xref: /openbmc/linux/drivers/net/can/slcan/slcan-core.c (revision 9b68f30b)
1 /*
2  * slcan.c - serial line CAN interface driver (using tty line discipline)
3  *
4  * This file is derived from linux/drivers/net/slip/slip.c and got
5  * inspiration from linux/drivers/net/can/can327.c for the rework made
6  * on the line discipline code.
7  *
8  * slip.c Authors  : Laurence Culhane <loz@holmes.demon.co.uk>
9  *                   Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
10  * slcan.c Author  : Oliver Hartkopp <socketcan@hartkopp.net>
11  * can327.c Author : Max Staudt <max-linux@enpas.org>
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the
15  * Free Software Foundation; either version 2 of the License, or (at your
16  * option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License along
24  * with this program; if not, see http://www.gnu.org/licenses/gpl.html
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
37  * DAMAGE.
38  *
39  */
40 
41 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 
43 #include <linux/module.h>
44 
45 #include <linux/uaccess.h>
46 #include <linux/bitops.h>
47 #include <linux/string.h>
48 #include <linux/tty.h>
49 #include <linux/errno.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>
52 #include <linux/rtnetlink.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/workqueue.h>
56 #include <linux/can.h>
57 #include <linux/can/dev.h>
58 #include <linux/can/skb.h>
59 
60 #include "slcan.h"
61 
62 MODULE_ALIAS_LDISC(N_SLCAN);
63 MODULE_DESCRIPTION("serial line CAN interface");
64 MODULE_LICENSE("GPL");
65 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
66 MODULE_AUTHOR("Dario Binacchi <dario.binacchi@amarulasolutions.com>");
67 
68 /* maximum rx buffer len: extended CAN frame with timestamp */
69 #define SLCAN_MTU (sizeof("T1111222281122334455667788EA5F\r") + 1)
70 
71 #define SLCAN_CMD_LEN 1
72 #define SLCAN_SFF_ID_LEN 3
73 #define SLCAN_EFF_ID_LEN 8
74 #define SLCAN_STATE_LEN 1
75 #define SLCAN_STATE_BE_RXCNT_LEN 3
76 #define SLCAN_STATE_BE_TXCNT_LEN 3
77 #define SLCAN_STATE_FRAME_LEN       (1 + SLCAN_CMD_LEN + \
78 				     SLCAN_STATE_BE_RXCNT_LEN + \
79 				     SLCAN_STATE_BE_TXCNT_LEN)
80 struct slcan {
81 	struct can_priv         can;
82 
83 	/* Various fields. */
84 	struct tty_struct	*tty;		/* ptr to TTY structure	     */
85 	struct net_device	*dev;		/* easy for intr handling    */
86 	spinlock_t		lock;
87 	struct work_struct	tx_work;	/* Flushes transmit buffer   */
88 
89 	/* These are pointers to the malloc()ed frame buffers. */
90 	unsigned char		rbuff[SLCAN_MTU];	/* receiver buffer   */
91 	int			rcount;         /* received chars counter    */
92 	unsigned char		xbuff[SLCAN_MTU];	/* transmitter buffer*/
93 	unsigned char		*xhead;         /* pointer to next XMIT byte */
94 	int			xleft;          /* bytes left in XMIT queue  */
95 
96 	unsigned long		flags;		/* Flag values/ mode etc     */
97 #define SLF_ERROR		0               /* Parity, etc. error        */
98 #define SLF_XCMD		1               /* Command transmission      */
99 	unsigned long           cmd_flags;      /* Command flags             */
100 #define CF_ERR_RST		0               /* Reset errors on open      */
101 	wait_queue_head_t       xcmd_wait;      /* Wait queue for commands   */
102 						/* transmission              */
103 };
104 
105 static const u32 slcan_bitrate_const[] = {
106 	10000, 20000, 50000, 100000, 125000,
107 	250000, 500000, 800000, 1000000
108 };
109 
110 bool slcan_err_rst_on_open(struct net_device *ndev)
111 {
112 	struct slcan *sl = netdev_priv(ndev);
113 
114 	return !!test_bit(CF_ERR_RST, &sl->cmd_flags);
115 }
116 
117 int slcan_enable_err_rst_on_open(struct net_device *ndev, bool on)
118 {
119 	struct slcan *sl = netdev_priv(ndev);
120 
121 	if (netif_running(ndev))
122 		return -EBUSY;
123 
124 	if (on)
125 		set_bit(CF_ERR_RST, &sl->cmd_flags);
126 	else
127 		clear_bit(CF_ERR_RST, &sl->cmd_flags);
128 
129 	return 0;
130 }
131 
132 /*************************************************************************
133  *			SLCAN ENCAPSULATION FORMAT			 *
134  *************************************************************************/
135 
136 /* A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
137  * frame format) a data length code (len) which can be from 0 to 8
138  * and up to <len> data bytes as payload.
139  * Additionally a CAN frame may become a remote transmission frame if the
140  * RTR-bit is set. This causes another ECU to send a CAN frame with the
141  * given can_id.
142  *
143  * The SLCAN ASCII representation of these different frame types is:
144  * <type> <id> <dlc> <data>*
145  *
146  * Extended frames (29 bit) are defined by capital characters in the type.
147  * RTR frames are defined as 'r' types - normal frames have 't' type:
148  * t => 11 bit data frame
149  * r => 11 bit RTR frame
150  * T => 29 bit data frame
151  * R => 29 bit RTR frame
152  *
153  * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
154  * The <dlc> is a one byte ASCII number ('0' - '8')
155  * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
156  *
157  * Examples:
158  *
159  * t1230 : can_id 0x123, len 0, no data
160  * t4563112233 : can_id 0x456, len 3, data 0x11 0x22 0x33
161  * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, len 2, data 0xAA 0x55
162  * r1230 : can_id 0x123, len 0, no data, remote transmission request
163  *
164  */
165 
166 /*************************************************************************
167  *			STANDARD SLCAN DECAPSULATION			 *
168  *************************************************************************/
169 
170 /* Send one completely decapsulated can_frame to the network layer */
171 static void slcan_bump_frame(struct slcan *sl)
172 {
173 	struct sk_buff *skb;
174 	struct can_frame *cf;
175 	int i, tmp;
176 	u32 tmpid;
177 	char *cmd = sl->rbuff;
178 
179 	skb = alloc_can_skb(sl->dev, &cf);
180 	if (unlikely(!skb)) {
181 		sl->dev->stats.rx_dropped++;
182 		return;
183 	}
184 
185 	switch (*cmd) {
186 	case 'r':
187 		cf->can_id = CAN_RTR_FLAG;
188 		fallthrough;
189 	case 't':
190 		/* store dlc ASCII value and terminate SFF CAN ID string */
191 		cf->len = sl->rbuff[SLCAN_CMD_LEN + SLCAN_SFF_ID_LEN];
192 		sl->rbuff[SLCAN_CMD_LEN + SLCAN_SFF_ID_LEN] = 0;
193 		/* point to payload data behind the dlc */
194 		cmd += SLCAN_CMD_LEN + SLCAN_SFF_ID_LEN + 1;
195 		break;
196 	case 'R':
197 		cf->can_id = CAN_RTR_FLAG;
198 		fallthrough;
199 	case 'T':
200 		cf->can_id |= CAN_EFF_FLAG;
201 		/* store dlc ASCII value and terminate EFF CAN ID string */
202 		cf->len = sl->rbuff[SLCAN_CMD_LEN + SLCAN_EFF_ID_LEN];
203 		sl->rbuff[SLCAN_CMD_LEN + SLCAN_EFF_ID_LEN] = 0;
204 		/* point to payload data behind the dlc */
205 		cmd += SLCAN_CMD_LEN + SLCAN_EFF_ID_LEN + 1;
206 		break;
207 	default:
208 		goto decode_failed;
209 	}
210 
211 	if (kstrtou32(sl->rbuff + SLCAN_CMD_LEN, 16, &tmpid))
212 		goto decode_failed;
213 
214 	cf->can_id |= tmpid;
215 
216 	/* get len from sanitized ASCII value */
217 	if (cf->len >= '0' && cf->len < '9')
218 		cf->len -= '0';
219 	else
220 		goto decode_failed;
221 
222 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
223 	if (!(cf->can_id & CAN_RTR_FLAG)) {
224 		for (i = 0; i < cf->len; i++) {
225 			tmp = hex_to_bin(*cmd++);
226 			if (tmp < 0)
227 				goto decode_failed;
228 
229 			cf->data[i] = (tmp << 4);
230 			tmp = hex_to_bin(*cmd++);
231 			if (tmp < 0)
232 				goto decode_failed;
233 
234 			cf->data[i] |= tmp;
235 		}
236 	}
237 
238 	sl->dev->stats.rx_packets++;
239 	if (!(cf->can_id & CAN_RTR_FLAG))
240 		sl->dev->stats.rx_bytes += cf->len;
241 
242 	netif_rx(skb);
243 	return;
244 
245 decode_failed:
246 	sl->dev->stats.rx_errors++;
247 	dev_kfree_skb(skb);
248 }
249 
250 /* A change state frame must contain state info and receive and transmit
251  * error counters.
252  *
253  * Examples:
254  *
255  * sb256256 : state bus-off: rx counter 256, tx counter 256
256  * sa057033 : state active, rx counter 57, tx counter 33
257  */
258 static void slcan_bump_state(struct slcan *sl)
259 {
260 	struct net_device *dev = sl->dev;
261 	struct sk_buff *skb;
262 	struct can_frame *cf;
263 	char *cmd = sl->rbuff;
264 	u32 rxerr, txerr;
265 	enum can_state state, rx_state, tx_state;
266 
267 	switch (cmd[1]) {
268 	case 'a':
269 		state = CAN_STATE_ERROR_ACTIVE;
270 		break;
271 	case 'w':
272 		state = CAN_STATE_ERROR_WARNING;
273 		break;
274 	case 'p':
275 		state = CAN_STATE_ERROR_PASSIVE;
276 		break;
277 	case 'b':
278 		state = CAN_STATE_BUS_OFF;
279 		break;
280 	default:
281 		return;
282 	}
283 
284 	if (state == sl->can.state || sl->rcount < SLCAN_STATE_FRAME_LEN)
285 		return;
286 
287 	cmd += SLCAN_STATE_BE_RXCNT_LEN + SLCAN_CMD_LEN + 1;
288 	cmd[SLCAN_STATE_BE_TXCNT_LEN] = 0;
289 	if (kstrtou32(cmd, 10, &txerr))
290 		return;
291 
292 	*cmd = 0;
293 	cmd -= SLCAN_STATE_BE_RXCNT_LEN;
294 	if (kstrtou32(cmd, 10, &rxerr))
295 		return;
296 
297 	skb = alloc_can_err_skb(dev, &cf);
298 
299 	tx_state = txerr >= rxerr ? state : 0;
300 	rx_state = txerr <= rxerr ? state : 0;
301 	can_change_state(dev, cf, tx_state, rx_state);
302 
303 	if (state == CAN_STATE_BUS_OFF) {
304 		can_bus_off(dev);
305 	} else if (skb) {
306 		cf->can_id |= CAN_ERR_CNT;
307 		cf->data[6] = txerr;
308 		cf->data[7] = rxerr;
309 	}
310 
311 	if (skb)
312 		netif_rx(skb);
313 }
314 
315 /* An error frame can contain more than one type of error.
316  *
317  * Examples:
318  *
319  * e1a : len 1, errors: ACK error
320  * e3bcO: len 3, errors: Bit0 error, CRC error, Tx overrun error
321  */
322 static void slcan_bump_err(struct slcan *sl)
323 {
324 	struct net_device *dev = sl->dev;
325 	struct sk_buff *skb;
326 	struct can_frame *cf;
327 	char *cmd = sl->rbuff;
328 	bool rx_errors = false, tx_errors = false, rx_over_errors = false;
329 	int i, len;
330 
331 	/* get len from sanitized ASCII value */
332 	len = cmd[1];
333 	if (len >= '0' && len < '9')
334 		len -= '0';
335 	else
336 		return;
337 
338 	if ((len + SLCAN_CMD_LEN + 1) > sl->rcount)
339 		return;
340 
341 	skb = alloc_can_err_skb(dev, &cf);
342 
343 	if (skb)
344 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
345 
346 	cmd += SLCAN_CMD_LEN + 1;
347 	for (i = 0; i < len; i++, cmd++) {
348 		switch (*cmd) {
349 		case 'a':
350 			netdev_dbg(dev, "ACK error\n");
351 			tx_errors = true;
352 			if (skb) {
353 				cf->can_id |= CAN_ERR_ACK;
354 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
355 			}
356 
357 			break;
358 		case 'b':
359 			netdev_dbg(dev, "Bit0 error\n");
360 			tx_errors = true;
361 			if (skb)
362 				cf->data[2] |= CAN_ERR_PROT_BIT0;
363 
364 			break;
365 		case 'B':
366 			netdev_dbg(dev, "Bit1 error\n");
367 			tx_errors = true;
368 			if (skb)
369 				cf->data[2] |= CAN_ERR_PROT_BIT1;
370 
371 			break;
372 		case 'c':
373 			netdev_dbg(dev, "CRC error\n");
374 			rx_errors = true;
375 			if (skb) {
376 				cf->data[2] |= CAN_ERR_PROT_BIT;
377 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
378 			}
379 
380 			break;
381 		case 'f':
382 			netdev_dbg(dev, "Form Error\n");
383 			rx_errors = true;
384 			if (skb)
385 				cf->data[2] |= CAN_ERR_PROT_FORM;
386 
387 			break;
388 		case 'o':
389 			netdev_dbg(dev, "Rx overrun error\n");
390 			rx_over_errors = true;
391 			rx_errors = true;
392 			if (skb) {
393 				cf->can_id |= CAN_ERR_CRTL;
394 				cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
395 			}
396 
397 			break;
398 		case 'O':
399 			netdev_dbg(dev, "Tx overrun error\n");
400 			tx_errors = true;
401 			if (skb) {
402 				cf->can_id |= CAN_ERR_CRTL;
403 				cf->data[1] = CAN_ERR_CRTL_TX_OVERFLOW;
404 			}
405 
406 			break;
407 		case 's':
408 			netdev_dbg(dev, "Stuff error\n");
409 			rx_errors = true;
410 			if (skb)
411 				cf->data[2] |= CAN_ERR_PROT_STUFF;
412 
413 			break;
414 		default:
415 			if (skb)
416 				dev_kfree_skb(skb);
417 
418 			return;
419 		}
420 	}
421 
422 	if (rx_errors)
423 		dev->stats.rx_errors++;
424 
425 	if (rx_over_errors)
426 		dev->stats.rx_over_errors++;
427 
428 	if (tx_errors)
429 		dev->stats.tx_errors++;
430 
431 	if (skb)
432 		netif_rx(skb);
433 }
434 
435 static void slcan_bump(struct slcan *sl)
436 {
437 	switch (sl->rbuff[0]) {
438 	case 'r':
439 		fallthrough;
440 	case 't':
441 		fallthrough;
442 	case 'R':
443 		fallthrough;
444 	case 'T':
445 		return slcan_bump_frame(sl);
446 	case 'e':
447 		return slcan_bump_err(sl);
448 	case 's':
449 		return slcan_bump_state(sl);
450 	default:
451 		return;
452 	}
453 }
454 
455 /* parse tty input stream */
456 static void slcan_unesc(struct slcan *sl, unsigned char s)
457 {
458 	if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
459 		if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
460 		    sl->rcount > 4)
461 			slcan_bump(sl);
462 
463 		sl->rcount = 0;
464 	} else {
465 		if (!test_bit(SLF_ERROR, &sl->flags))  {
466 			if (sl->rcount < SLCAN_MTU)  {
467 				sl->rbuff[sl->rcount++] = s;
468 				return;
469 			}
470 
471 			sl->dev->stats.rx_over_errors++;
472 			set_bit(SLF_ERROR, &sl->flags);
473 		}
474 	}
475 }
476 
477 /*************************************************************************
478  *			STANDARD SLCAN ENCAPSULATION			 *
479  *************************************************************************/
480 
481 /* Encapsulate one can_frame and stuff into a TTY queue. */
482 static void slcan_encaps(struct slcan *sl, struct can_frame *cf)
483 {
484 	int actual, i;
485 	unsigned char *pos;
486 	unsigned char *endpos;
487 	canid_t id = cf->can_id;
488 
489 	pos = sl->xbuff;
490 
491 	if (cf->can_id & CAN_RTR_FLAG)
492 		*pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
493 	else
494 		*pos = 'T'; /* becomes 't' in standard frame format (SSF) */
495 
496 	/* determine number of chars for the CAN-identifier */
497 	if (cf->can_id & CAN_EFF_FLAG) {
498 		id &= CAN_EFF_MASK;
499 		endpos = pos + SLCAN_EFF_ID_LEN;
500 	} else {
501 		*pos |= 0x20; /* convert R/T to lower case for SFF */
502 		id &= CAN_SFF_MASK;
503 		endpos = pos + SLCAN_SFF_ID_LEN;
504 	}
505 
506 	/* build 3 (SFF) or 8 (EFF) digit CAN identifier */
507 	pos++;
508 	while (endpos >= pos) {
509 		*endpos-- = hex_asc_upper[id & 0xf];
510 		id >>= 4;
511 	}
512 
513 	pos += (cf->can_id & CAN_EFF_FLAG) ?
514 		SLCAN_EFF_ID_LEN : SLCAN_SFF_ID_LEN;
515 
516 	*pos++ = cf->len + '0';
517 
518 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
519 	if (!(cf->can_id & CAN_RTR_FLAG)) {
520 		for (i = 0; i < cf->len; i++)
521 			pos = hex_byte_pack_upper(pos, cf->data[i]);
522 
523 		sl->dev->stats.tx_bytes += cf->len;
524 	}
525 
526 	*pos++ = '\r';
527 
528 	/* Order of next two lines is *very* important.
529 	 * When we are sending a little amount of data,
530 	 * the transfer may be completed inside the ops->write()
531 	 * routine, because it's running with interrupts enabled.
532 	 * In this case we *never* got WRITE_WAKEUP event,
533 	 * if we did not request it before write operation.
534 	 *       14 Oct 1994  Dmitry Gorodchanin.
535 	 */
536 	set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
537 	actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
538 	sl->xleft = (pos - sl->xbuff) - actual;
539 	sl->xhead = sl->xbuff + actual;
540 }
541 
542 /* Write out any remaining transmit buffer. Scheduled when tty is writable */
543 static void slcan_transmit(struct work_struct *work)
544 {
545 	struct slcan *sl = container_of(work, struct slcan, tx_work);
546 	int actual;
547 
548 	spin_lock_bh(&sl->lock);
549 	/* First make sure we're connected. */
550 	if (unlikely(!netif_running(sl->dev)) &&
551 	    likely(!test_bit(SLF_XCMD, &sl->flags))) {
552 		spin_unlock_bh(&sl->lock);
553 		return;
554 	}
555 
556 	if (sl->xleft <= 0)  {
557 		if (unlikely(test_bit(SLF_XCMD, &sl->flags))) {
558 			clear_bit(SLF_XCMD, &sl->flags);
559 			clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
560 			spin_unlock_bh(&sl->lock);
561 			wake_up(&sl->xcmd_wait);
562 			return;
563 		}
564 
565 		/* Now serial buffer is almost free & we can start
566 		 * transmission of another packet
567 		 */
568 		sl->dev->stats.tx_packets++;
569 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
570 		spin_unlock_bh(&sl->lock);
571 		netif_wake_queue(sl->dev);
572 		return;
573 	}
574 
575 	actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft);
576 	sl->xleft -= actual;
577 	sl->xhead += actual;
578 	spin_unlock_bh(&sl->lock);
579 }
580 
581 /* Called by the driver when there's room for more data.
582  * Schedule the transmit.
583  */
584 static void slcan_write_wakeup(struct tty_struct *tty)
585 {
586 	struct slcan *sl = (struct slcan *)tty->disc_data;
587 
588 	schedule_work(&sl->tx_work);
589 }
590 
591 /* Send a can_frame to a TTY queue. */
592 static netdev_tx_t slcan_netdev_xmit(struct sk_buff *skb,
593 				     struct net_device *dev)
594 {
595 	struct slcan *sl = netdev_priv(dev);
596 
597 	if (can_dev_dropped_skb(dev, skb))
598 		return NETDEV_TX_OK;
599 
600 	spin_lock(&sl->lock);
601 	if (!netif_running(dev))  {
602 		spin_unlock(&sl->lock);
603 		netdev_warn(dev, "xmit: iface is down\n");
604 		goto out;
605 	}
606 	if (!sl->tty) {
607 		spin_unlock(&sl->lock);
608 		goto out;
609 	}
610 
611 	netif_stop_queue(sl->dev);
612 	slcan_encaps(sl, (struct can_frame *)skb->data); /* encaps & send */
613 	spin_unlock(&sl->lock);
614 
615 	skb_tx_timestamp(skb);
616 
617 out:
618 	kfree_skb(skb);
619 	return NETDEV_TX_OK;
620 }
621 
622 /******************************************
623  *   Routines looking at netdevice side.
624  ******************************************/
625 
626 static int slcan_transmit_cmd(struct slcan *sl, const unsigned char *cmd)
627 {
628 	int ret, actual, n;
629 
630 	spin_lock(&sl->lock);
631 	if (!sl->tty) {
632 		spin_unlock(&sl->lock);
633 		return -ENODEV;
634 	}
635 
636 	n = scnprintf(sl->xbuff, sizeof(sl->xbuff), "%s", cmd);
637 	set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
638 	actual = sl->tty->ops->write(sl->tty, sl->xbuff, n);
639 	sl->xleft = n - actual;
640 	sl->xhead = sl->xbuff + actual;
641 	set_bit(SLF_XCMD, &sl->flags);
642 	spin_unlock(&sl->lock);
643 	ret = wait_event_interruptible_timeout(sl->xcmd_wait,
644 					       !test_bit(SLF_XCMD, &sl->flags),
645 					       HZ);
646 	clear_bit(SLF_XCMD, &sl->flags);
647 	if (ret == -ERESTARTSYS)
648 		return ret;
649 
650 	if (ret == 0)
651 		return -ETIMEDOUT;
652 
653 	return 0;
654 }
655 
656 /* Netdevice UP -> DOWN routine */
657 static int slcan_netdev_close(struct net_device *dev)
658 {
659 	struct slcan *sl = netdev_priv(dev);
660 	int err;
661 
662 	if (sl->can.bittiming.bitrate &&
663 	    sl->can.bittiming.bitrate != CAN_BITRATE_UNKNOWN) {
664 		err = slcan_transmit_cmd(sl, "C\r");
665 		if (err)
666 			netdev_warn(dev,
667 				    "failed to send close command 'C\\r'\n");
668 	}
669 
670 	/* TTY discipline is running. */
671 	clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
672 	flush_work(&sl->tx_work);
673 
674 	netif_stop_queue(dev);
675 	sl->rcount   = 0;
676 	sl->xleft    = 0;
677 	close_candev(dev);
678 	sl->can.state = CAN_STATE_STOPPED;
679 	if (sl->can.bittiming.bitrate == CAN_BITRATE_UNKNOWN)
680 		sl->can.bittiming.bitrate = CAN_BITRATE_UNSET;
681 
682 	return 0;
683 }
684 
685 /* Netdevice DOWN -> UP routine */
686 static int slcan_netdev_open(struct net_device *dev)
687 {
688 	struct slcan *sl = netdev_priv(dev);
689 	unsigned char cmd[SLCAN_MTU];
690 	int err, s;
691 
692 	/* The baud rate is not set with the command
693 	 * `ip link set <iface> type can bitrate <baud>' and therefore
694 	 * can.bittiming.bitrate is CAN_BITRATE_UNSET (0), causing
695 	 * open_candev() to fail. So let's set to a fake value.
696 	 */
697 	if (sl->can.bittiming.bitrate == CAN_BITRATE_UNSET)
698 		sl->can.bittiming.bitrate = CAN_BITRATE_UNKNOWN;
699 
700 	err = open_candev(dev);
701 	if (err) {
702 		netdev_err(dev, "failed to open can device\n");
703 		return err;
704 	}
705 
706 	if (sl->can.bittiming.bitrate != CAN_BITRATE_UNKNOWN) {
707 		for (s = 0; s < ARRAY_SIZE(slcan_bitrate_const); s++) {
708 			if (sl->can.bittiming.bitrate == slcan_bitrate_const[s])
709 				break;
710 		}
711 
712 		/* The CAN framework has already validate the bitrate value,
713 		 * so we can avoid to check if `s' has been properly set.
714 		 */
715 		snprintf(cmd, sizeof(cmd), "C\rS%d\r", s);
716 		err = slcan_transmit_cmd(sl, cmd);
717 		if (err) {
718 			netdev_err(dev,
719 				   "failed to send bitrate command 'C\\rS%d\\r'\n",
720 				   s);
721 			goto cmd_transmit_failed;
722 		}
723 
724 		if (test_bit(CF_ERR_RST, &sl->cmd_flags)) {
725 			err = slcan_transmit_cmd(sl, "F\r");
726 			if (err) {
727 				netdev_err(dev,
728 					   "failed to send error command 'F\\r'\n");
729 				goto cmd_transmit_failed;
730 			}
731 		}
732 
733 		if (sl->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
734 			err = slcan_transmit_cmd(sl, "L\r");
735 			if (err) {
736 				netdev_err(dev,
737 					   "failed to send listen-only command 'L\\r'\n");
738 				goto cmd_transmit_failed;
739 			}
740 		} else {
741 			err = slcan_transmit_cmd(sl, "O\r");
742 			if (err) {
743 				netdev_err(dev,
744 					   "failed to send open command 'O\\r'\n");
745 				goto cmd_transmit_failed;
746 			}
747 		}
748 	}
749 
750 	sl->can.state = CAN_STATE_ERROR_ACTIVE;
751 	netif_start_queue(dev);
752 	return 0;
753 
754 cmd_transmit_failed:
755 	close_candev(dev);
756 	return err;
757 }
758 
759 static const struct net_device_ops slcan_netdev_ops = {
760 	.ndo_open               = slcan_netdev_open,
761 	.ndo_stop               = slcan_netdev_close,
762 	.ndo_start_xmit         = slcan_netdev_xmit,
763 	.ndo_change_mtu         = can_change_mtu,
764 };
765 
766 /******************************************
767  *  Routines looking at TTY side.
768  ******************************************/
769 
770 /* Handle the 'receiver data ready' interrupt.
771  * This function is called by the 'tty_io' module in the kernel when
772  * a block of SLCAN data has been received, which can now be decapsulated
773  * and sent on to some IP layer for further processing. This will not
774  * be re-entered while running but other ldisc functions may be called
775  * in parallel
776  */
777 static void slcan_receive_buf(struct tty_struct *tty,
778 			      const unsigned char *cp, const char *fp,
779 			      int count)
780 {
781 	struct slcan *sl = (struct slcan *)tty->disc_data;
782 
783 	if (!netif_running(sl->dev))
784 		return;
785 
786 	/* Read the characters out of the buffer */
787 	while (count--) {
788 		if (fp && *fp++) {
789 			if (!test_and_set_bit(SLF_ERROR, &sl->flags))
790 				sl->dev->stats.rx_errors++;
791 			cp++;
792 			continue;
793 		}
794 		slcan_unesc(sl, *cp++);
795 	}
796 }
797 
798 /* Open the high-level part of the SLCAN channel.
799  * This function is called by the TTY module when the
800  * SLCAN line discipline is called for.
801  *
802  * Called in process context serialized from other ldisc calls.
803  */
804 static int slcan_open(struct tty_struct *tty)
805 {
806 	struct net_device *dev;
807 	struct slcan *sl;
808 	int err;
809 
810 	if (!capable(CAP_NET_ADMIN))
811 		return -EPERM;
812 
813 	if (!tty->ops->write)
814 		return -EOPNOTSUPP;
815 
816 	dev = alloc_candev(sizeof(*sl), 1);
817 	if (!dev)
818 		return -ENFILE;
819 
820 	sl = netdev_priv(dev);
821 
822 	/* Configure TTY interface */
823 	tty->receive_room = 65536; /* We don't flow control */
824 	sl->rcount = 0;
825 	sl->xleft = 0;
826 	spin_lock_init(&sl->lock);
827 	INIT_WORK(&sl->tx_work, slcan_transmit);
828 	init_waitqueue_head(&sl->xcmd_wait);
829 
830 	/* Configure CAN metadata */
831 	sl->can.bitrate_const = slcan_bitrate_const;
832 	sl->can.bitrate_const_cnt = ARRAY_SIZE(slcan_bitrate_const);
833 	sl->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY;
834 
835 	/* Configure netdev interface */
836 	sl->dev	= dev;
837 	dev->netdev_ops = &slcan_netdev_ops;
838 	dev->ethtool_ops = &slcan_ethtool_ops;
839 
840 	/* Mark ldisc channel as alive */
841 	sl->tty = tty;
842 	tty->disc_data = sl;
843 
844 	err = register_candev(dev);
845 	if (err) {
846 		free_candev(dev);
847 		pr_err("can't register candev\n");
848 		return err;
849 	}
850 
851 	netdev_info(dev, "slcan on %s.\n", tty->name);
852 	/* TTY layer expects 0 on success */
853 	return 0;
854 }
855 
856 /* Close down a SLCAN channel.
857  * This means flushing out any pending queues, and then returning. This
858  * call is serialized against other ldisc functions.
859  * Once this is called, no other ldisc function of ours is entered.
860  *
861  * We also use this method for a hangup event.
862  */
863 static void slcan_close(struct tty_struct *tty)
864 {
865 	struct slcan *sl = (struct slcan *)tty->disc_data;
866 
867 	unregister_candev(sl->dev);
868 
869 	/*
870 	 * The netdev needn't be UP (so .ndo_stop() is not called). Hence make
871 	 * sure this is not running before freeing it up.
872 	 */
873 	flush_work(&sl->tx_work);
874 
875 	/* Mark channel as dead */
876 	spin_lock_bh(&sl->lock);
877 	tty->disc_data = NULL;
878 	sl->tty = NULL;
879 	spin_unlock_bh(&sl->lock);
880 
881 	netdev_info(sl->dev, "slcan off %s.\n", tty->name);
882 	free_candev(sl->dev);
883 }
884 
885 /* Perform I/O control on an active SLCAN channel. */
886 static int slcan_ioctl(struct tty_struct *tty, unsigned int cmd,
887 		       unsigned long arg)
888 {
889 	struct slcan *sl = (struct slcan *)tty->disc_data;
890 	unsigned int tmp;
891 
892 	switch (cmd) {
893 	case SIOCGIFNAME:
894 		tmp = strlen(sl->dev->name) + 1;
895 		if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
896 			return -EFAULT;
897 		return 0;
898 
899 	case SIOCSIFHWADDR:
900 		return -EINVAL;
901 
902 	default:
903 		return tty_mode_ioctl(tty, cmd, arg);
904 	}
905 }
906 
907 static struct tty_ldisc_ops slcan_ldisc = {
908 	.owner		= THIS_MODULE,
909 	.num		= N_SLCAN,
910 	.name		= KBUILD_MODNAME,
911 	.open		= slcan_open,
912 	.close		= slcan_close,
913 	.ioctl		= slcan_ioctl,
914 	.receive_buf	= slcan_receive_buf,
915 	.write_wakeup	= slcan_write_wakeup,
916 };
917 
918 static int __init slcan_init(void)
919 {
920 	int status;
921 
922 	pr_info("serial line CAN interface driver\n");
923 
924 	/* Fill in our line protocol discipline, and register it */
925 	status = tty_register_ldisc(&slcan_ldisc);
926 	if (status)
927 		pr_err("can't register line discipline\n");
928 
929 	return status;
930 }
931 
932 static void __exit slcan_exit(void)
933 {
934 	/* This will only be called when all channels have been closed by
935 	 * userspace - tty_ldisc.c takes care of the module's refcount.
936 	 */
937 	tty_unregister_ldisc(&slcan_ldisc);
938 }
939 
940 module_init(slcan_init);
941 module_exit(slcan_exit);
942