *priv = netdev_priv(net);
795 
796 	switch (mode) {
797 	case CAN_MODE_START:
798 		mcp251x_clean(net);
799 		/* We have to delay work since SPI I/O may sleep */
800 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
801 		priv->restart_tx = 1;
802 		if (priv->can.restart_ms == 0)
803 			priv->after_suspend = AFTER_SUSPEND_RESTART;
804 		queue_work(priv->wq, &priv->restart_work);
805 		break;
806 	default:
807 		return -EOPNOTSUPP;
808 	}
809 
810 	return 0;
811 }
812 
813 static int mcp251x_set_normal_mode(struct spi_device *spi)
814 {
815 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
816 	u8 value;
817 	int ret;
818 
819 	/* Enable interrupts */
820 	mcp251x_write_reg(spi, CANINTE,
821 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
822 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
823 
824 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
825 		/* Put device into loopback mode */
826 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
827 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
828 		/* Put device into listen-only mode */
829 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
830 	} else {
831 		/* Put device into normal mode */
832 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
833 
834 		/* Wait for the device to enter normal mode */
835 		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
836 						     MCP251X_OST_DELAY_MS * 1000,
837 						     USEC_PER_SEC);
838 		if (ret) {
839 			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
840 			return ret;
841 		}
842 	}
843 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
844 	return 0;
845 }
846 
847 static int mcp251x_do_set_bittiming(struct net_device *net)
848 {
849 	struct mcp251x_priv *priv = netdev_priv(net);
850 	struct can_bittiming *bt = &priv->can.bittiming;
851 	struct spi_device *spi = priv->spi;
852 
853 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
854 			  (bt->brp - 1));
855 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
856 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
857 			   CNF2_SAM : 0) |
858 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
859 			  (bt->prop_seg - 1));
860 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
861 			   (bt->phase_seg2 - 1));
862 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
863 		mcp251x_read_reg(spi, CNF1),
864 		mcp251x_read_reg(spi, CNF2),
865 		mcp251x_read_reg(spi, CNF3));
866 
867 	return 0;
868 }
869 
870 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
871 {
872 	mcp251x_do_set_bittiming(net);
873 
874 	mcp251x_write_reg(spi, RXBCTRL(0),
875 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
876 	mcp251x_write_reg(spi, RXBCTRL(1),
877 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
878 	return 0;
879 }
880 
881 static int mcp251x_hw_reset(struct spi_device *spi)
882 {
883 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
884 	u8 value;
885 	int ret;
886 
887 	/* Wait for oscillator startup timer after power up */
888 	mdelay(MCP251X_OST_DELAY_MS);
889 
890 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
891 	ret = mcp251x_spi_trans(spi, 1);
892 	if (ret)
893 		return ret;
894 
895 	/* Wait for oscillator startup timer after reset */
896 	mdelay(MCP251X_OST_DELAY_MS);
897 
898 	/* Wait for reset to finish */
899 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
900 					     MCP251X_OST_DELAY_MS * 1000,
901 					     USEC_PER_SEC);
902 	if (ret)
903 		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
904 	return ret;
905 }
906 
907 static int mcp251x_hw_probe(struct spi_device *spi)
908 {
909 	u8 ctrl;
910 	int ret;
911 
912 	ret = mcp251x_hw_reset(spi);
913 	if (ret)
914 		return ret;
915 
916 	ctrl = mcp251x_read_reg(spi, CANCTRL);
917 
918 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
919 
920 	/* Check for power up default value */
921 	if ((ctrl & 0x17) != 0x07)
922 		return -ENODEV;
923 
924 	return 0;
925 }
926 
927 static int mcp251x_power_enable(struct regulator *reg, int enable)
928 {
929 	if (IS_ERR_OR_NULL(reg))
930 		return 0;
931 
932 	if (enable)
933 		return regulator_enable(reg);
934 	else
935 		return regulator_disable(reg);
936 }
937 
938 static int mcp251x_stop(struct net_device *net)
939 {
940 	struct mcp251x_priv *priv = netdev_priv(net);
941 	struct spi_device *spi = priv->spi;
942 
943 	close_candev(net);
944 
945 	priv->force_quit = 1;
946 	free_irq(spi->irq, priv);
947 	destroy_workqueue(priv->wq);
948 	priv->wq = NULL;
949 
950 	mutex_lock(&priv->mcp_lock);
951 
952 	/* Disable and clear pending interrupts */
953 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
954 
955 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
956 	mcp251x_clean(net);
957 
958 	mcp251x_hw_sleep(spi);
959 
960 	mcp251x_power_enable(priv->transceiver, 0);
961 
962 	priv->can.state = CAN_STATE_STOPPED;
963 
964 	mutex_unlock(&priv->mcp_lock);
965 
966 	can_led_event(net, CAN_LED_EVENT_STOP);
967 
968 	return 0;
969 }
970 
971 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
972 {
973 	struct sk_buff *skb;
974 	struct can_frame *frame;
975 
976 	skb = alloc_can_err_skb(net, &frame);
977 	if (skb) {
978 		frame->can_id |= can_id;
979 		frame->data[1] = data1;
980 		netif_rx_ni(skb);
981 	} else {
982 		netdev_err(net, "cannot allocate error skb\n");
983 	}
984 }
985 
986 static void mcp251x_tx_work_handler(struct work_struct *ws)
987 {
988 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
989 						 tx_work);
990 	struct spi_device *spi = priv->spi;
991 	struct net_device *net = priv->net;
992 	struct can_frame *frame;
993 
994 	mutex_lock(&priv->mcp_lock);
995 	if (priv->tx_skb) {
996 		if (priv->can.state == CAN_STATE_BUS_OFF) {
997 			mcp251x_clean(net);
998 		} else {
999 			frame = (struct can_frame *)priv->tx_skb->data;
1000 
1001 			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1002 				frame->len = CAN_FRAME_MAX_DATA_LEN;
1003 			mcp251x_hw_tx(spi, frame, 0);
1004 			priv->tx_len = 1 + frame->len;
1005 			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1006 			priv->tx_skb = NULL;
1007 		}
1008 	}
1009 	mutex_unlock(&priv->mcp_lock);
1010 }
1011 
1012 static void mcp251x_restart_work_handler(struct work_struct *ws)
1013 {
1014 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1015 						 restart_work);
1016 	struct spi_device *spi = priv->spi;
1017 	struct net_device *net = priv->net;
1018 
1019 	mutex_lock(&priv->mcp_lock);
1020 	if (priv->after_suspend) {
1021 		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1022 			mcp251x_hw_reset(spi);
1023 			mcp251x_setup(net, spi);
1024 			mcp251x_gpio_restore(spi);
1025 		} else {
1026 			mcp251x_hw_wake(spi);
1027 		}
1028 		priv->force_quit = 0;
1029 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1030 			mcp251x_set_normal_mode(spi);
1031 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1032 			netif_device_attach(net);
1033 			mcp251x_clean(net);
1034 			mcp251x_set_normal_mode(spi);
1035 			netif_wake_queue(net);
1036 		} else {
1037 			mcp251x_hw_sleep(spi);
1038 		}
1039 		priv->after_suspend = 0;
1040 	}
1041 
1042 	if (priv->restart_tx) {
1043 		priv->restart_tx = 0;
1044 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1045 		mcp251x_clean(net);
1046 		netif_wake_queue(net);
1047 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1048 	}
1049 	mutex_unlock(&priv->mcp_lock);
1050 }
1051 
1052 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1053 {
1054 	struct mcp251x_priv *priv = dev_id;
1055 	struct spi_device *spi = priv->spi;
1056 	struct net_device *net = priv->net;
1057 
1058 	mutex_lock(&priv->mcp_lock);
1059 	while (!priv->force_quit) {
1060 		enum can_state new_state;
1061 		u8 intf, eflag;
1062 		u8 clear_intf = 0;
1063 		int can_id = 0, data1 = 0;
1064 
1065 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1066 
1067 		/* mask out flags we don't care about */
1068 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1069 
1070 		/* receive buffer 0 */
1071 		if (intf & CANINTF_RX0IF) {
1072 			mcp251x_hw_rx(spi, 0);
1073 			/* Free one buffer ASAP
1074 			 * (The MCP2515/25625 does this automatically.)
1075 			 */
1076 			if (mcp251x_is_2510(spi))
1077 				mcp251x_write_bits(spi, CANINTF,
1078 						   CANINTF_RX0IF, 0x00);
1079 		}
1080 
1081 		/* receive buffer 1 */
1082 		if (intf & CANINTF_RX1IF) {
1083 			mcp251x_hw_rx(spi, 1);
1084 			/* The MCP2515/25625 does this automatically. */
1085 			if (mcp251x_is_2510(spi))
1086 				clear_intf |= CANINTF_RX1IF;
1087 		}
1088 
1089 		/* any error or tx interrupt we need to clear? */
1090 		if (intf & (CANINTF_ERR | CANINTF_TX))
1091 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1092 		if (clear_intf)
1093 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1094 
1095 		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1096 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1097 
1098 		/* Update can state */
1099 		if (eflag & EFLG_TXBO) {
1100 			new_state = CAN_STATE_BUS_OFF;
1101 			can_id |= CAN_ERR_BUSOFF;
1102 		} else if (eflag & EFLG_TXEP) {
1103 			new_state = CAN_STATE_ERROR_PASSIVE;
1104 			can_id |= CAN_ERR_CRTL;
1105 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1106 		} else if (eflag & EFLG_RXEP) {
1107 			new_state = CAN_STATE_ERROR_PASSIVE;
1108 			can_id |= CAN_ERR_CRTL;
1109 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1110 		} else if (eflag & EFLG_TXWAR) {
1111 			new_state = CAN_STATE_ERROR_WARNING;
1112 			can_id |= CAN_ERR_CRTL;
1113 			data1 |= CAN_ERR_CRTL_TX_WARNING;
1114 		} else if (eflag & EFLG_RXWAR) {
1115 			new_state = CAN_STATE_ERROR_WARNING;
1116 			can_id |= CAN_ERR_CRTL;
1117 			data1 |= CAN_ERR_CRTL_RX_WARNING;
1118 		} else {
1119 			new_state = CAN_STATE_ERROR_ACTIVE;
1120 		}
1121 
1122 		/* Update can state statistics */
1123 		switch (priv->can.state) {
1124 		case CAN_STATE_ERROR_ACTIVE:
1125 			if (new_state >= CAN_STATE_ERROR_WARNING &&
1126 			    new_state <= CAN_STATE_BUS_OFF)
1127 				priv->can.can_stats.error_warning++;
1128 			fallthrough;
1129 		case CAN_STATE_ERROR_WARNING:
1130 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1131 			    new_state <= CAN_STATE_BUS_OFF)
1132 				priv->can.can_stats.error_passive++;
1133 			break;
1134 		default:
1135 			break;
1136 		}
1137 		priv->can.state = new_state;
1138 
1139 		if (intf & CANINTF_ERRIF) {
1140 			/* Handle overflow counters */
1141 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1142 				if (eflag & EFLG_RX0OVR) {
1143 					net->stats.rx_over_errors++;
1144 					net->stats.rx_errors++;
1145 				}
1146 				if (eflag & EFLG_RX1OVR) {
1147 					net->stats.rx_over_errors++;
1148 					net->stats.rx_errors++;
1149 				}
1150 				can_id |= CAN_ERR_CRTL;
1151 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1152 			}
1153 			mcp251x_error_skb(net, can_id, data1);
1154 		}
1155 
1156 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1157 			if (priv->can.restart_ms == 0) {
1158 				priv->force_quit = 1;
1159 				priv->can.can_stats.bus_off++;
1160 				can_bus_off(net);
1161 				mcp251x_hw_sleep(spi);
1162 				break;
1163 			}
1164 		}
1165 
1166 		if (intf == 0)
1167 			break;
1168 
1169 		if (intf & CANINTF_TX) {
1170 			net->stats.tx_packets++;
1171 			net->stats.tx_bytes += priv->tx_len - 1;
1172 			can_led_event(net, CAN_LED_EVENT_TX);
1173 			if (priv->tx_len) {
1174 				can_get_echo_skb(net, 0, NULL);
1175 				priv->tx_len = 0;
1176 			}
1177 			netif_wake_queue(net);
1178 		}
1179 	}
1180 	mutex_unlock(&priv->mcp_lock);
1181 	return IRQ_HANDLED;
1182 }
1183 
1184 static int mcp251x_open(struct net_device *net)
1185 {
1186 	struct mcp251x_priv *priv = netdev_priv(net);
1187 	struct spi_device *spi = priv->spi;
1188 	unsigned long flags = 0;
1189 	int ret;
1190 
1191 	ret = open_candev(net);
1192 	if (ret) {
1193 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1194 		return ret;
1195 	}
1196 
1197 	mutex_lock(&priv->mcp_lock);
1198 	mcp251x_power_enable(priv->transceiver, 1);
1199 
1200 	priv->force_quit = 0;
1201 	priv->tx_skb = NULL;
1202 	priv->tx_len = 0;
1203 
1204 	if (!dev_fwnode(&spi->dev))
1205 		flags = IRQF_TRIGGER_FALLING;
1206 
1207 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1208 				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1209 				   priv);
1210 	if (ret) {
1211 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1212 		goto out_close;
1213 	}
1214 
1215 	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1216 				   0);
1217 	if (!priv->wq) {
1218 		ret = -ENOMEM;
1219 		goto out_clean;
1220 	}
1221 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1222 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1223 
1224 	ret = mcp251x_hw_wake(spi);
1225 	if (ret)
1226 		goto out_free_wq;
1227 	ret = mcp251x_setup(net, spi);
1228 	if (ret)
1229 		goto out_free_wq;
1230 	ret = mcp251x_set_normal_mode(spi);
1231 	if (ret)
1232 		goto out_free_wq;
1233 
1234 	can_led_event(net, CAN_LED_EVENT_OPEN);
1235 
1236 	netif_wake_queue(net);
1237 	mutex_unlock(&priv->mcp_lock);
1238 
1239 	return 0;
1240 
1241 out_free_wq:
1242 	destroy_workqueue(priv->wq);
1243 out_clean:
1244 	free_irq(spi->irq, priv);
1245 	mcp251x_hw_sleep(spi);
1246 out_close:
1247 	mcp251x_power_enable(priv->transceiver, 0);
1248 	close_candev(net);
1249 	mutex_unlock(&priv->mcp_lock);
1250 	return ret;
1251 }
1252 
1253 static const struct net_device_ops mcp251x_netdev_ops = {
1254 	.ndo_open = mcp251x_open,
1255 	.ndo_stop = mcp251x_stop,
1256 	.ndo_start_xmit = mcp251x_hard_start_xmit,
1257 	.ndo_change_mtu = can_change_mtu,
1258 };
1259 
1260 static const struct of_device_id mcp251x_of_match[] = {
1261 	{
1262 		.compatible	= "microchip,mcp2510",
1263 		.data		= (void *)CAN_MCP251X_MCP2510,
1264 	},
1265 	{
1266 		.compatible	= "microchip,mcp2515",
1267 		.data		= (void *)CAN_MCP251X_MCP2515,
1268 	},
1269 	{
1270 		.compatible	= "microchip,mcp25625",
1271 		.data		= (void *)CAN_MCP251X_MCP25625,
1272 	},
1273 	{ }
1274 };
1275 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1276 
1277 static const struct spi_device_id mcp251x_id_table[] = {
1278 	{
1279 		.name		= "mcp2510",
1280 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1281 	},
1282 	{
1283 		.name		= "mcp2515",
1284 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1285 	},
1286 	{
1287 		.name		= "mcp25625",
1288 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1289 	},
1290 	{ }
1291 };
1292 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1293 
1294 static int mcp251x_can_probe(struct spi_device *spi)
1295 {
1296 	const void *match = device_get_match_data(&spi->dev);
1297 	struct net_device *net;
1298 	struct mcp251x_priv *priv;
1299 	struct clk *clk;
1300 	u32 freq;
1301 	int ret;
1302 
1303 	clk = devm_clk_get_optional(&spi->dev, NULL);
1304 	if (IS_ERR(clk))
1305 		return PTR_ERR(clk);
1306 
1307 	freq = clk_get_rate(clk);
1308 	if (freq == 0)
1309 		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1310 
1311 	/* Sanity check */
1312 	if (freq < 1000000 || freq > 25000000)
1313 		return -ERANGE;
1314 
1315 	/* Allocate can/net device */
1316 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1317 	if (!net)
1318 		return -ENOMEM;
1319 
1320 	ret = clk_prepare_enable(clk);
1321 	if (ret)
1322 		goto out_free;
1323 
1324 	net->netdev_ops = &mcp251x_netdev_ops;
1325 	net->flags |= IFF_ECHO;
1326 
1327 	priv = netdev_priv(net);
1328 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1329 	priv->can.do_set_mode = mcp251x_do_set_mode;
1330 	priv->can.clock.freq = freq / 2;
1331 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1332 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1333 	if (match)
1334 		priv->model = (enum mcp251x_model)match;
1335 	else
1336 		priv->model = spi_get_device_id(spi)->driver_data;
1337 	priv->net = net;
1338 	priv->clk = clk;
1339 
1340 	spi_set_drvdata(spi, priv);
1341 
1342 	/* Configure the SPI bus */
1343 	spi->bits_per_word = 8;
1344 	if (mcp251x_is_2510(spi))
1345 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1346 	else
1347 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1348 	ret = spi_setup(spi);
1349 	if (ret)
1350 		goto out_clk;
1351 
1352 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1353 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1354 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1355 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1356 		ret = -EPROBE_DEFER;
1357 		goto out_clk;
1358 	}
1359 
1360 	ret = mcp251x_power_enable(priv->power, 1);
1361 	if (ret)
1362 		goto out_clk;
1363 
1364 	priv->spi = spi;
1365 	mutex_init(&priv->mcp_lock);
1366 
1367 	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1368 					GFP_KERNEL);
1369 	if (!priv->spi_tx_buf) {
1370 		ret = -ENOMEM;
1371 		goto error_probe;
1372 	}
1373 
1374 	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1375 					GFP_KERNEL);
1376 	if (!priv->spi_rx_buf) {
1377 		ret = -ENOMEM;
1378 		goto error_probe;
1379 	}
1380 
1381 	SET_NETDEV_DEV(net, &spi->dev);
1382 
1383 	/* Here is OK to not lock the MCP, no one knows about it yet */
1384 	ret = mcp251x_hw_probe(spi);
1385 	if (ret) {
1386 		if (ret == -ENODEV)
1387 			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1388 				priv->model);
1389 		goto error_probe;
1390 	}
1391 
1392 	mcp251x_hw_sleep(spi);
1393 
1394 	ret = register_candev(net);
1395 	if (ret)
1396 		goto error_probe;
1397 
1398 	devm_can_led_init(net);
1399 
1400 	ret = mcp251x_gpio_setup(priv);
1401 	if (ret)
1402 		goto error_probe;
1403 
1404 	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1405 	return 0;
1406 
1407 error_probe:
1408 	mcp251x_power_enable(priv->power, 0);
1409 
1410 out_clk:
1411 	clk_disable_unprepare(clk);
1412 
1413 out_free:
1414 	free_candev(net);
1415 
1416 	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1417 	return ret;
1418 }
1419 
1420 static int mcp251x_can_remove(struct spi_device *spi)
1421 {
1422 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1423 	struct net_device *net = priv->net;
1424 
1425 	unregister_candev(net);
1426 
1427 	mcp251x_power_enable(priv->power, 0);
1428 
1429 	clk_disable_unprepare(priv->clk);
1430 
1431 	free_candev(net);
1432 
1433 	return 0;
1434 }
1435 
1436 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1437 {
1438 	struct spi_device *spi = to_spi_device(dev);
1439 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1440 	struct net_device *net = priv->net;
1441 
1442 	priv->force_quit = 1;
1443 	disable_irq(spi->irq);
1444 	/* Note: at this point neither IST nor workqueues are running.
1445 	 * open/stop cannot be called anyway so locking is not needed
1446 	 */
1447 	if (netif_running(net)) {
1448 		netif_device_detach(net);
1449 
1450 		mcp251x_hw_sleep(spi);
1451 		mcp251x_power_enable(priv->transceiver, 0);
1452 		priv->after_suspend = AFTER_SUSPEND_UP;
1453 	} else {
1454 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1455 	}
1456 
1457 	mcp251x_power_enable(priv->power, 0);
1458 	priv->after_suspend |= AFTER_SUSPEND_POWER;
1459 
1460 	return 0;
1461 }
1462 
1463 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1464 {
1465 	struct spi_device *spi = to_spi_device(dev);
1466 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1467 
1468 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1469 		mcp251x_power_enable(priv->power, 1);
1470 	if (priv->after_suspend & AFTER_SUSPEND_UP)
1471 		mcp251x_power_enable(priv->transceiver, 1);
1472 
1473 	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1474 		queue_work(priv->wq, &priv->restart_work);
1475 	else
1476 		priv->after_suspend = 0;
1477 
1478 	priv->force_quit = 0;
1479 	enable_irq(spi->irq);
1480 	return 0;
1481 }
1482 
1483 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1484 	mcp251x_can_resume);
1485 
1486 static struct spi_driver mcp251x_can_driver = {
1487 	.driver = {
1488 		.name = DEVICE_NAME,
1489 		.of_match_table = mcp251x_of_match,
1490 		.pm = &mcp251x_can_pm_ops,
1491 	},
1492 	.id_table = mcp251x_id_table,
1493 	.probe = mcp251x_can_probe,
1494 	.remove = mcp251x_can_remove,
1495 };
1496 module_spi_driver(mcp251x_can_driver);
1497 
1498 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1499 	      "Christian Pellegrin <chripell@evolware.org>");
1500 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1501 MODULE_LICENSE("GPL v2");
1502