1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/interrupt.h> 29 #include <linux/errno.h> 30 #include <linux/netdevice.h> 31 #include <linux/platform_device.h> 32 #include <linux/can/led.h> 33 #include <linux/can/dev.h> 34 #include <linux/clk.h> 35 #include <linux/of.h> 36 #include <linux/of_device.h> 37 #include <linux/bitmap.h> 38 #include <linux/bitops.h> 39 #include <linux/iopoll.h> 40 #include <linux/reset.h> 41 42 #define RCANFD_DRV_NAME "rcar_canfd" 43 44 enum rcanfd_chip_id { 45 RENESAS_RCAR_GEN3 = 0, 46 RENESAS_RZG2L, 47 }; 48 49 /* Global register bits */ 50 51 /* RSCFDnCFDGRMCFG */ 52 #define RCANFD_GRMCFG_RCMC BIT(0) 53 54 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 55 #define RCANFD_GCFG_EEFE BIT(6) 56 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 57 #define RCANFD_GCFG_DCS BIT(4) 58 #define RCANFD_GCFG_DCE BIT(1) 59 #define RCANFD_GCFG_TPRI BIT(0) 60 61 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 62 #define RCANFD_GCTR_TSRST BIT(16) 63 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 64 #define RCANFD_GCTR_THLEIE BIT(10) 65 #define RCANFD_GCTR_MEIE BIT(9) 66 #define RCANFD_GCTR_DEIE BIT(8) 67 #define RCANFD_GCTR_GSLPR BIT(2) 68 #define RCANFD_GCTR_GMDC_MASK (0x3) 69 #define RCANFD_GCTR_GMDC_GOPM (0x0) 70 #define RCANFD_GCTR_GMDC_GRESET (0x1) 71 #define RCANFD_GCTR_GMDC_GTEST (0x2) 72 73 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 74 #define RCANFD_GSTS_GRAMINIT BIT(3) 75 #define RCANFD_GSTS_GSLPSTS BIT(2) 76 #define RCANFD_GSTS_GHLTSTS BIT(1) 77 #define RCANFD_GSTS_GRSTSTS BIT(0) 78 /* Non-operational status */ 79 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 80 81 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 82 #define RCANFD_GERFL_EEF1 BIT(17) 83 #define RCANFD_GERFL_EEF0 BIT(16) 84 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 85 #define RCANFD_GERFL_THLES BIT(2) 86 #define RCANFD_GERFL_MES BIT(1) 87 #define RCANFD_GERFL_DEF BIT(0) 88 89 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\ 90 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\ 91 (gpriv->fdmode ?\ 92 RCANFD_GERFL_CMPOF : 0))) 93 94 /* AFL Rx rules registers */ 95 96 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 97 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8)) 98 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff) 99 100 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 101 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 102 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f) 103 104 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 105 #define RCANFD_GAFLID_GAFLLB BIT(29) 106 107 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 108 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 109 110 /* Channel register bits */ 111 112 /* RSCFDnCmCFG - Classical CAN only */ 113 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 114 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 115 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 116 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 117 118 /* RSCFDnCFDCmNCFG - CAN FD only */ 119 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24) 120 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16) 121 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11) 122 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 123 124 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 125 #define RCANFD_CCTR_CTME BIT(24) 126 #define RCANFD_CCTR_ERRD BIT(23) 127 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 128 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 129 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 130 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 131 #define RCANFD_CCTR_TDCVFIE BIT(19) 132 #define RCANFD_CCTR_SOCOIE BIT(18) 133 #define RCANFD_CCTR_EOCOIE BIT(17) 134 #define RCANFD_CCTR_TAIE BIT(16) 135 #define RCANFD_CCTR_ALIE BIT(15) 136 #define RCANFD_CCTR_BLIE BIT(14) 137 #define RCANFD_CCTR_OLIE BIT(13) 138 #define RCANFD_CCTR_BORIE BIT(12) 139 #define RCANFD_CCTR_BOEIE BIT(11) 140 #define RCANFD_CCTR_EPIE BIT(10) 141 #define RCANFD_CCTR_EWIE BIT(9) 142 #define RCANFD_CCTR_BEIE BIT(8) 143 #define RCANFD_CCTR_CSLPR BIT(2) 144 #define RCANFD_CCTR_CHMDC_MASK (0x3) 145 #define RCANFD_CCTR_CHDMC_COPM (0x0) 146 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 147 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 148 149 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 150 #define RCANFD_CSTS_COMSTS BIT(7) 151 #define RCANFD_CSTS_RECSTS BIT(6) 152 #define RCANFD_CSTS_TRMSTS BIT(5) 153 #define RCANFD_CSTS_BOSTS BIT(4) 154 #define RCANFD_CSTS_EPSTS BIT(3) 155 #define RCANFD_CSTS_SLPSTS BIT(2) 156 #define RCANFD_CSTS_HLTSTS BIT(1) 157 #define RCANFD_CSTS_CRSTSTS BIT(0) 158 159 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 160 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 161 162 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 163 #define RCANFD_CERFL_ADERR BIT(14) 164 #define RCANFD_CERFL_B0ERR BIT(13) 165 #define RCANFD_CERFL_B1ERR BIT(12) 166 #define RCANFD_CERFL_CERR BIT(11) 167 #define RCANFD_CERFL_AERR BIT(10) 168 #define RCANFD_CERFL_FERR BIT(9) 169 #define RCANFD_CERFL_SERR BIT(8) 170 #define RCANFD_CERFL_ALF BIT(7) 171 #define RCANFD_CERFL_BLF BIT(6) 172 #define RCANFD_CERFL_OVLF BIT(5) 173 #define RCANFD_CERFL_BORF BIT(4) 174 #define RCANFD_CERFL_BOEF BIT(3) 175 #define RCANFD_CERFL_EPF BIT(2) 176 #define RCANFD_CERFL_EWF BIT(1) 177 #define RCANFD_CERFL_BEF BIT(0) 178 179 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 180 181 /* RSCFDnCFDCmDCFG */ 182 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24) 183 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20) 184 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16) 185 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 186 187 /* RSCFDnCFDCmFDCFG */ 188 #define RCANFD_FDCFG_TDCE BIT(9) 189 #define RCANFD_FDCFG_TDCOC BIT(8) 190 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 191 192 /* RSCFDnCFDRFCCx */ 193 #define RCANFD_RFCC_RFIM BIT(12) 194 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 195 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 196 #define RCANFD_RFCC_RFIE BIT(1) 197 #define RCANFD_RFCC_RFE BIT(0) 198 199 /* RSCFDnCFDRFSTSx */ 200 #define RCANFD_RFSTS_RFIF BIT(3) 201 #define RCANFD_RFSTS_RFMLT BIT(2) 202 #define RCANFD_RFSTS_RFFLL BIT(1) 203 #define RCANFD_RFSTS_RFEMP BIT(0) 204 205 /* RSCFDnCFDRFIDx */ 206 #define RCANFD_RFID_RFIDE BIT(31) 207 #define RCANFD_RFID_RFRTR BIT(30) 208 209 /* RSCFDnCFDRFPTRx */ 210 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 211 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 212 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 213 214 /* RSCFDnCFDRFFDSTSx */ 215 #define RCANFD_RFFDSTS_RFFDF BIT(2) 216 #define RCANFD_RFFDSTS_RFBRS BIT(1) 217 #define RCANFD_RFFDSTS_RFESI BIT(0) 218 219 /* Common FIFO bits */ 220 221 /* RSCFDnCFDCFCCk */ 222 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20) 223 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16) 224 #define RCANFD_CFCC_CFIM BIT(12) 225 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8) 226 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 227 #define RCANFD_CFCC_CFTXIE BIT(2) 228 #define RCANFD_CFCC_CFE BIT(0) 229 230 /* RSCFDnCFDCFSTSk */ 231 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 232 #define RCANFD_CFSTS_CFTXIF BIT(4) 233 #define RCANFD_CFSTS_CFMLT BIT(2) 234 #define RCANFD_CFSTS_CFFLL BIT(1) 235 #define RCANFD_CFSTS_CFEMP BIT(0) 236 237 /* RSCFDnCFDCFIDk */ 238 #define RCANFD_CFID_CFIDE BIT(31) 239 #define RCANFD_CFID_CFRTR BIT(30) 240 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 241 242 /* RSCFDnCFDCFPTRk */ 243 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 244 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 245 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 246 247 /* RSCFDnCFDCFFDCSTSk */ 248 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 249 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 250 #define RCANFD_CFFDCSTS_CFESI BIT(0) 251 252 /* This controller supports either Classical CAN only mode or CAN FD only mode. 253 * These modes are supported in two separate set of register maps & names. 254 * However, some of the register offsets are common for both modes. Those 255 * offsets are listed below as Common registers. 256 * 257 * The CAN FD only mode specific registers & Classical CAN only mode specific 258 * registers are listed separately. Their register names starts with 259 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 260 */ 261 262 /* Common registers */ 263 264 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 265 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 266 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 267 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 268 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 269 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 270 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 271 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 272 273 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 274 #define RCANFD_GCFG (0x0084) 275 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 276 #define RCANFD_GCTR (0x0088) 277 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 278 #define RCANFD_GSTS (0x008c) 279 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 280 #define RCANFD_GERFL (0x0090) 281 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 282 #define RCANFD_GTSC (0x0094) 283 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 284 #define RCANFD_GAFLECTR (0x0098) 285 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 286 #define RCANFD_GAFLCFG0 (0x009c) 287 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */ 288 #define RCANFD_GAFLCFG1 (0x00a0) 289 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 290 #define RCANFD_RMNB (0x00a4) 291 /* RSCFDnCFDRMND / RSCFDnRMND */ 292 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 293 294 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 295 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x))) 296 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 297 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x))) 298 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 299 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x))) 300 301 /* Common FIFO Control registers */ 302 303 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 304 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \ 305 (0x04 * (idx))) 306 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 307 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \ 308 (0x04 * (idx))) 309 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 310 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \ 311 (0x04 * (idx))) 312 313 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 314 #define RCANFD_FESTS (0x0238) 315 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 316 #define RCANFD_FFSTS (0x023c) 317 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 318 #define RCANFD_FMSTS (0x0240) 319 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 320 #define RCANFD_RFISTS (0x0244) 321 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 322 #define RCANFD_CFRISTS (0x0248) 323 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 324 #define RCANFD_CFTISTS (0x024c) 325 326 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 327 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 328 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 329 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 330 331 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 332 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 333 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 334 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 335 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 336 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 337 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 338 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 339 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 340 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 341 342 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 343 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 344 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 345 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 346 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 347 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 348 349 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 350 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 351 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 352 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 353 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 354 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 355 356 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 357 #define RCANFD_GTINTSTS0 (0x0460) 358 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 359 #define RCANFD_GTINTSTS1 (0x0464) 360 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 361 #define RCANFD_GTSTCFG (0x0468) 362 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 363 #define RCANFD_GTSTCTR (0x046c) 364 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 365 #define RCANFD_GLOCKK (0x047c) 366 /* RSCFDnCFDGRMCFG */ 367 #define RCANFD_GRMCFG (0x04fc) 368 369 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 370 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 371 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 372 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 373 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 374 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 375 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 376 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 377 378 /* Classical CAN only mode register map */ 379 380 /* RSCFDnGAFLXXXj offset */ 381 #define RCANFD_C_GAFL_OFFSET (0x0500) 382 383 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 384 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 385 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 386 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 387 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 388 389 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 390 #define RCANFD_C_RFOFFSET (0x0e00) 391 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 392 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \ 393 (0x10 * (x))) 394 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \ 395 (0x10 * (x)) + (0x04 * (df))) 396 397 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 398 #define RCANFD_C_CFOFFSET (0x0e80) 399 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \ 400 (0x10 * (idx))) 401 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \ 402 (0x30 * (ch)) + (0x10 * (idx))) 403 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \ 404 (0x30 * (ch)) + (0x10 * (idx)) + \ 405 (0x04 * (df))) 406 407 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 408 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 409 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 410 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 411 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 412 413 /* RSCFDnTHLACCm */ 414 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 415 /* RSCFDnRPGACCr */ 416 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 417 418 /* CAN FD mode specific register map */ 419 420 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 421 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m))) 422 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 423 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 424 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 425 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 426 427 /* RSCFDnCFDGAFLXXXj offset */ 428 #define RCANFD_F_GAFL_OFFSET (0x1000) 429 430 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 431 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 432 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 433 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 434 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 435 436 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 437 #define RCANFD_F_RFOFFSET (0x3000) 438 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x))) 439 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \ 440 (0x80 * (x))) 441 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \ 442 (0x80 * (x))) 443 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \ 444 (0x80 * (x)) + (0x04 * (df))) 445 446 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 447 #define RCANFD_F_CFOFFSET (0x3400) 448 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \ 449 (0x80 * (idx))) 450 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \ 451 (0x180 * (ch)) + (0x80 * (idx))) 452 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \ 453 (0x180 * (ch)) + (0x80 * (idx))) 454 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \ 455 (0x180 * (ch)) + (0x80 * (idx)) + \ 456 (0x04 * (df))) 457 458 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 459 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 460 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 461 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 462 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 463 464 /* RSCFDnCFDTHLACCm */ 465 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 466 /* RSCFDnCFDRPGACCr */ 467 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 468 469 /* Constants */ 470 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 471 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 472 473 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */ 474 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 475 476 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 477 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 478 479 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 480 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 481 * number is added to RFFIFO index. 482 */ 483 #define RCANFD_RFFIFO_IDX 0 484 485 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 486 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 487 */ 488 #define RCANFD_CFFIFO_IDX 0 489 490 /* fCAN clock select register settings */ 491 enum rcar_canfd_fcanclk { 492 RCANFD_CANFDCLK = 0, /* CANFD clock */ 493 RCANFD_EXTCLK, /* Externally input clock */ 494 }; 495 496 struct rcar_canfd_global; 497 498 /* Channel priv data */ 499 struct rcar_canfd_channel { 500 struct can_priv can; /* Must be the first member */ 501 struct net_device *ndev; 502 struct rcar_canfd_global *gpriv; /* Controller reference */ 503 void __iomem *base; /* Register base address */ 504 struct napi_struct napi; 505 u32 tx_head; /* Incremented on xmit */ 506 u32 tx_tail; /* Incremented on xmit done */ 507 u32 channel; /* Channel number */ 508 spinlock_t tx_lock; /* To protect tx path */ 509 }; 510 511 /* Global priv data */ 512 struct rcar_canfd_global { 513 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 514 void __iomem *base; /* Register base address */ 515 struct platform_device *pdev; /* Respective platform device */ 516 struct clk *clkp; /* Peripheral clock */ 517 struct clk *can_clk; /* fCAN clock */ 518 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 519 unsigned long channels_mask; /* Enabled channels mask */ 520 bool fdmode; /* CAN FD or Classical CAN only mode */ 521 struct reset_control *rstc1; 522 struct reset_control *rstc2; 523 enum rcanfd_chip_id chip_id; 524 }; 525 526 /* CAN FD mode nominal rate constants */ 527 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 528 .name = RCANFD_DRV_NAME, 529 .tseg1_min = 2, 530 .tseg1_max = 128, 531 .tseg2_min = 2, 532 .tseg2_max = 32, 533 .sjw_max = 32, 534 .brp_min = 1, 535 .brp_max = 1024, 536 .brp_inc = 1, 537 }; 538 539 /* CAN FD mode data rate constants */ 540 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 541 .name = RCANFD_DRV_NAME, 542 .tseg1_min = 2, 543 .tseg1_max = 16, 544 .tseg2_min = 2, 545 .tseg2_max = 8, 546 .sjw_max = 8, 547 .brp_min = 1, 548 .brp_max = 256, 549 .brp_inc = 1, 550 }; 551 552 /* Classical CAN mode bitrate constants */ 553 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 554 .name = RCANFD_DRV_NAME, 555 .tseg1_min = 4, 556 .tseg1_max = 16, 557 .tseg2_min = 2, 558 .tseg2_max = 8, 559 .sjw_max = 4, 560 .brp_min = 1, 561 .brp_max = 1024, 562 .brp_inc = 1, 563 }; 564 565 /* Helper functions */ 566 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 567 { 568 u32 data = readl(reg); 569 570 data &= ~mask; 571 data |= (val & mask); 572 writel(data, reg); 573 } 574 575 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 576 { 577 return readl(base + (offset)); 578 } 579 580 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 581 { 582 writel(val, base + (offset)); 583 } 584 585 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 586 { 587 rcar_canfd_update(val, val, base + (reg)); 588 } 589 590 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 591 { 592 rcar_canfd_update(val, 0, base + (reg)); 593 } 594 595 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 596 u32 mask, u32 val) 597 { 598 rcar_canfd_update(mask, val, base + (reg)); 599 } 600 601 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 602 struct canfd_frame *cf, u32 off) 603 { 604 u32 i, lwords; 605 606 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 607 for (i = 0; i < lwords; i++) 608 *((u32 *)cf->data + i) = 609 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 610 } 611 612 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 613 struct canfd_frame *cf, u32 off) 614 { 615 u32 i, lwords; 616 617 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 618 for (i = 0; i < lwords; i++) 619 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 620 *((u32 *)cf->data + i)); 621 } 622 623 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 624 { 625 u32 i; 626 627 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 628 can_free_echo_skb(ndev, i, NULL); 629 } 630 631 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 632 { 633 u32 sts, ch; 634 int err; 635 636 /* Check RAMINIT flag as CAN RAM initialization takes place 637 * after the MCU reset 638 */ 639 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 640 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 641 if (err) { 642 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 643 return err; 644 } 645 646 /* Transition to Global Reset mode */ 647 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 648 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 649 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 650 651 /* Ensure Global reset mode */ 652 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 653 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 654 if (err) { 655 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 656 return err; 657 } 658 659 /* Reset Global error flags */ 660 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 661 662 /* Set the controller into appropriate mode */ 663 if (gpriv->fdmode) 664 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 665 RCANFD_GRMCFG_RCMC); 666 else 667 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 668 RCANFD_GRMCFG_RCMC); 669 670 /* Transition all Channels to reset mode */ 671 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 672 rcar_canfd_clear_bit(gpriv->base, 673 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 674 675 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 676 RCANFD_CCTR_CHMDC_MASK, 677 RCANFD_CCTR_CHDMC_CRESET); 678 679 /* Ensure Channel reset mode */ 680 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 681 (sts & RCANFD_CSTS_CRSTSTS), 682 2, 500000); 683 if (err) { 684 dev_dbg(&gpriv->pdev->dev, 685 "channel %u reset failed\n", ch); 686 return err; 687 } 688 } 689 return 0; 690 } 691 692 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 693 { 694 u32 cfg, ch; 695 696 /* Global configuration settings */ 697 698 /* ECC Error flag Enable */ 699 cfg = RCANFD_GCFG_EEFE; 700 701 if (gpriv->fdmode) 702 /* Truncate payload to configured message size RFPLS */ 703 cfg |= RCANFD_GCFG_CMPOC; 704 705 /* Set External Clock if selected */ 706 if (gpriv->fcan != RCANFD_CANFDCLK) 707 cfg |= RCANFD_GCFG_DCS; 708 709 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 710 711 /* Channel configuration settings */ 712 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 713 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 714 RCANFD_CCTR_ERRD); 715 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 716 RCANFD_CCTR_BOM_MASK, 717 RCANFD_CCTR_BOM_BENTRY); 718 } 719 } 720 721 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 722 u32 ch) 723 { 724 u32 cfg; 725 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 726 u32 ridx = ch + RCANFD_RFFIFO_IDX; 727 728 if (ch == 0) { 729 start = 0; /* Channel 0 always starts from 0th rule */ 730 } else { 731 /* Get number of Channel 0 rules and adjust */ 732 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0); 733 start = RCANFD_GAFLCFG_GETRNC(0, cfg); 734 } 735 736 /* Enable write access to entry */ 737 page = RCANFD_GAFL_PAGENUM(start); 738 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 739 (RCANFD_GAFLECTR_AFLPN(page) | 740 RCANFD_GAFLECTR_AFLDAE)); 741 742 /* Write number of rules for channel */ 743 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0, 744 RCANFD_GAFLCFG_SETRNC(ch, num_rules)); 745 if (gpriv->fdmode) 746 offset = RCANFD_F_GAFL_OFFSET; 747 else 748 offset = RCANFD_C_GAFL_OFFSET; 749 750 /* Accept all IDs */ 751 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 752 /* IDE or RTR is not considered for matching */ 753 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 754 /* Any data length accepted */ 755 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 756 /* Place the msg in corresponding Rx FIFO entry */ 757 rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start), 758 RCANFD_GAFLP1_GAFLFDP(ridx)); 759 760 /* Disable write access to page */ 761 rcar_canfd_clear_bit(gpriv->base, 762 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 763 } 764 765 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 766 { 767 /* Rx FIFO is used for reception */ 768 u32 cfg; 769 u16 rfdc, rfpls; 770 771 /* Select Rx FIFO based on channel */ 772 u32 ridx = ch + RCANFD_RFFIFO_IDX; 773 774 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 775 if (gpriv->fdmode) 776 rfpls = 7; /* b111 - Max 64 bytes payload */ 777 else 778 rfpls = 0; /* b000 - Max 8 bytes payload */ 779 780 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 781 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 782 rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg); 783 } 784 785 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 786 { 787 /* Tx/Rx(Common) FIFO configured in Tx mode is 788 * used for transmission 789 * 790 * Each channel has 3 Common FIFO dedicated to them. 791 * Use the 1st (index 0) out of 3 792 */ 793 u32 cfg; 794 u16 cftml, cfm, cfdc, cfpls; 795 796 cftml = 0; /* 0th buffer */ 797 cfm = 1; /* b01 - Transmit mode */ 798 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 799 if (gpriv->fdmode) 800 cfpls = 7; /* b111 - Max 64 bytes payload */ 801 else 802 cfpls = 0; /* b000 - Max 8 bytes payload */ 803 804 cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) | 805 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) | 806 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 807 rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg); 808 809 if (gpriv->fdmode) 810 /* Clear FD mode specific control/status register */ 811 rcar_canfd_write(gpriv->base, 812 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0); 813 } 814 815 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 816 { 817 u32 ctr; 818 819 /* Clear any stray error interrupt flags */ 820 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 821 822 /* Global interrupts setup */ 823 ctr = RCANFD_GCTR_MEIE; 824 if (gpriv->fdmode) 825 ctr |= RCANFD_GCTR_CFMPOFIE; 826 827 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 828 } 829 830 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 831 *gpriv) 832 { 833 /* Disable all interrupts */ 834 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 835 836 /* Clear any stray error interrupt flags */ 837 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 838 } 839 840 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 841 *priv) 842 { 843 u32 ctr, ch = priv->channel; 844 845 /* Clear any stray error flags */ 846 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 847 848 /* Channel interrupts setup */ 849 ctr = (RCANFD_CCTR_TAIE | 850 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 851 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 852 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 853 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 854 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 855 } 856 857 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 858 *priv) 859 { 860 u32 ctr, ch = priv->channel; 861 862 ctr = (RCANFD_CCTR_TAIE | 863 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 864 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 865 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 866 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 867 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 868 869 /* Clear any stray error flags */ 870 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 871 } 872 873 static void rcar_canfd_global_error(struct net_device *ndev) 874 { 875 struct rcar_canfd_channel *priv = netdev_priv(ndev); 876 struct rcar_canfd_global *gpriv = priv->gpriv; 877 struct net_device_stats *stats = &ndev->stats; 878 u32 ch = priv->channel; 879 u32 gerfl, sts; 880 u32 ridx = ch + RCANFD_RFFIFO_IDX; 881 882 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 883 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) { 884 netdev_dbg(ndev, "Ch0: ECC Error flag\n"); 885 stats->tx_dropped++; 886 } 887 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) { 888 netdev_dbg(ndev, "Ch1: ECC Error flag\n"); 889 stats->tx_dropped++; 890 } 891 if (gerfl & RCANFD_GERFL_MES) { 892 sts = rcar_canfd_read(priv->base, 893 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 894 if (sts & RCANFD_CFSTS_CFMLT) { 895 netdev_dbg(ndev, "Tx Message Lost flag\n"); 896 stats->tx_dropped++; 897 rcar_canfd_write(priv->base, 898 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 899 sts & ~RCANFD_CFSTS_CFMLT); 900 } 901 902 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 903 if (sts & RCANFD_RFSTS_RFMLT) { 904 netdev_dbg(ndev, "Rx Message Lost flag\n"); 905 stats->rx_dropped++; 906 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 907 sts & ~RCANFD_RFSTS_RFMLT); 908 } 909 } 910 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 911 /* Message Lost flag will be set for respective channel 912 * when this condition happens with counters and flags 913 * already updated. 914 */ 915 netdev_dbg(ndev, "global payload overflow interrupt\n"); 916 } 917 918 /* Clear all global error interrupts. Only affected channels bits 919 * get cleared 920 */ 921 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 922 } 923 924 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 925 u16 txerr, u16 rxerr) 926 { 927 struct rcar_canfd_channel *priv = netdev_priv(ndev); 928 struct net_device_stats *stats = &ndev->stats; 929 struct can_frame *cf; 930 struct sk_buff *skb; 931 u32 ch = priv->channel; 932 933 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 934 935 /* Propagate the error condition to the CAN stack */ 936 skb = alloc_can_err_skb(ndev, &cf); 937 if (!skb) { 938 stats->rx_dropped++; 939 return; 940 } 941 942 /* Channel error interrupts */ 943 if (cerfl & RCANFD_CERFL_BEF) { 944 netdev_dbg(ndev, "Bus error\n"); 945 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 946 cf->data[2] = CAN_ERR_PROT_UNSPEC; 947 priv->can.can_stats.bus_error++; 948 } 949 if (cerfl & RCANFD_CERFL_ADERR) { 950 netdev_dbg(ndev, "ACK Delimiter Error\n"); 951 stats->tx_errors++; 952 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 953 } 954 if (cerfl & RCANFD_CERFL_B0ERR) { 955 netdev_dbg(ndev, "Bit Error (dominant)\n"); 956 stats->tx_errors++; 957 cf->data[2] |= CAN_ERR_PROT_BIT0; 958 } 959 if (cerfl & RCANFD_CERFL_B1ERR) { 960 netdev_dbg(ndev, "Bit Error (recessive)\n"); 961 stats->tx_errors++; 962 cf->data[2] |= CAN_ERR_PROT_BIT1; 963 } 964 if (cerfl & RCANFD_CERFL_CERR) { 965 netdev_dbg(ndev, "CRC Error\n"); 966 stats->rx_errors++; 967 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 968 } 969 if (cerfl & RCANFD_CERFL_AERR) { 970 netdev_dbg(ndev, "ACK Error\n"); 971 stats->tx_errors++; 972 cf->can_id |= CAN_ERR_ACK; 973 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 974 } 975 if (cerfl & RCANFD_CERFL_FERR) { 976 netdev_dbg(ndev, "Form Error\n"); 977 stats->rx_errors++; 978 cf->data[2] |= CAN_ERR_PROT_FORM; 979 } 980 if (cerfl & RCANFD_CERFL_SERR) { 981 netdev_dbg(ndev, "Stuff Error\n"); 982 stats->rx_errors++; 983 cf->data[2] |= CAN_ERR_PROT_STUFF; 984 } 985 if (cerfl & RCANFD_CERFL_ALF) { 986 netdev_dbg(ndev, "Arbitration lost Error\n"); 987 priv->can.can_stats.arbitration_lost++; 988 cf->can_id |= CAN_ERR_LOSTARB; 989 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 990 } 991 if (cerfl & RCANFD_CERFL_BLF) { 992 netdev_dbg(ndev, "Bus Lock Error\n"); 993 stats->rx_errors++; 994 cf->can_id |= CAN_ERR_BUSERROR; 995 } 996 if (cerfl & RCANFD_CERFL_EWF) { 997 netdev_dbg(ndev, "Error warning interrupt\n"); 998 priv->can.state = CAN_STATE_ERROR_WARNING; 999 priv->can.can_stats.error_warning++; 1000 cf->can_id |= CAN_ERR_CRTL; 1001 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1002 CAN_ERR_CRTL_RX_WARNING; 1003 cf->data[6] = txerr; 1004 cf->data[7] = rxerr; 1005 } 1006 if (cerfl & RCANFD_CERFL_EPF) { 1007 netdev_dbg(ndev, "Error passive interrupt\n"); 1008 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1009 priv->can.can_stats.error_passive++; 1010 cf->can_id |= CAN_ERR_CRTL; 1011 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1012 CAN_ERR_CRTL_RX_PASSIVE; 1013 cf->data[6] = txerr; 1014 cf->data[7] = rxerr; 1015 } 1016 if (cerfl & RCANFD_CERFL_BOEF) { 1017 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1018 rcar_canfd_tx_failure_cleanup(ndev); 1019 priv->can.state = CAN_STATE_BUS_OFF; 1020 priv->can.can_stats.bus_off++; 1021 can_bus_off(ndev); 1022 cf->can_id |= CAN_ERR_BUSOFF; 1023 } 1024 if (cerfl & RCANFD_CERFL_OVLF) { 1025 netdev_dbg(ndev, 1026 "Overload Frame Transmission error interrupt\n"); 1027 stats->tx_errors++; 1028 cf->can_id |= CAN_ERR_PROT; 1029 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1030 } 1031 1032 /* Clear channel error interrupts that are handled */ 1033 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1034 RCANFD_CERFL_ERR(~cerfl)); 1035 netif_rx(skb); 1036 } 1037 1038 static void rcar_canfd_tx_done(struct net_device *ndev) 1039 { 1040 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1041 struct net_device_stats *stats = &ndev->stats; 1042 u32 sts; 1043 unsigned long flags; 1044 u32 ch = priv->channel; 1045 1046 do { 1047 u8 unsent, sent; 1048 1049 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1050 stats->tx_packets++; 1051 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1052 1053 spin_lock_irqsave(&priv->tx_lock, flags); 1054 priv->tx_tail++; 1055 sts = rcar_canfd_read(priv->base, 1056 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1057 unsent = RCANFD_CFSTS_CFMC(sts); 1058 1059 /* Wake producer only when there is room */ 1060 if (unsent != RCANFD_FIFO_DEPTH) 1061 netif_wake_queue(ndev); 1062 1063 if (priv->tx_head - priv->tx_tail <= unsent) { 1064 spin_unlock_irqrestore(&priv->tx_lock, flags); 1065 break; 1066 } 1067 spin_unlock_irqrestore(&priv->tx_lock, flags); 1068 1069 } while (1); 1070 1071 /* Clear interrupt */ 1072 rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 1073 sts & ~RCANFD_CFSTS_CFTXIF); 1074 can_led_event(ndev, CAN_LED_EVENT_TX); 1075 } 1076 1077 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1078 { 1079 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1080 struct net_device *ndev = priv->ndev; 1081 u32 gerfl; 1082 1083 /* Handle global error interrupts */ 1084 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1085 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1086 rcar_canfd_global_error(ndev); 1087 } 1088 1089 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1090 { 1091 struct rcar_canfd_global *gpriv = dev_id; 1092 u32 ch; 1093 1094 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1095 rcar_canfd_handle_global_err(gpriv, ch); 1096 1097 return IRQ_HANDLED; 1098 } 1099 1100 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1101 { 1102 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1103 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1104 u32 sts; 1105 1106 /* Handle Rx interrupts */ 1107 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1108 if (likely(sts & RCANFD_RFSTS_RFIF)) { 1109 if (napi_schedule_prep(&priv->napi)) { 1110 /* Disable Rx FIFO interrupts */ 1111 rcar_canfd_clear_bit(priv->base, 1112 RCANFD_RFCC(ridx), 1113 RCANFD_RFCC_RFIE); 1114 __napi_schedule(&priv->napi); 1115 } 1116 } 1117 } 1118 1119 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1120 { 1121 struct rcar_canfd_global *gpriv = dev_id; 1122 u32 ch; 1123 1124 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1125 rcar_canfd_handle_global_receive(gpriv, ch); 1126 1127 return IRQ_HANDLED; 1128 } 1129 1130 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1131 { 1132 struct rcar_canfd_global *gpriv = dev_id; 1133 u32 ch; 1134 1135 /* Global error interrupts still indicate a condition specific 1136 * to a channel. RxFIFO interrupt is a global interrupt. 1137 */ 1138 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1139 rcar_canfd_handle_global_err(gpriv, ch); 1140 rcar_canfd_handle_global_receive(gpriv, ch); 1141 } 1142 return IRQ_HANDLED; 1143 } 1144 1145 static void rcar_canfd_state_change(struct net_device *ndev, 1146 u16 txerr, u16 rxerr) 1147 { 1148 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1149 struct net_device_stats *stats = &ndev->stats; 1150 enum can_state rx_state, tx_state, state = priv->can.state; 1151 struct can_frame *cf; 1152 struct sk_buff *skb; 1153 1154 /* Handle transition from error to normal states */ 1155 if (txerr < 96 && rxerr < 96) 1156 state = CAN_STATE_ERROR_ACTIVE; 1157 else if (txerr < 128 && rxerr < 128) 1158 state = CAN_STATE_ERROR_WARNING; 1159 1160 if (state != priv->can.state) { 1161 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1162 state, priv->can.state, txerr, rxerr); 1163 skb = alloc_can_err_skb(ndev, &cf); 1164 if (!skb) { 1165 stats->rx_dropped++; 1166 return; 1167 } 1168 tx_state = txerr >= rxerr ? state : 0; 1169 rx_state = txerr <= rxerr ? state : 0; 1170 1171 can_change_state(ndev, cf, tx_state, rx_state); 1172 netif_rx(skb); 1173 } 1174 } 1175 1176 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1177 { 1178 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1179 struct net_device *ndev = priv->ndev; 1180 u32 sts; 1181 1182 /* Handle Tx interrupts */ 1183 sts = rcar_canfd_read(priv->base, 1184 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1185 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1186 rcar_canfd_tx_done(ndev); 1187 } 1188 1189 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1190 { 1191 struct rcar_canfd_global *gpriv = dev_id; 1192 u32 ch; 1193 1194 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1195 rcar_canfd_handle_channel_tx(gpriv, ch); 1196 1197 return IRQ_HANDLED; 1198 } 1199 1200 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1201 { 1202 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1203 struct net_device *ndev = priv->ndev; 1204 u16 txerr, rxerr; 1205 u32 sts, cerfl; 1206 1207 /* Handle channel error interrupts */ 1208 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1209 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1210 txerr = RCANFD_CSTS_TECCNT(sts); 1211 rxerr = RCANFD_CSTS_RECCNT(sts); 1212 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1213 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1214 1215 /* Handle state change to lower states */ 1216 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1217 priv->can.state != CAN_STATE_BUS_OFF)) 1218 rcar_canfd_state_change(ndev, txerr, rxerr); 1219 } 1220 1221 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1222 { 1223 struct rcar_canfd_global *gpriv = dev_id; 1224 u32 ch; 1225 1226 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1227 rcar_canfd_handle_channel_err(gpriv, ch); 1228 1229 return IRQ_HANDLED; 1230 } 1231 1232 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1233 { 1234 struct rcar_canfd_global *gpriv = dev_id; 1235 u32 ch; 1236 1237 /* Common FIFO is a per channel resource */ 1238 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1239 rcar_canfd_handle_channel_err(gpriv, ch); 1240 rcar_canfd_handle_channel_tx(gpriv, ch); 1241 } 1242 1243 return IRQ_HANDLED; 1244 } 1245 1246 static void rcar_canfd_set_bittiming(struct net_device *dev) 1247 { 1248 struct rcar_canfd_channel *priv = netdev_priv(dev); 1249 const struct can_bittiming *bt = &priv->can.bittiming; 1250 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1251 u16 brp, sjw, tseg1, tseg2; 1252 u32 cfg; 1253 u32 ch = priv->channel; 1254 1255 /* Nominal bit timing settings */ 1256 brp = bt->brp - 1; 1257 sjw = bt->sjw - 1; 1258 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1259 tseg2 = bt->phase_seg2 - 1; 1260 1261 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1262 /* CAN FD only mode */ 1263 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) | 1264 RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2)); 1265 1266 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1267 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1268 brp, sjw, tseg1, tseg2); 1269 1270 /* Data bit timing settings */ 1271 brp = dbt->brp - 1; 1272 sjw = dbt->sjw - 1; 1273 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1274 tseg2 = dbt->phase_seg2 - 1; 1275 1276 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) | 1277 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2)); 1278 1279 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg); 1280 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1281 brp, sjw, tseg1, tseg2); 1282 } else { 1283 /* Classical CAN only mode */ 1284 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1285 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1286 1287 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1288 netdev_dbg(priv->ndev, 1289 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1290 brp, sjw, tseg1, tseg2); 1291 } 1292 } 1293 1294 static int rcar_canfd_start(struct net_device *ndev) 1295 { 1296 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1297 int err = -EOPNOTSUPP; 1298 u32 sts, ch = priv->channel; 1299 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1300 1301 rcar_canfd_set_bittiming(ndev); 1302 1303 rcar_canfd_enable_channel_interrupts(priv); 1304 1305 /* Set channel to Operational mode */ 1306 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1307 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1308 1309 /* Verify channel mode change */ 1310 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1311 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1312 if (err) { 1313 netdev_err(ndev, "channel %u communication state failed\n", ch); 1314 goto fail_mode_change; 1315 } 1316 1317 /* Enable Common & Rx FIFO */ 1318 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1319 RCANFD_CFCC_CFE); 1320 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1321 1322 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1323 return 0; 1324 1325 fail_mode_change: 1326 rcar_canfd_disable_channel_interrupts(priv); 1327 return err; 1328 } 1329 1330 static int rcar_canfd_open(struct net_device *ndev) 1331 { 1332 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1333 struct rcar_canfd_global *gpriv = priv->gpriv; 1334 int err; 1335 1336 /* Peripheral clock is already enabled in probe */ 1337 err = clk_prepare_enable(gpriv->can_clk); 1338 if (err) { 1339 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); 1340 goto out_clock; 1341 } 1342 1343 err = open_candev(ndev); 1344 if (err) { 1345 netdev_err(ndev, "open_candev() failed, error %d\n", err); 1346 goto out_can_clock; 1347 } 1348 1349 napi_enable(&priv->napi); 1350 err = rcar_canfd_start(ndev); 1351 if (err) 1352 goto out_close; 1353 netif_start_queue(ndev); 1354 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1355 return 0; 1356 out_close: 1357 napi_disable(&priv->napi); 1358 close_candev(ndev); 1359 out_can_clock: 1360 clk_disable_unprepare(gpriv->can_clk); 1361 out_clock: 1362 return err; 1363 } 1364 1365 static void rcar_canfd_stop(struct net_device *ndev) 1366 { 1367 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1368 int err; 1369 u32 sts, ch = priv->channel; 1370 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1371 1372 /* Transition to channel reset mode */ 1373 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1374 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1375 1376 /* Check Channel reset mode */ 1377 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1378 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1379 if (err) 1380 netdev_err(ndev, "channel %u reset failed\n", ch); 1381 1382 rcar_canfd_disable_channel_interrupts(priv); 1383 1384 /* Disable Common & Rx FIFO */ 1385 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1386 RCANFD_CFCC_CFE); 1387 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1388 1389 /* Set the state as STOPPED */ 1390 priv->can.state = CAN_STATE_STOPPED; 1391 } 1392 1393 static int rcar_canfd_close(struct net_device *ndev) 1394 { 1395 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1396 struct rcar_canfd_global *gpriv = priv->gpriv; 1397 1398 netif_stop_queue(ndev); 1399 rcar_canfd_stop(ndev); 1400 napi_disable(&priv->napi); 1401 clk_disable_unprepare(gpriv->can_clk); 1402 close_candev(ndev); 1403 can_led_event(ndev, CAN_LED_EVENT_STOP); 1404 return 0; 1405 } 1406 1407 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1408 struct net_device *ndev) 1409 { 1410 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1411 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1412 u32 sts = 0, id, dlc; 1413 unsigned long flags; 1414 u32 ch = priv->channel; 1415 1416 if (can_dropped_invalid_skb(ndev, skb)) 1417 return NETDEV_TX_OK; 1418 1419 if (cf->can_id & CAN_EFF_FLAG) { 1420 id = cf->can_id & CAN_EFF_MASK; 1421 id |= RCANFD_CFID_CFIDE; 1422 } else { 1423 id = cf->can_id & CAN_SFF_MASK; 1424 } 1425 1426 if (cf->can_id & CAN_RTR_FLAG) 1427 id |= RCANFD_CFID_CFRTR; 1428 1429 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1430 1431 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1432 rcar_canfd_write(priv->base, 1433 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id); 1434 rcar_canfd_write(priv->base, 1435 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1436 1437 if (can_is_canfd_skb(skb)) { 1438 /* CAN FD frame format */ 1439 sts |= RCANFD_CFFDCSTS_CFFDF; 1440 if (cf->flags & CANFD_BRS) 1441 sts |= RCANFD_CFFDCSTS_CFBRS; 1442 1443 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1444 sts |= RCANFD_CFFDCSTS_CFESI; 1445 } 1446 1447 rcar_canfd_write(priv->base, 1448 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts); 1449 1450 rcar_canfd_put_data(priv, cf, 1451 RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1452 } else { 1453 rcar_canfd_write(priv->base, 1454 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1455 rcar_canfd_write(priv->base, 1456 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1457 rcar_canfd_put_data(priv, cf, 1458 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1459 } 1460 1461 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1462 1463 spin_lock_irqsave(&priv->tx_lock, flags); 1464 priv->tx_head++; 1465 1466 /* Stop the queue if we've filled all FIFO entries */ 1467 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1468 netif_stop_queue(ndev); 1469 1470 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1471 * pointer for the Common FIFO 1472 */ 1473 rcar_canfd_write(priv->base, 1474 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff); 1475 1476 spin_unlock_irqrestore(&priv->tx_lock, flags); 1477 return NETDEV_TX_OK; 1478 } 1479 1480 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1481 { 1482 struct net_device_stats *stats = &priv->ndev->stats; 1483 struct canfd_frame *cf; 1484 struct sk_buff *skb; 1485 u32 sts = 0, id, dlc; 1486 u32 ch = priv->channel; 1487 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1488 1489 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1490 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx)); 1491 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx)); 1492 1493 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx)); 1494 if (sts & RCANFD_RFFDSTS_RFFDF) 1495 skb = alloc_canfd_skb(priv->ndev, &cf); 1496 else 1497 skb = alloc_can_skb(priv->ndev, 1498 (struct can_frame **)&cf); 1499 } else { 1500 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1501 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1502 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1503 } 1504 1505 if (!skb) { 1506 stats->rx_dropped++; 1507 return; 1508 } 1509 1510 if (id & RCANFD_RFID_RFIDE) 1511 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1512 else 1513 cf->can_id = id & CAN_SFF_MASK; 1514 1515 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1516 if (sts & RCANFD_RFFDSTS_RFFDF) 1517 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1518 else 1519 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1520 1521 if (sts & RCANFD_RFFDSTS_RFESI) { 1522 cf->flags |= CANFD_ESI; 1523 netdev_dbg(priv->ndev, "ESI Error\n"); 1524 } 1525 1526 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1527 cf->can_id |= CAN_RTR_FLAG; 1528 } else { 1529 if (sts & RCANFD_RFFDSTS_RFBRS) 1530 cf->flags |= CANFD_BRS; 1531 1532 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0)); 1533 } 1534 } else { 1535 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1536 if (id & RCANFD_RFID_RFRTR) 1537 cf->can_id |= CAN_RTR_FLAG; 1538 else 1539 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1540 } 1541 1542 /* Write 0xff to RFPC to increment the CPU-side 1543 * pointer of the Rx FIFO 1544 */ 1545 rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff); 1546 1547 can_led_event(priv->ndev, CAN_LED_EVENT_RX); 1548 1549 if (!(cf->can_id & CAN_RTR_FLAG)) 1550 stats->rx_bytes += cf->len; 1551 stats->rx_packets++; 1552 netif_receive_skb(skb); 1553 } 1554 1555 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1556 { 1557 struct rcar_canfd_channel *priv = 1558 container_of(napi, struct rcar_canfd_channel, napi); 1559 int num_pkts; 1560 u32 sts; 1561 u32 ch = priv->channel; 1562 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1563 1564 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1565 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1566 /* Check FIFO empty condition */ 1567 if (sts & RCANFD_RFSTS_RFEMP) 1568 break; 1569 1570 rcar_canfd_rx_pkt(priv); 1571 1572 /* Clear interrupt bit */ 1573 if (sts & RCANFD_RFSTS_RFIF) 1574 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 1575 sts & ~RCANFD_RFSTS_RFIF); 1576 } 1577 1578 /* All packets processed */ 1579 if (num_pkts < quota) { 1580 if (napi_complete_done(napi, num_pkts)) { 1581 /* Enable Rx FIFO interrupts */ 1582 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), 1583 RCANFD_RFCC_RFIE); 1584 } 1585 } 1586 return num_pkts; 1587 } 1588 1589 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1590 { 1591 int err; 1592 1593 switch (mode) { 1594 case CAN_MODE_START: 1595 err = rcar_canfd_start(ndev); 1596 if (err) 1597 return err; 1598 netif_wake_queue(ndev); 1599 return 0; 1600 default: 1601 return -EOPNOTSUPP; 1602 } 1603 } 1604 1605 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1606 struct can_berr_counter *bec) 1607 { 1608 struct rcar_canfd_channel *priv = netdev_priv(dev); 1609 u32 val, ch = priv->channel; 1610 1611 /* Peripheral clock is already enabled in probe */ 1612 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1613 bec->txerr = RCANFD_CSTS_TECCNT(val); 1614 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1615 return 0; 1616 } 1617 1618 static const struct net_device_ops rcar_canfd_netdev_ops = { 1619 .ndo_open = rcar_canfd_open, 1620 .ndo_stop = rcar_canfd_close, 1621 .ndo_start_xmit = rcar_canfd_start_xmit, 1622 .ndo_change_mtu = can_change_mtu, 1623 }; 1624 1625 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1626 u32 fcan_freq) 1627 { 1628 struct platform_device *pdev = gpriv->pdev; 1629 struct rcar_canfd_channel *priv; 1630 struct net_device *ndev; 1631 int err = -ENODEV; 1632 1633 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1634 if (!ndev) { 1635 dev_err(&pdev->dev, "alloc_candev() failed\n"); 1636 return -ENOMEM; 1637 } 1638 priv = netdev_priv(ndev); 1639 1640 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1641 ndev->flags |= IFF_ECHO; 1642 priv->ndev = ndev; 1643 priv->base = gpriv->base; 1644 priv->channel = ch; 1645 priv->can.clock.freq = fcan_freq; 1646 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq); 1647 1648 if (gpriv->chip_id == RENESAS_RZG2L) { 1649 char *irq_name; 1650 int err_irq; 1651 int tx_irq; 1652 1653 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1654 if (err_irq < 0) { 1655 err = err_irq; 1656 goto fail; 1657 } 1658 1659 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1660 if (tx_irq < 0) { 1661 err = tx_irq; 1662 goto fail; 1663 } 1664 1665 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 1666 "canfd.ch%d_err", ch); 1667 if (!irq_name) { 1668 err = -ENOMEM; 1669 goto fail; 1670 } 1671 err = devm_request_irq(&pdev->dev, err_irq, 1672 rcar_canfd_channel_err_interrupt, 0, 1673 irq_name, gpriv); 1674 if (err) { 1675 dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n", 1676 err_irq, err); 1677 goto fail; 1678 } 1679 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 1680 "canfd.ch%d_trx", ch); 1681 if (!irq_name) { 1682 err = -ENOMEM; 1683 goto fail; 1684 } 1685 err = devm_request_irq(&pdev->dev, tx_irq, 1686 rcar_canfd_channel_tx_interrupt, 0, 1687 irq_name, gpriv); 1688 if (err) { 1689 dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n", 1690 tx_irq, err); 1691 goto fail; 1692 } 1693 } 1694 1695 if (gpriv->fdmode) { 1696 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1697 priv->can.data_bittiming_const = 1698 &rcar_canfd_data_bittiming_const; 1699 1700 /* Controller starts in CAN FD only mode */ 1701 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1702 if (err) 1703 goto fail; 1704 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1705 } else { 1706 /* Controller starts in Classical CAN only mode */ 1707 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1708 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1709 } 1710 1711 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1712 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1713 priv->gpriv = gpriv; 1714 SET_NETDEV_DEV(ndev, &pdev->dev); 1715 1716 netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll, 1717 RCANFD_NAPI_WEIGHT); 1718 err = register_candev(ndev); 1719 if (err) { 1720 dev_err(&pdev->dev, 1721 "register_candev() failed, error %d\n", err); 1722 goto fail_candev; 1723 } 1724 spin_lock_init(&priv->tx_lock); 1725 devm_can_led_init(ndev); 1726 gpriv->ch[priv->channel] = priv; 1727 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel); 1728 return 0; 1729 1730 fail_candev: 1731 netif_napi_del(&priv->napi); 1732 fail: 1733 free_candev(ndev); 1734 return err; 1735 } 1736 1737 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1738 { 1739 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1740 1741 if (priv) { 1742 unregister_candev(priv->ndev); 1743 netif_napi_del(&priv->napi); 1744 free_candev(priv->ndev); 1745 } 1746 } 1747 1748 static int rcar_canfd_probe(struct platform_device *pdev) 1749 { 1750 void __iomem *addr; 1751 u32 sts, ch, fcan_freq; 1752 struct rcar_canfd_global *gpriv; 1753 struct device_node *of_child; 1754 unsigned long channels_mask = 0; 1755 int err, ch_irq, g_irq; 1756 int g_err_irq, g_recc_irq; 1757 bool fdmode = true; /* CAN FD only mode - default */ 1758 enum rcanfd_chip_id chip_id; 1759 1760 chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev); 1761 1762 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd")) 1763 fdmode = false; /* Classical CAN only mode */ 1764 1765 of_child = of_get_child_by_name(pdev->dev.of_node, "channel0"); 1766 if (of_child && of_device_is_available(of_child)) 1767 channels_mask |= BIT(0); /* Channel 0 */ 1768 1769 of_child = of_get_child_by_name(pdev->dev.of_node, "channel1"); 1770 if (of_child && of_device_is_available(of_child)) 1771 channels_mask |= BIT(1); /* Channel 1 */ 1772 1773 if (chip_id == RENESAS_RCAR_GEN3) { 1774 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1775 if (ch_irq < 0) { 1776 /* For backward compatibility get irq by index */ 1777 ch_irq = platform_get_irq(pdev, 0); 1778 if (ch_irq < 0) 1779 return ch_irq; 1780 } 1781 1782 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1783 if (g_irq < 0) { 1784 /* For backward compatibility get irq by index */ 1785 g_irq = platform_get_irq(pdev, 1); 1786 if (g_irq < 0) 1787 return g_irq; 1788 } 1789 } else { 1790 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1791 if (g_err_irq < 0) 1792 return g_err_irq; 1793 1794 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1795 if (g_recc_irq < 0) 1796 return g_recc_irq; 1797 } 1798 1799 /* Global controller context */ 1800 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL); 1801 if (!gpriv) { 1802 err = -ENOMEM; 1803 goto fail_dev; 1804 } 1805 gpriv->pdev = pdev; 1806 gpriv->channels_mask = channels_mask; 1807 gpriv->fdmode = fdmode; 1808 gpriv->chip_id = chip_id; 1809 1810 if (gpriv->chip_id == RENESAS_RZG2L) { 1811 gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n"); 1812 if (IS_ERR(gpriv->rstc1)) 1813 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1), 1814 "failed to get rstp_n\n"); 1815 1816 gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n"); 1817 if (IS_ERR(gpriv->rstc2)) 1818 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2), 1819 "failed to get rstc_n\n"); 1820 } 1821 1822 /* Peripheral clock */ 1823 gpriv->clkp = devm_clk_get(&pdev->dev, "fck"); 1824 if (IS_ERR(gpriv->clkp)) { 1825 err = PTR_ERR(gpriv->clkp); 1826 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n", 1827 err); 1828 goto fail_dev; 1829 } 1830 1831 /* fCAN clock: Pick External clock. If not available fallback to 1832 * CANFD clock 1833 */ 1834 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1835 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1836 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd"); 1837 if (IS_ERR(gpriv->can_clk)) { 1838 err = PTR_ERR(gpriv->can_clk); 1839 dev_err(&pdev->dev, 1840 "cannot get canfd clock, error %d\n", err); 1841 goto fail_dev; 1842 } 1843 gpriv->fcan = RCANFD_CANFDCLK; 1844 1845 } else { 1846 gpriv->fcan = RCANFD_EXTCLK; 1847 } 1848 fcan_freq = clk_get_rate(gpriv->can_clk); 1849 1850 if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id == RENESAS_RCAR_GEN3) 1851 /* CANFD clock is further divided by (1/2) within the IP */ 1852 fcan_freq /= 2; 1853 1854 addr = devm_platform_ioremap_resource(pdev, 0); 1855 if (IS_ERR(addr)) { 1856 err = PTR_ERR(addr); 1857 goto fail_dev; 1858 } 1859 gpriv->base = addr; 1860 1861 /* Request IRQ that's common for both channels */ 1862 if (gpriv->chip_id == RENESAS_RCAR_GEN3) { 1863 err = devm_request_irq(&pdev->dev, ch_irq, 1864 rcar_canfd_channel_interrupt, 0, 1865 "canfd.ch_int", gpriv); 1866 if (err) { 1867 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1868 ch_irq, err); 1869 goto fail_dev; 1870 } 1871 1872 err = devm_request_irq(&pdev->dev, g_irq, 1873 rcar_canfd_global_interrupt, 0, 1874 "canfd.g_int", gpriv); 1875 if (err) { 1876 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1877 g_irq, err); 1878 goto fail_dev; 1879 } 1880 } else { 1881 err = devm_request_irq(&pdev->dev, g_recc_irq, 1882 rcar_canfd_global_receive_fifo_interrupt, 0, 1883 "canfd.g_recc", gpriv); 1884 1885 if (err) { 1886 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1887 g_recc_irq, err); 1888 goto fail_dev; 1889 } 1890 1891 err = devm_request_irq(&pdev->dev, g_err_irq, 1892 rcar_canfd_global_err_interrupt, 0, 1893 "canfd.g_err", gpriv); 1894 if (err) { 1895 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1896 g_err_irq, err); 1897 goto fail_dev; 1898 } 1899 } 1900 1901 err = reset_control_reset(gpriv->rstc1); 1902 if (err) 1903 goto fail_dev; 1904 err = reset_control_reset(gpriv->rstc2); 1905 if (err) { 1906 reset_control_assert(gpriv->rstc1); 1907 goto fail_dev; 1908 } 1909 1910 /* Enable peripheral clock for register access */ 1911 err = clk_prepare_enable(gpriv->clkp); 1912 if (err) { 1913 dev_err(&pdev->dev, 1914 "failed to enable peripheral clock, error %d\n", err); 1915 goto fail_reset; 1916 } 1917 1918 err = rcar_canfd_reset_controller(gpriv); 1919 if (err) { 1920 dev_err(&pdev->dev, "reset controller failed\n"); 1921 goto fail_clk; 1922 } 1923 1924 /* Controller in Global reset & Channel reset mode */ 1925 rcar_canfd_configure_controller(gpriv); 1926 1927 /* Configure per channel attributes */ 1928 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1929 /* Configure Channel's Rx fifo */ 1930 rcar_canfd_configure_rx(gpriv, ch); 1931 1932 /* Configure Channel's Tx (Common) fifo */ 1933 rcar_canfd_configure_tx(gpriv, ch); 1934 1935 /* Configure receive rules */ 1936 rcar_canfd_configure_afl_rules(gpriv, ch); 1937 } 1938 1939 /* Configure common interrupts */ 1940 rcar_canfd_enable_global_interrupts(gpriv); 1941 1942 /* Start Global operation mode */ 1943 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 1944 RCANFD_GCTR_GMDC_GOPM); 1945 1946 /* Verify mode change */ 1947 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 1948 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 1949 if (err) { 1950 dev_err(&pdev->dev, "global operational mode failed\n"); 1951 goto fail_mode; 1952 } 1953 1954 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1955 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); 1956 if (err) 1957 goto fail_channel; 1958 } 1959 1960 platform_set_drvdata(pdev, gpriv); 1961 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n", 1962 gpriv->fcan, gpriv->fdmode); 1963 return 0; 1964 1965 fail_channel: 1966 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1967 rcar_canfd_channel_remove(gpriv, ch); 1968 fail_mode: 1969 rcar_canfd_disable_global_interrupts(gpriv); 1970 fail_clk: 1971 clk_disable_unprepare(gpriv->clkp); 1972 fail_reset: 1973 reset_control_assert(gpriv->rstc1); 1974 reset_control_assert(gpriv->rstc2); 1975 fail_dev: 1976 return err; 1977 } 1978 1979 static int rcar_canfd_remove(struct platform_device *pdev) 1980 { 1981 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 1982 u32 ch; 1983 1984 rcar_canfd_reset_controller(gpriv); 1985 rcar_canfd_disable_global_interrupts(gpriv); 1986 1987 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1988 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 1989 rcar_canfd_channel_remove(gpriv, ch); 1990 } 1991 1992 /* Enter global sleep mode */ 1993 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 1994 clk_disable_unprepare(gpriv->clkp); 1995 reset_control_assert(gpriv->rstc1); 1996 reset_control_assert(gpriv->rstc2); 1997 1998 return 0; 1999 } 2000 2001 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2002 { 2003 return 0; 2004 } 2005 2006 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2007 { 2008 return 0; 2009 } 2010 2011 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2012 rcar_canfd_resume); 2013 2014 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2015 { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 }, 2016 { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L }, 2017 { } 2018 }; 2019 2020 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2021 2022 static struct platform_driver rcar_canfd_driver = { 2023 .driver = { 2024 .name = RCANFD_DRV_NAME, 2025 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2026 .pm = &rcar_canfd_pm_ops, 2027 }, 2028 .probe = rcar_canfd_probe, 2029 .remove = rcar_canfd_remove, 2030 }; 2031 2032 module_platform_driver(rcar_canfd_driver); 2033 2034 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2035 MODULE_LICENSE("GPL"); 2036 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2037 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2038