1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/interrupt.h> 29 #include <linux/errno.h> 30 #include <linux/netdevice.h> 31 #include <linux/platform_device.h> 32 #include <linux/can/led.h> 33 #include <linux/can/dev.h> 34 #include <linux/clk.h> 35 #include <linux/of.h> 36 #include <linux/of_device.h> 37 #include <linux/bitmap.h> 38 #include <linux/bitops.h> 39 #include <linux/iopoll.h> 40 41 #define RCANFD_DRV_NAME "rcar_canfd" 42 43 /* Global register bits */ 44 45 /* RSCFDnCFDGRMCFG */ 46 #define RCANFD_GRMCFG_RCMC BIT(0) 47 48 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 49 #define RCANFD_GCFG_EEFE BIT(6) 50 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 51 #define RCANFD_GCFG_DCS BIT(4) 52 #define RCANFD_GCFG_DCE BIT(1) 53 #define RCANFD_GCFG_TPRI BIT(0) 54 55 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 56 #define RCANFD_GCTR_TSRST BIT(16) 57 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 58 #define RCANFD_GCTR_THLEIE BIT(10) 59 #define RCANFD_GCTR_MEIE BIT(9) 60 #define RCANFD_GCTR_DEIE BIT(8) 61 #define RCANFD_GCTR_GSLPR BIT(2) 62 #define RCANFD_GCTR_GMDC_MASK (0x3) 63 #define RCANFD_GCTR_GMDC_GOPM (0x0) 64 #define RCANFD_GCTR_GMDC_GRESET (0x1) 65 #define RCANFD_GCTR_GMDC_GTEST (0x2) 66 67 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 68 #define RCANFD_GSTS_GRAMINIT BIT(3) 69 #define RCANFD_GSTS_GSLPSTS BIT(2) 70 #define RCANFD_GSTS_GHLTSTS BIT(1) 71 #define RCANFD_GSTS_GRSTSTS BIT(0) 72 /* Non-operational status */ 73 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 74 75 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 76 #define RCANFD_GERFL_EEF1 BIT(17) 77 #define RCANFD_GERFL_EEF0 BIT(16) 78 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 79 #define RCANFD_GERFL_THLES BIT(2) 80 #define RCANFD_GERFL_MES BIT(1) 81 #define RCANFD_GERFL_DEF BIT(0) 82 83 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\ 84 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\ 85 (gpriv->fdmode ?\ 86 RCANFD_GERFL_CMPOF : 0))) 87 88 /* AFL Rx rules registers */ 89 90 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 91 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8)) 92 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff) 93 94 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 95 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 96 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f) 97 98 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 99 #define RCANFD_GAFLID_GAFLLB BIT(29) 100 101 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 102 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 103 104 /* Channel register bits */ 105 106 /* RSCFDnCmCFG - Classical CAN only */ 107 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 108 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 109 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 110 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 111 112 /* RSCFDnCFDCmNCFG - CAN FD only */ 113 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24) 114 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16) 115 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11) 116 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 117 118 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 119 #define RCANFD_CCTR_CTME BIT(24) 120 #define RCANFD_CCTR_ERRD BIT(23) 121 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 122 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 123 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 124 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 125 #define RCANFD_CCTR_TDCVFIE BIT(19) 126 #define RCANFD_CCTR_SOCOIE BIT(18) 127 #define RCANFD_CCTR_EOCOIE BIT(17) 128 #define RCANFD_CCTR_TAIE BIT(16) 129 #define RCANFD_CCTR_ALIE BIT(15) 130 #define RCANFD_CCTR_BLIE BIT(14) 131 #define RCANFD_CCTR_OLIE BIT(13) 132 #define RCANFD_CCTR_BORIE BIT(12) 133 #define RCANFD_CCTR_BOEIE BIT(11) 134 #define RCANFD_CCTR_EPIE BIT(10) 135 #define RCANFD_CCTR_EWIE BIT(9) 136 #define RCANFD_CCTR_BEIE BIT(8) 137 #define RCANFD_CCTR_CSLPR BIT(2) 138 #define RCANFD_CCTR_CHMDC_MASK (0x3) 139 #define RCANFD_CCTR_CHDMC_COPM (0x0) 140 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 141 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 142 143 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 144 #define RCANFD_CSTS_COMSTS BIT(7) 145 #define RCANFD_CSTS_RECSTS BIT(6) 146 #define RCANFD_CSTS_TRMSTS BIT(5) 147 #define RCANFD_CSTS_BOSTS BIT(4) 148 #define RCANFD_CSTS_EPSTS BIT(3) 149 #define RCANFD_CSTS_SLPSTS BIT(2) 150 #define RCANFD_CSTS_HLTSTS BIT(1) 151 #define RCANFD_CSTS_CRSTSTS BIT(0) 152 153 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 154 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 155 156 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 157 #define RCANFD_CERFL_ADERR BIT(14) 158 #define RCANFD_CERFL_B0ERR BIT(13) 159 #define RCANFD_CERFL_B1ERR BIT(12) 160 #define RCANFD_CERFL_CERR BIT(11) 161 #define RCANFD_CERFL_AERR BIT(10) 162 #define RCANFD_CERFL_FERR BIT(9) 163 #define RCANFD_CERFL_SERR BIT(8) 164 #define RCANFD_CERFL_ALF BIT(7) 165 #define RCANFD_CERFL_BLF BIT(6) 166 #define RCANFD_CERFL_OVLF BIT(5) 167 #define RCANFD_CERFL_BORF BIT(4) 168 #define RCANFD_CERFL_BOEF BIT(3) 169 #define RCANFD_CERFL_EPF BIT(2) 170 #define RCANFD_CERFL_EWF BIT(1) 171 #define RCANFD_CERFL_BEF BIT(0) 172 173 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 174 175 /* RSCFDnCFDCmDCFG */ 176 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24) 177 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20) 178 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16) 179 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 180 181 /* RSCFDnCFDCmFDCFG */ 182 #define RCANFD_FDCFG_TDCE BIT(9) 183 #define RCANFD_FDCFG_TDCOC BIT(8) 184 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 185 186 /* RSCFDnCFDRFCCx */ 187 #define RCANFD_RFCC_RFIM BIT(12) 188 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 189 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 190 #define RCANFD_RFCC_RFIE BIT(1) 191 #define RCANFD_RFCC_RFE BIT(0) 192 193 /* RSCFDnCFDRFSTSx */ 194 #define RCANFD_RFSTS_RFIF BIT(3) 195 #define RCANFD_RFSTS_RFMLT BIT(2) 196 #define RCANFD_RFSTS_RFFLL BIT(1) 197 #define RCANFD_RFSTS_RFEMP BIT(0) 198 199 /* RSCFDnCFDRFIDx */ 200 #define RCANFD_RFID_RFIDE BIT(31) 201 #define RCANFD_RFID_RFRTR BIT(30) 202 203 /* RSCFDnCFDRFPTRx */ 204 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 205 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 206 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 207 208 /* RSCFDnCFDRFFDSTSx */ 209 #define RCANFD_RFFDSTS_RFFDF BIT(2) 210 #define RCANFD_RFFDSTS_RFBRS BIT(1) 211 #define RCANFD_RFFDSTS_RFESI BIT(0) 212 213 /* Common FIFO bits */ 214 215 /* RSCFDnCFDCFCCk */ 216 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20) 217 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16) 218 #define RCANFD_CFCC_CFIM BIT(12) 219 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8) 220 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 221 #define RCANFD_CFCC_CFTXIE BIT(2) 222 #define RCANFD_CFCC_CFE BIT(0) 223 224 /* RSCFDnCFDCFSTSk */ 225 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 226 #define RCANFD_CFSTS_CFTXIF BIT(4) 227 #define RCANFD_CFSTS_CFMLT BIT(2) 228 #define RCANFD_CFSTS_CFFLL BIT(1) 229 #define RCANFD_CFSTS_CFEMP BIT(0) 230 231 /* RSCFDnCFDCFIDk */ 232 #define RCANFD_CFID_CFIDE BIT(31) 233 #define RCANFD_CFID_CFRTR BIT(30) 234 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 235 236 /* RSCFDnCFDCFPTRk */ 237 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 238 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 239 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 240 241 /* RSCFDnCFDCFFDCSTSk */ 242 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 243 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 244 #define RCANFD_CFFDCSTS_CFESI BIT(0) 245 246 /* This controller supports either Classical CAN only mode or CAN FD only mode. 247 * These modes are supported in two separate set of register maps & names. 248 * However, some of the register offsets are common for both modes. Those 249 * offsets are listed below as Common registers. 250 * 251 * The CAN FD only mode specific registers & Classical CAN only mode specific 252 * registers are listed separately. Their register names starts with 253 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 254 */ 255 256 /* Common registers */ 257 258 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 259 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 260 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 261 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 262 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 263 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 264 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 265 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 266 267 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 268 #define RCANFD_GCFG (0x0084) 269 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 270 #define RCANFD_GCTR (0x0088) 271 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 272 #define RCANFD_GSTS (0x008c) 273 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 274 #define RCANFD_GERFL (0x0090) 275 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 276 #define RCANFD_GTSC (0x0094) 277 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 278 #define RCANFD_GAFLECTR (0x0098) 279 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 280 #define RCANFD_GAFLCFG0 (0x009c) 281 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */ 282 #define RCANFD_GAFLCFG1 (0x00a0) 283 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 284 #define RCANFD_RMNB (0x00a4) 285 /* RSCFDnCFDRMND / RSCFDnRMND */ 286 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 287 288 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 289 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x))) 290 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 291 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x))) 292 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 293 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x))) 294 295 /* Common FIFO Control registers */ 296 297 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 298 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \ 299 (0x04 * (idx))) 300 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 301 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \ 302 (0x04 * (idx))) 303 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 304 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \ 305 (0x04 * (idx))) 306 307 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 308 #define RCANFD_FESTS (0x0238) 309 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 310 #define RCANFD_FFSTS (0x023c) 311 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 312 #define RCANFD_FMSTS (0x0240) 313 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 314 #define RCANFD_RFISTS (0x0244) 315 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 316 #define RCANFD_CFRISTS (0x0248) 317 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 318 #define RCANFD_CFTISTS (0x024c) 319 320 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 321 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 322 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 323 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 324 325 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 326 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 327 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 328 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 329 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 330 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 331 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 332 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 333 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 334 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 335 336 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 337 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 338 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 339 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 340 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 341 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 342 343 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 344 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 345 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 346 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 347 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 348 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 349 350 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 351 #define RCANFD_GTINTSTS0 (0x0460) 352 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 353 #define RCANFD_GTINTSTS1 (0x0464) 354 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 355 #define RCANFD_GTSTCFG (0x0468) 356 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 357 #define RCANFD_GTSTCTR (0x046c) 358 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 359 #define RCANFD_GLOCKK (0x047c) 360 /* RSCFDnCFDGRMCFG */ 361 #define RCANFD_GRMCFG (0x04fc) 362 363 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 364 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 365 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 366 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 367 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 368 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 369 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 370 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 371 372 /* Classical CAN only mode register map */ 373 374 /* RSCFDnGAFLXXXj offset */ 375 #define RCANFD_C_GAFL_OFFSET (0x0500) 376 377 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 378 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 379 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 380 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 381 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 382 383 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 384 #define RCANFD_C_RFOFFSET (0x0e00) 385 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 386 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \ 387 (0x10 * (x))) 388 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \ 389 (0x10 * (x)) + (0x04 * (df))) 390 391 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 392 #define RCANFD_C_CFOFFSET (0x0e80) 393 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \ 394 (0x10 * (idx))) 395 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \ 396 (0x30 * (ch)) + (0x10 * (idx))) 397 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \ 398 (0x30 * (ch)) + (0x10 * (idx)) + \ 399 (0x04 * (df))) 400 401 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 402 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 403 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 404 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 405 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 406 407 /* RSCFDnTHLACCm */ 408 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 409 /* RSCFDnRPGACCr */ 410 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 411 412 /* CAN FD mode specific register map */ 413 414 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 415 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m))) 416 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 417 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 418 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 419 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 420 421 /* RSCFDnCFDGAFLXXXj offset */ 422 #define RCANFD_F_GAFL_OFFSET (0x1000) 423 424 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 425 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 426 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 427 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 428 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 429 430 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 431 #define RCANFD_F_RFOFFSET (0x3000) 432 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x))) 433 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \ 434 (0x80 * (x))) 435 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \ 436 (0x80 * (x))) 437 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \ 438 (0x80 * (x)) + (0x04 * (df))) 439 440 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 441 #define RCANFD_F_CFOFFSET (0x3400) 442 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \ 443 (0x80 * (idx))) 444 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \ 445 (0x180 * (ch)) + (0x80 * (idx))) 446 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \ 447 (0x180 * (ch)) + (0x80 * (idx))) 448 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \ 449 (0x180 * (ch)) + (0x80 * (idx)) + \ 450 (0x04 * (df))) 451 452 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 453 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 454 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 455 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 456 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 457 458 /* RSCFDnCFDTHLACCm */ 459 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 460 /* RSCFDnCFDRPGACCr */ 461 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 462 463 /* Constants */ 464 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 465 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 466 467 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */ 468 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 469 470 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 471 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 472 473 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 474 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 475 * number is added to RFFIFO index. 476 */ 477 #define RCANFD_RFFIFO_IDX 0 478 479 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 480 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 481 */ 482 #define RCANFD_CFFIFO_IDX 0 483 484 /* fCAN clock select register settings */ 485 enum rcar_canfd_fcanclk { 486 RCANFD_CANFDCLK = 0, /* CANFD clock */ 487 RCANFD_EXTCLK, /* Externally input clock */ 488 }; 489 490 struct rcar_canfd_global; 491 492 /* Channel priv data */ 493 struct rcar_canfd_channel { 494 struct can_priv can; /* Must be the first member */ 495 struct net_device *ndev; 496 struct rcar_canfd_global *gpriv; /* Controller reference */ 497 void __iomem *base; /* Register base address */ 498 struct napi_struct napi; 499 u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */ 500 u32 tx_head; /* Incremented on xmit */ 501 u32 tx_tail; /* Incremented on xmit done */ 502 u32 channel; /* Channel number */ 503 spinlock_t tx_lock; /* To protect tx path */ 504 }; 505 506 /* Global priv data */ 507 struct rcar_canfd_global { 508 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 509 void __iomem *base; /* Register base address */ 510 struct platform_device *pdev; /* Respective platform device */ 511 struct clk *clkp; /* Peripheral clock */ 512 struct clk *can_clk; /* fCAN clock */ 513 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 514 unsigned long channels_mask; /* Enabled channels mask */ 515 bool fdmode; /* CAN FD or Classical CAN only mode */ 516 }; 517 518 /* CAN FD mode nominal rate constants */ 519 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 520 .name = RCANFD_DRV_NAME, 521 .tseg1_min = 2, 522 .tseg1_max = 128, 523 .tseg2_min = 2, 524 .tseg2_max = 32, 525 .sjw_max = 32, 526 .brp_min = 1, 527 .brp_max = 1024, 528 .brp_inc = 1, 529 }; 530 531 /* CAN FD mode data rate constants */ 532 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 533 .name = RCANFD_DRV_NAME, 534 .tseg1_min = 2, 535 .tseg1_max = 16, 536 .tseg2_min = 2, 537 .tseg2_max = 8, 538 .sjw_max = 8, 539 .brp_min = 1, 540 .brp_max = 256, 541 .brp_inc = 1, 542 }; 543 544 /* Classical CAN mode bitrate constants */ 545 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 546 .name = RCANFD_DRV_NAME, 547 .tseg1_min = 4, 548 .tseg1_max = 16, 549 .tseg2_min = 2, 550 .tseg2_max = 8, 551 .sjw_max = 4, 552 .brp_min = 1, 553 .brp_max = 1024, 554 .brp_inc = 1, 555 }; 556 557 /* Helper functions */ 558 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 559 { 560 u32 data = readl(reg); 561 562 data &= ~mask; 563 data |= (val & mask); 564 writel(data, reg); 565 } 566 567 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 568 { 569 return readl(base + (offset)); 570 } 571 572 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 573 { 574 writel(val, base + (offset)); 575 } 576 577 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 578 { 579 rcar_canfd_update(val, val, base + (reg)); 580 } 581 582 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 583 { 584 rcar_canfd_update(val, 0, base + (reg)); 585 } 586 587 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 588 u32 mask, u32 val) 589 { 590 rcar_canfd_update(mask, val, base + (reg)); 591 } 592 593 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 594 struct canfd_frame *cf, u32 off) 595 { 596 u32 i, lwords; 597 598 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 599 for (i = 0; i < lwords; i++) 600 *((u32 *)cf->data + i) = 601 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 602 } 603 604 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 605 struct canfd_frame *cf, u32 off) 606 { 607 u32 i, lwords; 608 609 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 610 for (i = 0; i < lwords; i++) 611 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 612 *((u32 *)cf->data + i)); 613 } 614 615 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 616 { 617 u32 i; 618 619 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 620 can_free_echo_skb(ndev, i); 621 } 622 623 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 624 { 625 u32 sts, ch; 626 int err; 627 628 /* Check RAMINIT flag as CAN RAM initialization takes place 629 * after the MCU reset 630 */ 631 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 632 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 633 if (err) { 634 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 635 return err; 636 } 637 638 /* Transition to Global Reset mode */ 639 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 640 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 641 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 642 643 /* Ensure Global reset mode */ 644 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 645 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 646 if (err) { 647 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 648 return err; 649 } 650 651 /* Reset Global error flags */ 652 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 653 654 /* Set the controller into appropriate mode */ 655 if (gpriv->fdmode) 656 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 657 RCANFD_GRMCFG_RCMC); 658 else 659 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 660 RCANFD_GRMCFG_RCMC); 661 662 /* Transition all Channels to reset mode */ 663 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 664 rcar_canfd_clear_bit(gpriv->base, 665 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 666 667 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 668 RCANFD_CCTR_CHMDC_MASK, 669 RCANFD_CCTR_CHDMC_CRESET); 670 671 /* Ensure Channel reset mode */ 672 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 673 (sts & RCANFD_CSTS_CRSTSTS), 674 2, 500000); 675 if (err) { 676 dev_dbg(&gpriv->pdev->dev, 677 "channel %u reset failed\n", ch); 678 return err; 679 } 680 } 681 return 0; 682 } 683 684 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 685 { 686 u32 cfg, ch; 687 688 /* Global configuration settings */ 689 690 /* ECC Error flag Enable */ 691 cfg = RCANFD_GCFG_EEFE; 692 693 if (gpriv->fdmode) 694 /* Truncate payload to configured message size RFPLS */ 695 cfg |= RCANFD_GCFG_CMPOC; 696 697 /* Set External Clock if selected */ 698 if (gpriv->fcan != RCANFD_CANFDCLK) 699 cfg |= RCANFD_GCFG_DCS; 700 701 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 702 703 /* Channel configuration settings */ 704 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 705 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 706 RCANFD_CCTR_ERRD); 707 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 708 RCANFD_CCTR_BOM_MASK, 709 RCANFD_CCTR_BOM_BENTRY); 710 } 711 } 712 713 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 714 u32 ch) 715 { 716 u32 cfg; 717 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 718 u32 ridx = ch + RCANFD_RFFIFO_IDX; 719 720 if (ch == 0) { 721 start = 0; /* Channel 0 always starts from 0th rule */ 722 } else { 723 /* Get number of Channel 0 rules and adjust */ 724 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0); 725 start = RCANFD_GAFLCFG_GETRNC(0, cfg); 726 } 727 728 /* Enable write access to entry */ 729 page = RCANFD_GAFL_PAGENUM(start); 730 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 731 (RCANFD_GAFLECTR_AFLPN(page) | 732 RCANFD_GAFLECTR_AFLDAE)); 733 734 /* Write number of rules for channel */ 735 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0, 736 RCANFD_GAFLCFG_SETRNC(ch, num_rules)); 737 if (gpriv->fdmode) 738 offset = RCANFD_F_GAFL_OFFSET; 739 else 740 offset = RCANFD_C_GAFL_OFFSET; 741 742 /* Accept all IDs */ 743 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 744 /* IDE or RTR is not considered for matching */ 745 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 746 /* Any data length accepted */ 747 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 748 /* Place the msg in corresponding Rx FIFO entry */ 749 rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start), 750 RCANFD_GAFLP1_GAFLFDP(ridx)); 751 752 /* Disable write access to page */ 753 rcar_canfd_clear_bit(gpriv->base, 754 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 755 } 756 757 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 758 { 759 /* Rx FIFO is used for reception */ 760 u32 cfg; 761 u16 rfdc, rfpls; 762 763 /* Select Rx FIFO based on channel */ 764 u32 ridx = ch + RCANFD_RFFIFO_IDX; 765 766 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 767 if (gpriv->fdmode) 768 rfpls = 7; /* b111 - Max 64 bytes payload */ 769 else 770 rfpls = 0; /* b000 - Max 8 bytes payload */ 771 772 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 773 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 774 rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg); 775 } 776 777 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 778 { 779 /* Tx/Rx(Common) FIFO configured in Tx mode is 780 * used for transmission 781 * 782 * Each channel has 3 Common FIFO dedicated to them. 783 * Use the 1st (index 0) out of 3 784 */ 785 u32 cfg; 786 u16 cftml, cfm, cfdc, cfpls; 787 788 cftml = 0; /* 0th buffer */ 789 cfm = 1; /* b01 - Transmit mode */ 790 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 791 if (gpriv->fdmode) 792 cfpls = 7; /* b111 - Max 64 bytes payload */ 793 else 794 cfpls = 0; /* b000 - Max 8 bytes payload */ 795 796 cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) | 797 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) | 798 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 799 rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg); 800 801 if (gpriv->fdmode) 802 /* Clear FD mode specific control/status register */ 803 rcar_canfd_write(gpriv->base, 804 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0); 805 } 806 807 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 808 { 809 u32 ctr; 810 811 /* Clear any stray error interrupt flags */ 812 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 813 814 /* Global interrupts setup */ 815 ctr = RCANFD_GCTR_MEIE; 816 if (gpriv->fdmode) 817 ctr |= RCANFD_GCTR_CFMPOFIE; 818 819 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 820 } 821 822 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 823 *gpriv) 824 { 825 /* Disable all interrupts */ 826 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 827 828 /* Clear any stray error interrupt flags */ 829 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 830 } 831 832 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 833 *priv) 834 { 835 u32 ctr, ch = priv->channel; 836 837 /* Clear any stray error flags */ 838 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 839 840 /* Channel interrupts setup */ 841 ctr = (RCANFD_CCTR_TAIE | 842 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 843 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 844 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 845 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 846 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 847 } 848 849 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 850 *priv) 851 { 852 u32 ctr, ch = priv->channel; 853 854 ctr = (RCANFD_CCTR_TAIE | 855 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 856 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 857 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 858 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 859 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 860 861 /* Clear any stray error flags */ 862 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 863 } 864 865 static void rcar_canfd_global_error(struct net_device *ndev) 866 { 867 struct rcar_canfd_channel *priv = netdev_priv(ndev); 868 struct rcar_canfd_global *gpriv = priv->gpriv; 869 struct net_device_stats *stats = &ndev->stats; 870 u32 ch = priv->channel; 871 u32 gerfl, sts; 872 u32 ridx = ch + RCANFD_RFFIFO_IDX; 873 874 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 875 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) { 876 netdev_dbg(ndev, "Ch0: ECC Error flag\n"); 877 stats->tx_dropped++; 878 } 879 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) { 880 netdev_dbg(ndev, "Ch1: ECC Error flag\n"); 881 stats->tx_dropped++; 882 } 883 if (gerfl & RCANFD_GERFL_MES) { 884 sts = rcar_canfd_read(priv->base, 885 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 886 if (sts & RCANFD_CFSTS_CFMLT) { 887 netdev_dbg(ndev, "Tx Message Lost flag\n"); 888 stats->tx_dropped++; 889 rcar_canfd_write(priv->base, 890 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 891 sts & ~RCANFD_CFSTS_CFMLT); 892 } 893 894 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 895 if (sts & RCANFD_RFSTS_RFMLT) { 896 netdev_dbg(ndev, "Rx Message Lost flag\n"); 897 stats->rx_dropped++; 898 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 899 sts & ~RCANFD_RFSTS_RFMLT); 900 } 901 } 902 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 903 /* Message Lost flag will be set for respective channel 904 * when this condition happens with counters and flags 905 * already updated. 906 */ 907 netdev_dbg(ndev, "global payload overflow interrupt\n"); 908 } 909 910 /* Clear all global error interrupts. Only affected channels bits 911 * get cleared 912 */ 913 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 914 } 915 916 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 917 u16 txerr, u16 rxerr) 918 { 919 struct rcar_canfd_channel *priv = netdev_priv(ndev); 920 struct net_device_stats *stats = &ndev->stats; 921 struct can_frame *cf; 922 struct sk_buff *skb; 923 u32 ch = priv->channel; 924 925 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 926 927 /* Propagate the error condition to the CAN stack */ 928 skb = alloc_can_err_skb(ndev, &cf); 929 if (!skb) { 930 stats->rx_dropped++; 931 return; 932 } 933 934 /* Channel error interrupts */ 935 if (cerfl & RCANFD_CERFL_BEF) { 936 netdev_dbg(ndev, "Bus error\n"); 937 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 938 cf->data[2] = CAN_ERR_PROT_UNSPEC; 939 priv->can.can_stats.bus_error++; 940 } 941 if (cerfl & RCANFD_CERFL_ADERR) { 942 netdev_dbg(ndev, "ACK Delimiter Error\n"); 943 stats->tx_errors++; 944 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 945 } 946 if (cerfl & RCANFD_CERFL_B0ERR) { 947 netdev_dbg(ndev, "Bit Error (dominant)\n"); 948 stats->tx_errors++; 949 cf->data[2] |= CAN_ERR_PROT_BIT0; 950 } 951 if (cerfl & RCANFD_CERFL_B1ERR) { 952 netdev_dbg(ndev, "Bit Error (recessive)\n"); 953 stats->tx_errors++; 954 cf->data[2] |= CAN_ERR_PROT_BIT1; 955 } 956 if (cerfl & RCANFD_CERFL_CERR) { 957 netdev_dbg(ndev, "CRC Error\n"); 958 stats->rx_errors++; 959 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 960 } 961 if (cerfl & RCANFD_CERFL_AERR) { 962 netdev_dbg(ndev, "ACK Error\n"); 963 stats->tx_errors++; 964 cf->can_id |= CAN_ERR_ACK; 965 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 966 } 967 if (cerfl & RCANFD_CERFL_FERR) { 968 netdev_dbg(ndev, "Form Error\n"); 969 stats->rx_errors++; 970 cf->data[2] |= CAN_ERR_PROT_FORM; 971 } 972 if (cerfl & RCANFD_CERFL_SERR) { 973 netdev_dbg(ndev, "Stuff Error\n"); 974 stats->rx_errors++; 975 cf->data[2] |= CAN_ERR_PROT_STUFF; 976 } 977 if (cerfl & RCANFD_CERFL_ALF) { 978 netdev_dbg(ndev, "Arbitration lost Error\n"); 979 priv->can.can_stats.arbitration_lost++; 980 cf->can_id |= CAN_ERR_LOSTARB; 981 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 982 } 983 if (cerfl & RCANFD_CERFL_BLF) { 984 netdev_dbg(ndev, "Bus Lock Error\n"); 985 stats->rx_errors++; 986 cf->can_id |= CAN_ERR_BUSERROR; 987 } 988 if (cerfl & RCANFD_CERFL_EWF) { 989 netdev_dbg(ndev, "Error warning interrupt\n"); 990 priv->can.state = CAN_STATE_ERROR_WARNING; 991 priv->can.can_stats.error_warning++; 992 cf->can_id |= CAN_ERR_CRTL; 993 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 994 CAN_ERR_CRTL_RX_WARNING; 995 cf->data[6] = txerr; 996 cf->data[7] = rxerr; 997 } 998 if (cerfl & RCANFD_CERFL_EPF) { 999 netdev_dbg(ndev, "Error passive interrupt\n"); 1000 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1001 priv->can.can_stats.error_passive++; 1002 cf->can_id |= CAN_ERR_CRTL; 1003 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1004 CAN_ERR_CRTL_RX_PASSIVE; 1005 cf->data[6] = txerr; 1006 cf->data[7] = rxerr; 1007 } 1008 if (cerfl & RCANFD_CERFL_BOEF) { 1009 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1010 rcar_canfd_tx_failure_cleanup(ndev); 1011 priv->can.state = CAN_STATE_BUS_OFF; 1012 priv->can.can_stats.bus_off++; 1013 can_bus_off(ndev); 1014 cf->can_id |= CAN_ERR_BUSOFF; 1015 } 1016 if (cerfl & RCANFD_CERFL_OVLF) { 1017 netdev_dbg(ndev, 1018 "Overload Frame Transmission error interrupt\n"); 1019 stats->tx_errors++; 1020 cf->can_id |= CAN_ERR_PROT; 1021 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1022 } 1023 1024 /* Clear channel error interrupts that are handled */ 1025 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1026 RCANFD_CERFL_ERR(~cerfl)); 1027 stats->rx_packets++; 1028 stats->rx_bytes += cf->len; 1029 netif_rx(skb); 1030 } 1031 1032 static void rcar_canfd_tx_done(struct net_device *ndev) 1033 { 1034 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1035 struct net_device_stats *stats = &ndev->stats; 1036 u32 sts; 1037 unsigned long flags; 1038 u32 ch = priv->channel; 1039 1040 do { 1041 u8 unsent, sent; 1042 1043 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1044 stats->tx_packets++; 1045 stats->tx_bytes += priv->tx_len[sent]; 1046 priv->tx_len[sent] = 0; 1047 can_get_echo_skb(ndev, sent, NULL); 1048 1049 spin_lock_irqsave(&priv->tx_lock, flags); 1050 priv->tx_tail++; 1051 sts = rcar_canfd_read(priv->base, 1052 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1053 unsent = RCANFD_CFSTS_CFMC(sts); 1054 1055 /* Wake producer only when there is room */ 1056 if (unsent != RCANFD_FIFO_DEPTH) 1057 netif_wake_queue(ndev); 1058 1059 if (priv->tx_head - priv->tx_tail <= unsent) { 1060 spin_unlock_irqrestore(&priv->tx_lock, flags); 1061 break; 1062 } 1063 spin_unlock_irqrestore(&priv->tx_lock, flags); 1064 1065 } while (1); 1066 1067 /* Clear interrupt */ 1068 rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 1069 sts & ~RCANFD_CFSTS_CFTXIF); 1070 can_led_event(ndev, CAN_LED_EVENT_TX); 1071 } 1072 1073 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1074 { 1075 struct rcar_canfd_global *gpriv = dev_id; 1076 struct net_device *ndev; 1077 struct rcar_canfd_channel *priv; 1078 u32 sts, gerfl; 1079 u32 ch, ridx; 1080 1081 /* Global error interrupts still indicate a condition specific 1082 * to a channel. RxFIFO interrupt is a global interrupt. 1083 */ 1084 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1085 priv = gpriv->ch[ch]; 1086 ndev = priv->ndev; 1087 ridx = ch + RCANFD_RFFIFO_IDX; 1088 1089 /* Global error interrupts */ 1090 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1091 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1092 rcar_canfd_global_error(ndev); 1093 1094 /* Handle Rx interrupts */ 1095 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1096 if (likely(sts & RCANFD_RFSTS_RFIF)) { 1097 if (napi_schedule_prep(&priv->napi)) { 1098 /* Disable Rx FIFO interrupts */ 1099 rcar_canfd_clear_bit(priv->base, 1100 RCANFD_RFCC(ridx), 1101 RCANFD_RFCC_RFIE); 1102 __napi_schedule(&priv->napi); 1103 } 1104 } 1105 } 1106 return IRQ_HANDLED; 1107 } 1108 1109 static void rcar_canfd_state_change(struct net_device *ndev, 1110 u16 txerr, u16 rxerr) 1111 { 1112 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1113 struct net_device_stats *stats = &ndev->stats; 1114 enum can_state rx_state, tx_state, state = priv->can.state; 1115 struct can_frame *cf; 1116 struct sk_buff *skb; 1117 1118 /* Handle transition from error to normal states */ 1119 if (txerr < 96 && rxerr < 96) 1120 state = CAN_STATE_ERROR_ACTIVE; 1121 else if (txerr < 128 && rxerr < 128) 1122 state = CAN_STATE_ERROR_WARNING; 1123 1124 if (state != priv->can.state) { 1125 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1126 state, priv->can.state, txerr, rxerr); 1127 skb = alloc_can_err_skb(ndev, &cf); 1128 if (!skb) { 1129 stats->rx_dropped++; 1130 return; 1131 } 1132 tx_state = txerr >= rxerr ? state : 0; 1133 rx_state = txerr <= rxerr ? state : 0; 1134 1135 can_change_state(ndev, cf, tx_state, rx_state); 1136 stats->rx_packets++; 1137 stats->rx_bytes += cf->len; 1138 netif_rx(skb); 1139 } 1140 } 1141 1142 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1143 { 1144 struct rcar_canfd_global *gpriv = dev_id; 1145 struct net_device *ndev; 1146 struct rcar_canfd_channel *priv; 1147 u32 sts, ch, cerfl; 1148 u16 txerr, rxerr; 1149 1150 /* Common FIFO is a per channel resource */ 1151 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1152 priv = gpriv->ch[ch]; 1153 ndev = priv->ndev; 1154 1155 /* Channel error interrupts */ 1156 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1157 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1158 txerr = RCANFD_CSTS_TECCNT(sts); 1159 rxerr = RCANFD_CSTS_RECCNT(sts); 1160 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1161 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1162 1163 /* Handle state change to lower states */ 1164 if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) && 1165 (priv->can.state != CAN_STATE_BUS_OFF))) 1166 rcar_canfd_state_change(ndev, txerr, rxerr); 1167 1168 /* Handle Tx interrupts */ 1169 sts = rcar_canfd_read(priv->base, 1170 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1171 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1172 rcar_canfd_tx_done(ndev); 1173 } 1174 return IRQ_HANDLED; 1175 } 1176 1177 static void rcar_canfd_set_bittiming(struct net_device *dev) 1178 { 1179 struct rcar_canfd_channel *priv = netdev_priv(dev); 1180 const struct can_bittiming *bt = &priv->can.bittiming; 1181 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1182 u16 brp, sjw, tseg1, tseg2; 1183 u32 cfg; 1184 u32 ch = priv->channel; 1185 1186 /* Nominal bit timing settings */ 1187 brp = bt->brp - 1; 1188 sjw = bt->sjw - 1; 1189 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1190 tseg2 = bt->phase_seg2 - 1; 1191 1192 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1193 /* CAN FD only mode */ 1194 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) | 1195 RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2)); 1196 1197 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1198 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1199 brp, sjw, tseg1, tseg2); 1200 1201 /* Data bit timing settings */ 1202 brp = dbt->brp - 1; 1203 sjw = dbt->sjw - 1; 1204 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1205 tseg2 = dbt->phase_seg2 - 1; 1206 1207 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) | 1208 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2)); 1209 1210 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg); 1211 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1212 brp, sjw, tseg1, tseg2); 1213 } else { 1214 /* Classical CAN only mode */ 1215 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1216 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1217 1218 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1219 netdev_dbg(priv->ndev, 1220 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1221 brp, sjw, tseg1, tseg2); 1222 } 1223 } 1224 1225 static int rcar_canfd_start(struct net_device *ndev) 1226 { 1227 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1228 int err = -EOPNOTSUPP; 1229 u32 sts, ch = priv->channel; 1230 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1231 1232 rcar_canfd_set_bittiming(ndev); 1233 1234 rcar_canfd_enable_channel_interrupts(priv); 1235 1236 /* Set channel to Operational mode */ 1237 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1238 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1239 1240 /* Verify channel mode change */ 1241 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1242 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1243 if (err) { 1244 netdev_err(ndev, "channel %u communication state failed\n", ch); 1245 goto fail_mode_change; 1246 } 1247 1248 /* Enable Common & Rx FIFO */ 1249 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1250 RCANFD_CFCC_CFE); 1251 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1252 1253 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1254 return 0; 1255 1256 fail_mode_change: 1257 rcar_canfd_disable_channel_interrupts(priv); 1258 return err; 1259 } 1260 1261 static int rcar_canfd_open(struct net_device *ndev) 1262 { 1263 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1264 struct rcar_canfd_global *gpriv = priv->gpriv; 1265 int err; 1266 1267 /* Peripheral clock is already enabled in probe */ 1268 err = clk_prepare_enable(gpriv->can_clk); 1269 if (err) { 1270 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); 1271 goto out_clock; 1272 } 1273 1274 err = open_candev(ndev); 1275 if (err) { 1276 netdev_err(ndev, "open_candev() failed, error %d\n", err); 1277 goto out_can_clock; 1278 } 1279 1280 napi_enable(&priv->napi); 1281 err = rcar_canfd_start(ndev); 1282 if (err) 1283 goto out_close; 1284 netif_start_queue(ndev); 1285 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1286 return 0; 1287 out_close: 1288 napi_disable(&priv->napi); 1289 close_candev(ndev); 1290 out_can_clock: 1291 clk_disable_unprepare(gpriv->can_clk); 1292 out_clock: 1293 return err; 1294 } 1295 1296 static void rcar_canfd_stop(struct net_device *ndev) 1297 { 1298 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1299 int err; 1300 u32 sts, ch = priv->channel; 1301 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1302 1303 /* Transition to channel reset mode */ 1304 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1305 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1306 1307 /* Check Channel reset mode */ 1308 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1309 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1310 if (err) 1311 netdev_err(ndev, "channel %u reset failed\n", ch); 1312 1313 rcar_canfd_disable_channel_interrupts(priv); 1314 1315 /* Disable Common & Rx FIFO */ 1316 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1317 RCANFD_CFCC_CFE); 1318 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1319 1320 /* Set the state as STOPPED */ 1321 priv->can.state = CAN_STATE_STOPPED; 1322 } 1323 1324 static int rcar_canfd_close(struct net_device *ndev) 1325 { 1326 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1327 struct rcar_canfd_global *gpriv = priv->gpriv; 1328 1329 netif_stop_queue(ndev); 1330 rcar_canfd_stop(ndev); 1331 napi_disable(&priv->napi); 1332 clk_disable_unprepare(gpriv->can_clk); 1333 close_candev(ndev); 1334 can_led_event(ndev, CAN_LED_EVENT_STOP); 1335 return 0; 1336 } 1337 1338 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1339 struct net_device *ndev) 1340 { 1341 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1342 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1343 u32 sts = 0, id, dlc; 1344 unsigned long flags; 1345 u32 ch = priv->channel; 1346 1347 if (can_dropped_invalid_skb(ndev, skb)) 1348 return NETDEV_TX_OK; 1349 1350 if (cf->can_id & CAN_EFF_FLAG) { 1351 id = cf->can_id & CAN_EFF_MASK; 1352 id |= RCANFD_CFID_CFIDE; 1353 } else { 1354 id = cf->can_id & CAN_SFF_MASK; 1355 } 1356 1357 if (cf->can_id & CAN_RTR_FLAG) 1358 id |= RCANFD_CFID_CFRTR; 1359 1360 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1361 1362 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1363 rcar_canfd_write(priv->base, 1364 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id); 1365 rcar_canfd_write(priv->base, 1366 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1367 1368 if (can_is_canfd_skb(skb)) { 1369 /* CAN FD frame format */ 1370 sts |= RCANFD_CFFDCSTS_CFFDF; 1371 if (cf->flags & CANFD_BRS) 1372 sts |= RCANFD_CFFDCSTS_CFBRS; 1373 1374 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1375 sts |= RCANFD_CFFDCSTS_CFESI; 1376 } 1377 1378 rcar_canfd_write(priv->base, 1379 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts); 1380 1381 rcar_canfd_put_data(priv, cf, 1382 RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1383 } else { 1384 rcar_canfd_write(priv->base, 1385 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1386 rcar_canfd_write(priv->base, 1387 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1388 rcar_canfd_put_data(priv, cf, 1389 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1390 } 1391 1392 priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len; 1393 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1394 1395 spin_lock_irqsave(&priv->tx_lock, flags); 1396 priv->tx_head++; 1397 1398 /* Stop the queue if we've filled all FIFO entries */ 1399 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1400 netif_stop_queue(ndev); 1401 1402 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1403 * pointer for the Common FIFO 1404 */ 1405 rcar_canfd_write(priv->base, 1406 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff); 1407 1408 spin_unlock_irqrestore(&priv->tx_lock, flags); 1409 return NETDEV_TX_OK; 1410 } 1411 1412 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1413 { 1414 struct net_device_stats *stats = &priv->ndev->stats; 1415 struct canfd_frame *cf; 1416 struct sk_buff *skb; 1417 u32 sts = 0, id, dlc; 1418 u32 ch = priv->channel; 1419 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1420 1421 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1422 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx)); 1423 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx)); 1424 1425 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx)); 1426 if (sts & RCANFD_RFFDSTS_RFFDF) 1427 skb = alloc_canfd_skb(priv->ndev, &cf); 1428 else 1429 skb = alloc_can_skb(priv->ndev, 1430 (struct can_frame **)&cf); 1431 } else { 1432 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1433 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1434 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1435 } 1436 1437 if (!skb) { 1438 stats->rx_dropped++; 1439 return; 1440 } 1441 1442 if (id & RCANFD_RFID_RFIDE) 1443 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1444 else 1445 cf->can_id = id & CAN_SFF_MASK; 1446 1447 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1448 if (sts & RCANFD_RFFDSTS_RFFDF) 1449 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1450 else 1451 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1452 1453 if (sts & RCANFD_RFFDSTS_RFESI) { 1454 cf->flags |= CANFD_ESI; 1455 netdev_dbg(priv->ndev, "ESI Error\n"); 1456 } 1457 1458 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1459 cf->can_id |= CAN_RTR_FLAG; 1460 } else { 1461 if (sts & RCANFD_RFFDSTS_RFBRS) 1462 cf->flags |= CANFD_BRS; 1463 1464 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0)); 1465 } 1466 } else { 1467 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1468 if (id & RCANFD_RFID_RFRTR) 1469 cf->can_id |= CAN_RTR_FLAG; 1470 else 1471 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1472 } 1473 1474 /* Write 0xff to RFPC to increment the CPU-side 1475 * pointer of the Rx FIFO 1476 */ 1477 rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff); 1478 1479 can_led_event(priv->ndev, CAN_LED_EVENT_RX); 1480 1481 stats->rx_bytes += cf->len; 1482 stats->rx_packets++; 1483 netif_receive_skb(skb); 1484 } 1485 1486 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1487 { 1488 struct rcar_canfd_channel *priv = 1489 container_of(napi, struct rcar_canfd_channel, napi); 1490 int num_pkts; 1491 u32 sts; 1492 u32 ch = priv->channel; 1493 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1494 1495 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1496 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1497 /* Check FIFO empty condition */ 1498 if (sts & RCANFD_RFSTS_RFEMP) 1499 break; 1500 1501 rcar_canfd_rx_pkt(priv); 1502 1503 /* Clear interrupt bit */ 1504 if (sts & RCANFD_RFSTS_RFIF) 1505 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 1506 sts & ~RCANFD_RFSTS_RFIF); 1507 } 1508 1509 /* All packets processed */ 1510 if (num_pkts < quota) { 1511 if (napi_complete_done(napi, num_pkts)) { 1512 /* Enable Rx FIFO interrupts */ 1513 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), 1514 RCANFD_RFCC_RFIE); 1515 } 1516 } 1517 return num_pkts; 1518 } 1519 1520 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1521 { 1522 int err; 1523 1524 switch (mode) { 1525 case CAN_MODE_START: 1526 err = rcar_canfd_start(ndev); 1527 if (err) 1528 return err; 1529 netif_wake_queue(ndev); 1530 return 0; 1531 default: 1532 return -EOPNOTSUPP; 1533 } 1534 } 1535 1536 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1537 struct can_berr_counter *bec) 1538 { 1539 struct rcar_canfd_channel *priv = netdev_priv(dev); 1540 u32 val, ch = priv->channel; 1541 1542 /* Peripheral clock is already enabled in probe */ 1543 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1544 bec->txerr = RCANFD_CSTS_TECCNT(val); 1545 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1546 return 0; 1547 } 1548 1549 static const struct net_device_ops rcar_canfd_netdev_ops = { 1550 .ndo_open = rcar_canfd_open, 1551 .ndo_stop = rcar_canfd_close, 1552 .ndo_start_xmit = rcar_canfd_start_xmit, 1553 .ndo_change_mtu = can_change_mtu, 1554 }; 1555 1556 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1557 u32 fcan_freq) 1558 { 1559 struct platform_device *pdev = gpriv->pdev; 1560 struct rcar_canfd_channel *priv; 1561 struct net_device *ndev; 1562 int err = -ENODEV; 1563 1564 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1565 if (!ndev) { 1566 dev_err(&pdev->dev, "alloc_candev() failed\n"); 1567 err = -ENOMEM; 1568 goto fail; 1569 } 1570 priv = netdev_priv(ndev); 1571 1572 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1573 ndev->flags |= IFF_ECHO; 1574 priv->ndev = ndev; 1575 priv->base = gpriv->base; 1576 priv->channel = ch; 1577 priv->can.clock.freq = fcan_freq; 1578 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq); 1579 1580 if (gpriv->fdmode) { 1581 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1582 priv->can.data_bittiming_const = 1583 &rcar_canfd_data_bittiming_const; 1584 1585 /* Controller starts in CAN FD only mode */ 1586 can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1587 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1588 } else { 1589 /* Controller starts in Classical CAN only mode */ 1590 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1591 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1592 } 1593 1594 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1595 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1596 priv->gpriv = gpriv; 1597 SET_NETDEV_DEV(ndev, &pdev->dev); 1598 1599 netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll, 1600 RCANFD_NAPI_WEIGHT); 1601 err = register_candev(ndev); 1602 if (err) { 1603 dev_err(&pdev->dev, 1604 "register_candev() failed, error %d\n", err); 1605 goto fail_candev; 1606 } 1607 spin_lock_init(&priv->tx_lock); 1608 devm_can_led_init(ndev); 1609 gpriv->ch[priv->channel] = priv; 1610 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel); 1611 return 0; 1612 1613 fail_candev: 1614 netif_napi_del(&priv->napi); 1615 free_candev(ndev); 1616 fail: 1617 return err; 1618 } 1619 1620 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1621 { 1622 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1623 1624 if (priv) { 1625 unregister_candev(priv->ndev); 1626 netif_napi_del(&priv->napi); 1627 free_candev(priv->ndev); 1628 } 1629 } 1630 1631 static int rcar_canfd_probe(struct platform_device *pdev) 1632 { 1633 void __iomem *addr; 1634 u32 sts, ch, fcan_freq; 1635 struct rcar_canfd_global *gpriv; 1636 struct device_node *of_child; 1637 unsigned long channels_mask = 0; 1638 int err, ch_irq, g_irq; 1639 bool fdmode = true; /* CAN FD only mode - default */ 1640 1641 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd")) 1642 fdmode = false; /* Classical CAN only mode */ 1643 1644 of_child = of_get_child_by_name(pdev->dev.of_node, "channel0"); 1645 if (of_child && of_device_is_available(of_child)) 1646 channels_mask |= BIT(0); /* Channel 0 */ 1647 1648 of_child = of_get_child_by_name(pdev->dev.of_node, "channel1"); 1649 if (of_child && of_device_is_available(of_child)) 1650 channels_mask |= BIT(1); /* Channel 1 */ 1651 1652 ch_irq = platform_get_irq(pdev, 0); 1653 if (ch_irq < 0) { 1654 err = ch_irq; 1655 goto fail_dev; 1656 } 1657 1658 g_irq = platform_get_irq(pdev, 1); 1659 if (g_irq < 0) { 1660 err = g_irq; 1661 goto fail_dev; 1662 } 1663 1664 /* Global controller context */ 1665 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL); 1666 if (!gpriv) { 1667 err = -ENOMEM; 1668 goto fail_dev; 1669 } 1670 gpriv->pdev = pdev; 1671 gpriv->channels_mask = channels_mask; 1672 gpriv->fdmode = fdmode; 1673 1674 /* Peripheral clock */ 1675 gpriv->clkp = devm_clk_get(&pdev->dev, "fck"); 1676 if (IS_ERR(gpriv->clkp)) { 1677 err = PTR_ERR(gpriv->clkp); 1678 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n", 1679 err); 1680 goto fail_dev; 1681 } 1682 1683 /* fCAN clock: Pick External clock. If not available fallback to 1684 * CANFD clock 1685 */ 1686 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1687 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1688 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd"); 1689 if (IS_ERR(gpriv->can_clk)) { 1690 err = PTR_ERR(gpriv->can_clk); 1691 dev_err(&pdev->dev, 1692 "cannot get canfd clock, error %d\n", err); 1693 goto fail_dev; 1694 } 1695 gpriv->fcan = RCANFD_CANFDCLK; 1696 1697 } else { 1698 gpriv->fcan = RCANFD_EXTCLK; 1699 } 1700 fcan_freq = clk_get_rate(gpriv->can_clk); 1701 1702 if (gpriv->fcan == RCANFD_CANFDCLK) 1703 /* CANFD clock is further divided by (1/2) within the IP */ 1704 fcan_freq /= 2; 1705 1706 addr = devm_platform_ioremap_resource(pdev, 0); 1707 if (IS_ERR(addr)) { 1708 err = PTR_ERR(addr); 1709 goto fail_dev; 1710 } 1711 gpriv->base = addr; 1712 1713 /* Request IRQ that's common for both channels */ 1714 err = devm_request_irq(&pdev->dev, ch_irq, 1715 rcar_canfd_channel_interrupt, 0, 1716 "canfd.chn", gpriv); 1717 if (err) { 1718 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1719 ch_irq, err); 1720 goto fail_dev; 1721 } 1722 err = devm_request_irq(&pdev->dev, g_irq, 1723 rcar_canfd_global_interrupt, 0, 1724 "canfd.gbl", gpriv); 1725 if (err) { 1726 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1727 g_irq, err); 1728 goto fail_dev; 1729 } 1730 1731 /* Enable peripheral clock for register access */ 1732 err = clk_prepare_enable(gpriv->clkp); 1733 if (err) { 1734 dev_err(&pdev->dev, 1735 "failed to enable peripheral clock, error %d\n", err); 1736 goto fail_dev; 1737 } 1738 1739 err = rcar_canfd_reset_controller(gpriv); 1740 if (err) { 1741 dev_err(&pdev->dev, "reset controller failed\n"); 1742 goto fail_clk; 1743 } 1744 1745 /* Controller in Global reset & Channel reset mode */ 1746 rcar_canfd_configure_controller(gpriv); 1747 1748 /* Configure per channel attributes */ 1749 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1750 /* Configure Channel's Rx fifo */ 1751 rcar_canfd_configure_rx(gpriv, ch); 1752 1753 /* Configure Channel's Tx (Common) fifo */ 1754 rcar_canfd_configure_tx(gpriv, ch); 1755 1756 /* Configure receive rules */ 1757 rcar_canfd_configure_afl_rules(gpriv, ch); 1758 } 1759 1760 /* Configure common interrupts */ 1761 rcar_canfd_enable_global_interrupts(gpriv); 1762 1763 /* Start Global operation mode */ 1764 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 1765 RCANFD_GCTR_GMDC_GOPM); 1766 1767 /* Verify mode change */ 1768 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 1769 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 1770 if (err) { 1771 dev_err(&pdev->dev, "global operational mode failed\n"); 1772 goto fail_mode; 1773 } 1774 1775 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1776 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); 1777 if (err) 1778 goto fail_channel; 1779 } 1780 1781 platform_set_drvdata(pdev, gpriv); 1782 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n", 1783 gpriv->fcan, gpriv->fdmode); 1784 return 0; 1785 1786 fail_channel: 1787 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1788 rcar_canfd_channel_remove(gpriv, ch); 1789 fail_mode: 1790 rcar_canfd_disable_global_interrupts(gpriv); 1791 fail_clk: 1792 clk_disable_unprepare(gpriv->clkp); 1793 fail_dev: 1794 return err; 1795 } 1796 1797 static int rcar_canfd_remove(struct platform_device *pdev) 1798 { 1799 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 1800 u32 ch; 1801 1802 rcar_canfd_reset_controller(gpriv); 1803 rcar_canfd_disable_global_interrupts(gpriv); 1804 1805 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1806 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 1807 rcar_canfd_channel_remove(gpriv, ch); 1808 } 1809 1810 /* Enter global sleep mode */ 1811 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 1812 clk_disable_unprepare(gpriv->clkp); 1813 return 0; 1814 } 1815 1816 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 1817 { 1818 return 0; 1819 } 1820 1821 static int __maybe_unused rcar_canfd_resume(struct device *dev) 1822 { 1823 return 0; 1824 } 1825 1826 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 1827 rcar_canfd_resume); 1828 1829 static const struct of_device_id rcar_canfd_of_table[] = { 1830 { .compatible = "renesas,rcar-gen3-canfd" }, 1831 { } 1832 }; 1833 1834 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 1835 1836 static struct platform_driver rcar_canfd_driver = { 1837 .driver = { 1838 .name = RCANFD_DRV_NAME, 1839 .of_match_table = of_match_ptr(rcar_canfd_of_table), 1840 .pm = &rcar_canfd_pm_ops, 1841 }, 1842 .probe = rcar_canfd_probe, 1843 .remove = rcar_canfd_remove, 1844 }; 1845 1846 module_platform_driver(rcar_canfd_driver); 1847 1848 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 1849 MODULE_LICENSE("GPL"); 1850 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 1851 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 1852