1 /* Renesas R-Car CAN FD device driver 2 * 3 * Copyright (C) 2015 Renesas Electronics Corp. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 /* The R-Car CAN FD controller can operate in either one of the below two modes 12 * - CAN FD only mode 13 * - Classical CAN (CAN 2.0) only mode 14 * 15 * This driver puts the controller in CAN FD only mode by default. In this 16 * mode, the controller acts as a CAN FD node that can also interoperate with 17 * CAN 2.0 nodes. 18 * 19 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 20 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 21 * also required to switch modes. 22 * 23 * Note: The h/w manual register naming convention is clumsy and not acceptable 24 * to use as it is in the driver. However, those names are added as comments 25 * wherever it is modified to a readable name. 26 */ 27 28 #include <linux/module.h> 29 #include <linux/moduleparam.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/interrupt.h> 33 #include <linux/errno.h> 34 #include <linux/netdevice.h> 35 #include <linux/platform_device.h> 36 #include <linux/can/led.h> 37 #include <linux/can/dev.h> 38 #include <linux/clk.h> 39 #include <linux/of.h> 40 #include <linux/of_device.h> 41 #include <linux/bitmap.h> 42 #include <linux/bitops.h> 43 #include <linux/iopoll.h> 44 45 #define RCANFD_DRV_NAME "rcar_canfd" 46 47 /* Global register bits */ 48 49 /* RSCFDnCFDGRMCFG */ 50 #define RCANFD_GRMCFG_RCMC BIT(0) 51 52 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 53 #define RCANFD_GCFG_EEFE BIT(6) 54 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 55 #define RCANFD_GCFG_DCS BIT(4) 56 #define RCANFD_GCFG_DCE BIT(1) 57 #define RCANFD_GCFG_TPRI BIT(0) 58 59 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 60 #define RCANFD_GCTR_TSRST BIT(16) 61 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 62 #define RCANFD_GCTR_THLEIE BIT(10) 63 #define RCANFD_GCTR_MEIE BIT(9) 64 #define RCANFD_GCTR_DEIE BIT(8) 65 #define RCANFD_GCTR_GSLPR BIT(2) 66 #define RCANFD_GCTR_GMDC_MASK (0x3) 67 #define RCANFD_GCTR_GMDC_GOPM (0x0) 68 #define RCANFD_GCTR_GMDC_GRESET (0x1) 69 #define RCANFD_GCTR_GMDC_GTEST (0x2) 70 71 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 72 #define RCANFD_GSTS_GRAMINIT BIT(3) 73 #define RCANFD_GSTS_GSLPSTS BIT(2) 74 #define RCANFD_GSTS_GHLTSTS BIT(1) 75 #define RCANFD_GSTS_GRSTSTS BIT(0) 76 /* Non-operational status */ 77 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 78 79 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 80 #define RCANFD_GERFL_EEF1 BIT(17) 81 #define RCANFD_GERFL_EEF0 BIT(16) 82 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 83 #define RCANFD_GERFL_THLES BIT(2) 84 #define RCANFD_GERFL_MES BIT(1) 85 #define RCANFD_GERFL_DEF BIT(0) 86 87 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\ 88 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\ 89 (gpriv->fdmode ?\ 90 RCANFD_GERFL_CMPOF : 0))) 91 92 /* AFL Rx rules registers */ 93 94 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 95 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8)) 96 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff) 97 98 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 99 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 100 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f) 101 102 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 103 #define RCANFD_GAFLID_GAFLLB BIT(29) 104 105 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 106 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 107 108 /* Channel register bits */ 109 110 /* RSCFDnCmCFG - Classical CAN only */ 111 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 112 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 113 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 114 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 115 116 /* RSCFDnCFDCmNCFG - CAN FD only */ 117 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24) 118 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16) 119 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11) 120 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 121 122 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 123 #define RCANFD_CCTR_CTME BIT(24) 124 #define RCANFD_CCTR_ERRD BIT(23) 125 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 126 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 127 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 128 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 129 #define RCANFD_CCTR_TDCVFIE BIT(19) 130 #define RCANFD_CCTR_SOCOIE BIT(18) 131 #define RCANFD_CCTR_EOCOIE BIT(17) 132 #define RCANFD_CCTR_TAIE BIT(16) 133 #define RCANFD_CCTR_ALIE BIT(15) 134 #define RCANFD_CCTR_BLIE BIT(14) 135 #define RCANFD_CCTR_OLIE BIT(13) 136 #define RCANFD_CCTR_BORIE BIT(12) 137 #define RCANFD_CCTR_BOEIE BIT(11) 138 #define RCANFD_CCTR_EPIE BIT(10) 139 #define RCANFD_CCTR_EWIE BIT(9) 140 #define RCANFD_CCTR_BEIE BIT(8) 141 #define RCANFD_CCTR_CSLPR BIT(2) 142 #define RCANFD_CCTR_CHMDC_MASK (0x3) 143 #define RCANFD_CCTR_CHDMC_COPM (0x0) 144 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 145 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 146 147 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 148 #define RCANFD_CSTS_COMSTS BIT(7) 149 #define RCANFD_CSTS_RECSTS BIT(6) 150 #define RCANFD_CSTS_TRMSTS BIT(5) 151 #define RCANFD_CSTS_BOSTS BIT(4) 152 #define RCANFD_CSTS_EPSTS BIT(3) 153 #define RCANFD_CSTS_SLPSTS BIT(2) 154 #define RCANFD_CSTS_HLTSTS BIT(1) 155 #define RCANFD_CSTS_CRSTSTS BIT(0) 156 157 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 158 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 159 160 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 161 #define RCANFD_CERFL_ADERR BIT(14) 162 #define RCANFD_CERFL_B0ERR BIT(13) 163 #define RCANFD_CERFL_B1ERR BIT(12) 164 #define RCANFD_CERFL_CERR BIT(11) 165 #define RCANFD_CERFL_AERR BIT(10) 166 #define RCANFD_CERFL_FERR BIT(9) 167 #define RCANFD_CERFL_SERR BIT(8) 168 #define RCANFD_CERFL_ALF BIT(7) 169 #define RCANFD_CERFL_BLF BIT(6) 170 #define RCANFD_CERFL_OVLF BIT(5) 171 #define RCANFD_CERFL_BORF BIT(4) 172 #define RCANFD_CERFL_BOEF BIT(3) 173 #define RCANFD_CERFL_EPF BIT(2) 174 #define RCANFD_CERFL_EWF BIT(1) 175 #define RCANFD_CERFL_BEF BIT(0) 176 177 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 178 179 /* RSCFDnCFDCmDCFG */ 180 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24) 181 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20) 182 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16) 183 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 184 185 /* RSCFDnCFDCmFDCFG */ 186 #define RCANFD_FDCFG_TDCE BIT(9) 187 #define RCANFD_FDCFG_TDCOC BIT(8) 188 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 189 190 /* RSCFDnCFDRFCCx */ 191 #define RCANFD_RFCC_RFIM BIT(12) 192 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 193 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 194 #define RCANFD_RFCC_RFIE BIT(1) 195 #define RCANFD_RFCC_RFE BIT(0) 196 197 /* RSCFDnCFDRFSTSx */ 198 #define RCANFD_RFSTS_RFIF BIT(3) 199 #define RCANFD_RFSTS_RFMLT BIT(2) 200 #define RCANFD_RFSTS_RFFLL BIT(1) 201 #define RCANFD_RFSTS_RFEMP BIT(0) 202 203 /* RSCFDnCFDRFIDx */ 204 #define RCANFD_RFID_RFIDE BIT(31) 205 #define RCANFD_RFID_RFRTR BIT(30) 206 207 /* RSCFDnCFDRFPTRx */ 208 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 209 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 210 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 211 212 /* RSCFDnCFDRFFDSTSx */ 213 #define RCANFD_RFFDSTS_RFFDF BIT(2) 214 #define RCANFD_RFFDSTS_RFBRS BIT(1) 215 #define RCANFD_RFFDSTS_RFESI BIT(0) 216 217 /* Common FIFO bits */ 218 219 /* RSCFDnCFDCFCCk */ 220 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20) 221 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16) 222 #define RCANFD_CFCC_CFIM BIT(12) 223 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8) 224 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 225 #define RCANFD_CFCC_CFTXIE BIT(2) 226 #define RCANFD_CFCC_CFE BIT(0) 227 228 /* RSCFDnCFDCFSTSk */ 229 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 230 #define RCANFD_CFSTS_CFTXIF BIT(4) 231 #define RCANFD_CFSTS_CFMLT BIT(2) 232 #define RCANFD_CFSTS_CFFLL BIT(1) 233 #define RCANFD_CFSTS_CFEMP BIT(0) 234 235 /* RSCFDnCFDCFIDk */ 236 #define RCANFD_CFID_CFIDE BIT(31) 237 #define RCANFD_CFID_CFRTR BIT(30) 238 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 239 240 /* RSCFDnCFDCFPTRk */ 241 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 242 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 243 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 244 245 /* RSCFDnCFDCFFDCSTSk */ 246 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 247 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 248 #define RCANFD_CFFDCSTS_CFESI BIT(0) 249 250 /* This controller supports either Classical CAN only mode or CAN FD only mode. 251 * These modes are supported in two separate set of register maps & names. 252 * However, some of the register offsets are common for both modes. Those 253 * offsets are listed below as Common registers. 254 * 255 * The CAN FD only mode specific registers & Classical CAN only mode specific 256 * registers are listed separately. Their register names starts with 257 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 258 */ 259 260 /* Common registers */ 261 262 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 263 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 264 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 265 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 266 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 267 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 268 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 269 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 270 271 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 272 #define RCANFD_GCFG (0x0084) 273 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 274 #define RCANFD_GCTR (0x0088) 275 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 276 #define RCANFD_GSTS (0x008c) 277 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 278 #define RCANFD_GERFL (0x0090) 279 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 280 #define RCANFD_GTSC (0x0094) 281 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 282 #define RCANFD_GAFLECTR (0x0098) 283 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 284 #define RCANFD_GAFLCFG0 (0x009c) 285 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */ 286 #define RCANFD_GAFLCFG1 (0x00a0) 287 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 288 #define RCANFD_RMNB (0x00a4) 289 /* RSCFDnCFDRMND / RSCFDnRMND */ 290 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 291 292 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 293 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x))) 294 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 295 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x))) 296 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 297 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x))) 298 299 /* Common FIFO Control registers */ 300 301 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 302 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \ 303 (0x04 * (idx))) 304 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 305 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \ 306 (0x04 * (idx))) 307 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 308 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \ 309 (0x04 * (idx))) 310 311 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 312 #define RCANFD_FESTS (0x0238) 313 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 314 #define RCANFD_FFSTS (0x023c) 315 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 316 #define RCANFD_FMSTS (0x0240) 317 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 318 #define RCANFD_RFISTS (0x0244) 319 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 320 #define RCANFD_CFRISTS (0x0248) 321 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 322 #define RCANFD_CFTISTS (0x024c) 323 324 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 325 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 326 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 327 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 328 329 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 330 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 331 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 332 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 333 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 334 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 335 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 336 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 337 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 338 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 339 340 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 341 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 342 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 343 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 344 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 345 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 346 347 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 348 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 349 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 350 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 351 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 352 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 353 354 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 355 #define RCANFD_GTINTSTS0 (0x0460) 356 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 357 #define RCANFD_GTINTSTS1 (0x0464) 358 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 359 #define RCANFD_GTSTCFG (0x0468) 360 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 361 #define RCANFD_GTSTCTR (0x046c) 362 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 363 #define RCANFD_GLOCKK (0x047c) 364 /* RSCFDnCFDGRMCFG */ 365 #define RCANFD_GRMCFG (0x04fc) 366 367 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 368 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 369 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 370 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 371 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 372 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 373 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 374 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 375 376 /* Classical CAN only mode register map */ 377 378 /* RSCFDnGAFLXXXj offset */ 379 #define RCANFD_C_GAFL_OFFSET (0x0500) 380 381 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 382 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 383 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 384 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 385 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 386 387 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 388 #define RCANFD_C_RFOFFSET (0x0e00) 389 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 390 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \ 391 (0x10 * (x))) 392 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \ 393 (0x10 * (x)) + (0x04 * (df))) 394 395 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 396 #define RCANFD_C_CFOFFSET (0x0e80) 397 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \ 398 (0x10 * (idx))) 399 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \ 400 (0x30 * (ch)) + (0x10 * (idx))) 401 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \ 402 (0x30 * (ch)) + (0x10 * (idx)) + \ 403 (0x04 * (df))) 404 405 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 406 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 407 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 408 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 409 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 410 411 /* RSCFDnTHLACCm */ 412 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 413 /* RSCFDnRPGACCr */ 414 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 415 416 /* CAN FD mode specific register map */ 417 418 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 419 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m))) 420 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 421 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 422 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 423 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 424 425 /* RSCFDnCFDGAFLXXXj offset */ 426 #define RCANFD_F_GAFL_OFFSET (0x1000) 427 428 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 429 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 430 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 431 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 432 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 433 434 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 435 #define RCANFD_F_RFOFFSET (0x3000) 436 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x))) 437 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \ 438 (0x80 * (x))) 439 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \ 440 (0x80 * (x))) 441 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \ 442 (0x80 * (x)) + (0x04 * (df))) 443 444 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 445 #define RCANFD_F_CFOFFSET (0x3400) 446 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \ 447 (0x80 * (idx))) 448 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \ 449 (0x180 * (ch)) + (0x80 * (idx))) 450 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \ 451 (0x180 * (ch)) + (0x80 * (idx))) 452 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \ 453 (0x180 * (ch)) + (0x80 * (idx)) + \ 454 (0x04 * (df))) 455 456 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 457 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 458 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 459 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 460 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 461 462 /* RSCFDnCFDTHLACCm */ 463 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 464 /* RSCFDnCFDRPGACCr */ 465 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 466 467 /* Constants */ 468 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 469 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 470 471 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */ 472 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 473 474 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 475 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 476 477 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 478 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 479 * number is added to RFFIFO index. 480 */ 481 #define RCANFD_RFFIFO_IDX 0 482 483 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 484 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 485 */ 486 #define RCANFD_CFFIFO_IDX 0 487 488 /* fCAN clock select register settings */ 489 enum rcar_canfd_fcanclk { 490 RCANFD_CANFDCLK = 0, /* CANFD clock */ 491 RCANFD_EXTCLK, /* Externally input clock */ 492 }; 493 494 struct rcar_canfd_global; 495 496 /* Channel priv data */ 497 struct rcar_canfd_channel { 498 struct can_priv can; /* Must be the first member */ 499 struct net_device *ndev; 500 struct rcar_canfd_global *gpriv; /* Controller reference */ 501 void __iomem *base; /* Register base address */ 502 struct napi_struct napi; 503 u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */ 504 u32 tx_head; /* Incremented on xmit */ 505 u32 tx_tail; /* Incremented on xmit done */ 506 u32 channel; /* Channel number */ 507 spinlock_t tx_lock; /* To protect tx path */ 508 }; 509 510 /* Global priv data */ 511 struct rcar_canfd_global { 512 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 513 void __iomem *base; /* Register base address */ 514 struct platform_device *pdev; /* Respective platform device */ 515 struct clk *clkp; /* Peripheral clock */ 516 struct clk *can_clk; /* fCAN clock */ 517 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 518 unsigned long channels_mask; /* Enabled channels mask */ 519 bool fdmode; /* CAN FD or Classical CAN only mode */ 520 }; 521 522 /* CAN FD mode nominal rate constants */ 523 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 524 .name = RCANFD_DRV_NAME, 525 .tseg1_min = 2, 526 .tseg1_max = 128, 527 .tseg2_min = 2, 528 .tseg2_max = 32, 529 .sjw_max = 32, 530 .brp_min = 1, 531 .brp_max = 1024, 532 .brp_inc = 1, 533 }; 534 535 /* CAN FD mode data rate constants */ 536 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 537 .name = RCANFD_DRV_NAME, 538 .tseg1_min = 2, 539 .tseg1_max = 16, 540 .tseg2_min = 2, 541 .tseg2_max = 8, 542 .sjw_max = 8, 543 .brp_min = 1, 544 .brp_max = 256, 545 .brp_inc = 1, 546 }; 547 548 /* Classical CAN mode bitrate constants */ 549 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 550 .name = RCANFD_DRV_NAME, 551 .tseg1_min = 4, 552 .tseg1_max = 16, 553 .tseg2_min = 2, 554 .tseg2_max = 8, 555 .sjw_max = 4, 556 .brp_min = 1, 557 .brp_max = 1024, 558 .brp_inc = 1, 559 }; 560 561 /* Helper functions */ 562 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 563 { 564 u32 data = readl(reg); 565 566 data &= ~mask; 567 data |= (val & mask); 568 writel(data, reg); 569 } 570 571 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 572 { 573 return readl(base + (offset)); 574 } 575 576 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 577 { 578 writel(val, base + (offset)); 579 } 580 581 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 582 { 583 rcar_canfd_update(val, val, base + (reg)); 584 } 585 586 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 587 { 588 rcar_canfd_update(val, 0, base + (reg)); 589 } 590 591 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 592 u32 mask, u32 val) 593 { 594 rcar_canfd_update(mask, val, base + (reg)); 595 } 596 597 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 598 struct canfd_frame *cf, u32 off) 599 { 600 u32 i, lwords; 601 602 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 603 for (i = 0; i < lwords; i++) 604 *((u32 *)cf->data + i) = 605 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 606 } 607 608 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 609 struct canfd_frame *cf, u32 off) 610 { 611 u32 i, lwords; 612 613 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 614 for (i = 0; i < lwords; i++) 615 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 616 *((u32 *)cf->data + i)); 617 } 618 619 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 620 { 621 u32 i; 622 623 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 624 can_free_echo_skb(ndev, i); 625 } 626 627 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 628 { 629 u32 sts, ch; 630 int err; 631 632 /* Check RAMINIT flag as CAN RAM initialization takes place 633 * after the MCU reset 634 */ 635 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 636 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 637 if (err) { 638 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 639 return err; 640 } 641 642 /* Transition to Global Reset mode */ 643 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 644 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 645 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 646 647 /* Ensure Global reset mode */ 648 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 649 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 650 if (err) { 651 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 652 return err; 653 } 654 655 /* Reset Global error flags */ 656 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 657 658 /* Set the controller into appropriate mode */ 659 if (gpriv->fdmode) 660 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 661 RCANFD_GRMCFG_RCMC); 662 else 663 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 664 RCANFD_GRMCFG_RCMC); 665 666 /* Transition all Channels to reset mode */ 667 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 668 rcar_canfd_clear_bit(gpriv->base, 669 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 670 671 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 672 RCANFD_CCTR_CHMDC_MASK, 673 RCANFD_CCTR_CHDMC_CRESET); 674 675 /* Ensure Channel reset mode */ 676 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 677 (sts & RCANFD_CSTS_CRSTSTS), 678 2, 500000); 679 if (err) { 680 dev_dbg(&gpriv->pdev->dev, 681 "channel %u reset failed\n", ch); 682 return err; 683 } 684 } 685 return 0; 686 } 687 688 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 689 { 690 u32 cfg, ch; 691 692 /* Global configuration settings */ 693 694 /* ECC Error flag Enable */ 695 cfg = RCANFD_GCFG_EEFE; 696 697 if (gpriv->fdmode) 698 /* Truncate payload to configured message size RFPLS */ 699 cfg |= RCANFD_GCFG_CMPOC; 700 701 /* Set External Clock if selected */ 702 if (gpriv->fcan != RCANFD_CANFDCLK) 703 cfg |= RCANFD_GCFG_DCS; 704 705 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 706 707 /* Channel configuration settings */ 708 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 709 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 710 RCANFD_CCTR_ERRD); 711 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 712 RCANFD_CCTR_BOM_MASK, 713 RCANFD_CCTR_BOM_BENTRY); 714 } 715 } 716 717 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 718 u32 ch) 719 { 720 u32 cfg; 721 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 722 u32 ridx = ch + RCANFD_RFFIFO_IDX; 723 724 if (ch == 0) { 725 start = 0; /* Channel 0 always starts from 0th rule */ 726 } else { 727 /* Get number of Channel 0 rules and adjust */ 728 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0); 729 start = RCANFD_GAFLCFG_GETRNC(0, cfg); 730 } 731 732 /* Enable write access to entry */ 733 page = RCANFD_GAFL_PAGENUM(start); 734 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 735 (RCANFD_GAFLECTR_AFLPN(page) | 736 RCANFD_GAFLECTR_AFLDAE)); 737 738 /* Write number of rules for channel */ 739 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0, 740 RCANFD_GAFLCFG_SETRNC(ch, num_rules)); 741 if (gpriv->fdmode) 742 offset = RCANFD_F_GAFL_OFFSET; 743 else 744 offset = RCANFD_C_GAFL_OFFSET; 745 746 /* Accept all IDs */ 747 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 748 /* IDE or RTR is not considered for matching */ 749 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 750 /* Any data length accepted */ 751 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 752 /* Place the msg in corresponding Rx FIFO entry */ 753 rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start), 754 RCANFD_GAFLP1_GAFLFDP(ridx)); 755 756 /* Disable write access to page */ 757 rcar_canfd_clear_bit(gpriv->base, 758 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 759 } 760 761 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 762 { 763 /* Rx FIFO is used for reception */ 764 u32 cfg; 765 u16 rfdc, rfpls; 766 767 /* Select Rx FIFO based on channel */ 768 u32 ridx = ch + RCANFD_RFFIFO_IDX; 769 770 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 771 if (gpriv->fdmode) 772 rfpls = 7; /* b111 - Max 64 bytes payload */ 773 else 774 rfpls = 0; /* b000 - Max 8 bytes payload */ 775 776 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 777 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 778 rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg); 779 } 780 781 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 782 { 783 /* Tx/Rx(Common) FIFO configured in Tx mode is 784 * used for transmission 785 * 786 * Each channel has 3 Common FIFO dedicated to them. 787 * Use the 1st (index 0) out of 3 788 */ 789 u32 cfg; 790 u16 cftml, cfm, cfdc, cfpls; 791 792 cftml = 0; /* 0th buffer */ 793 cfm = 1; /* b01 - Transmit mode */ 794 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 795 if (gpriv->fdmode) 796 cfpls = 7; /* b111 - Max 64 bytes payload */ 797 else 798 cfpls = 0; /* b000 - Max 8 bytes payload */ 799 800 cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) | 801 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) | 802 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 803 rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg); 804 805 if (gpriv->fdmode) 806 /* Clear FD mode specific control/status register */ 807 rcar_canfd_write(gpriv->base, 808 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0); 809 } 810 811 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 812 { 813 u32 ctr; 814 815 /* Clear any stray error interrupt flags */ 816 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 817 818 /* Global interrupts setup */ 819 ctr = RCANFD_GCTR_MEIE; 820 if (gpriv->fdmode) 821 ctr |= RCANFD_GCTR_CFMPOFIE; 822 823 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 824 } 825 826 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 827 *gpriv) 828 { 829 /* Disable all interrupts */ 830 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 831 832 /* Clear any stray error interrupt flags */ 833 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 834 } 835 836 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 837 *priv) 838 { 839 u32 ctr, ch = priv->channel; 840 841 /* Clear any stray error flags */ 842 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 843 844 /* Channel interrupts setup */ 845 ctr = (RCANFD_CCTR_TAIE | 846 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 847 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 848 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 849 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 850 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 851 } 852 853 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 854 *priv) 855 { 856 u32 ctr, ch = priv->channel; 857 858 ctr = (RCANFD_CCTR_TAIE | 859 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 860 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 861 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 862 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 863 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 864 865 /* Clear any stray error flags */ 866 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 867 } 868 869 static void rcar_canfd_global_error(struct net_device *ndev) 870 { 871 struct rcar_canfd_channel *priv = netdev_priv(ndev); 872 struct rcar_canfd_global *gpriv = priv->gpriv; 873 struct net_device_stats *stats = &ndev->stats; 874 u32 ch = priv->channel; 875 u32 gerfl, sts; 876 u32 ridx = ch + RCANFD_RFFIFO_IDX; 877 878 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 879 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) { 880 netdev_dbg(ndev, "Ch0: ECC Error flag\n"); 881 stats->tx_dropped++; 882 } 883 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) { 884 netdev_dbg(ndev, "Ch1: ECC Error flag\n"); 885 stats->tx_dropped++; 886 } 887 if (gerfl & RCANFD_GERFL_MES) { 888 sts = rcar_canfd_read(priv->base, 889 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 890 if (sts & RCANFD_CFSTS_CFMLT) { 891 netdev_dbg(ndev, "Tx Message Lost flag\n"); 892 stats->tx_dropped++; 893 rcar_canfd_write(priv->base, 894 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 895 sts & ~RCANFD_CFSTS_CFMLT); 896 } 897 898 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 899 if (sts & RCANFD_RFSTS_RFMLT) { 900 netdev_dbg(ndev, "Rx Message Lost flag\n"); 901 stats->rx_dropped++; 902 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 903 sts & ~RCANFD_RFSTS_RFMLT); 904 } 905 } 906 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 907 /* Message Lost flag will be set for respective channel 908 * when this condition happens with counters and flags 909 * already updated. 910 */ 911 netdev_dbg(ndev, "global payload overflow interrupt\n"); 912 } 913 914 /* Clear all global error interrupts. Only affected channels bits 915 * get cleared 916 */ 917 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 918 } 919 920 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 921 u16 txerr, u16 rxerr) 922 { 923 struct rcar_canfd_channel *priv = netdev_priv(ndev); 924 struct net_device_stats *stats = &ndev->stats; 925 struct can_frame *cf; 926 struct sk_buff *skb; 927 u32 ch = priv->channel; 928 929 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 930 931 /* Propagate the error condition to the CAN stack */ 932 skb = alloc_can_err_skb(ndev, &cf); 933 if (!skb) { 934 stats->rx_dropped++; 935 return; 936 } 937 938 /* Channel error interrupts */ 939 if (cerfl & RCANFD_CERFL_BEF) { 940 netdev_dbg(ndev, "Bus error\n"); 941 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 942 cf->data[2] = CAN_ERR_PROT_UNSPEC; 943 priv->can.can_stats.bus_error++; 944 } 945 if (cerfl & RCANFD_CERFL_ADERR) { 946 netdev_dbg(ndev, "ACK Delimiter Error\n"); 947 stats->tx_errors++; 948 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 949 } 950 if (cerfl & RCANFD_CERFL_B0ERR) { 951 netdev_dbg(ndev, "Bit Error (dominant)\n"); 952 stats->tx_errors++; 953 cf->data[2] |= CAN_ERR_PROT_BIT0; 954 } 955 if (cerfl & RCANFD_CERFL_B1ERR) { 956 netdev_dbg(ndev, "Bit Error (recessive)\n"); 957 stats->tx_errors++; 958 cf->data[2] |= CAN_ERR_PROT_BIT1; 959 } 960 if (cerfl & RCANFD_CERFL_CERR) { 961 netdev_dbg(ndev, "CRC Error\n"); 962 stats->rx_errors++; 963 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 964 } 965 if (cerfl & RCANFD_CERFL_AERR) { 966 netdev_dbg(ndev, "ACK Error\n"); 967 stats->tx_errors++; 968 cf->can_id |= CAN_ERR_ACK; 969 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 970 } 971 if (cerfl & RCANFD_CERFL_FERR) { 972 netdev_dbg(ndev, "Form Error\n"); 973 stats->rx_errors++; 974 cf->data[2] |= CAN_ERR_PROT_FORM; 975 } 976 if (cerfl & RCANFD_CERFL_SERR) { 977 netdev_dbg(ndev, "Stuff Error\n"); 978 stats->rx_errors++; 979 cf->data[2] |= CAN_ERR_PROT_STUFF; 980 } 981 if (cerfl & RCANFD_CERFL_ALF) { 982 netdev_dbg(ndev, "Arbitration lost Error\n"); 983 priv->can.can_stats.arbitration_lost++; 984 cf->can_id |= CAN_ERR_LOSTARB; 985 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 986 } 987 if (cerfl & RCANFD_CERFL_BLF) { 988 netdev_dbg(ndev, "Bus Lock Error\n"); 989 stats->rx_errors++; 990 cf->can_id |= CAN_ERR_BUSERROR; 991 } 992 if (cerfl & RCANFD_CERFL_EWF) { 993 netdev_dbg(ndev, "Error warning interrupt\n"); 994 priv->can.state = CAN_STATE_ERROR_WARNING; 995 priv->can.can_stats.error_warning++; 996 cf->can_id |= CAN_ERR_CRTL; 997 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 998 CAN_ERR_CRTL_RX_WARNING; 999 cf->data[6] = txerr; 1000 cf->data[7] = rxerr; 1001 } 1002 if (cerfl & RCANFD_CERFL_EPF) { 1003 netdev_dbg(ndev, "Error passive interrupt\n"); 1004 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1005 priv->can.can_stats.error_passive++; 1006 cf->can_id |= CAN_ERR_CRTL; 1007 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1008 CAN_ERR_CRTL_RX_PASSIVE; 1009 cf->data[6] = txerr; 1010 cf->data[7] = rxerr; 1011 } 1012 if (cerfl & RCANFD_CERFL_BOEF) { 1013 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1014 rcar_canfd_tx_failure_cleanup(ndev); 1015 priv->can.state = CAN_STATE_BUS_OFF; 1016 priv->can.can_stats.bus_off++; 1017 can_bus_off(ndev); 1018 cf->can_id |= CAN_ERR_BUSOFF; 1019 } 1020 if (cerfl & RCANFD_CERFL_OVLF) { 1021 netdev_dbg(ndev, 1022 "Overload Frame Transmission error interrupt\n"); 1023 stats->tx_errors++; 1024 cf->can_id |= CAN_ERR_PROT; 1025 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1026 } 1027 1028 /* Clear channel error interrupts that are handled */ 1029 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1030 RCANFD_CERFL_ERR(~cerfl)); 1031 stats->rx_packets++; 1032 stats->rx_bytes += cf->can_dlc; 1033 netif_rx(skb); 1034 } 1035 1036 static void rcar_canfd_tx_done(struct net_device *ndev) 1037 { 1038 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1039 struct net_device_stats *stats = &ndev->stats; 1040 u32 sts; 1041 unsigned long flags; 1042 u32 ch = priv->channel; 1043 1044 do { 1045 u8 unsent, sent; 1046 1047 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1048 stats->tx_packets++; 1049 stats->tx_bytes += priv->tx_len[sent]; 1050 priv->tx_len[sent] = 0; 1051 can_get_echo_skb(ndev, sent); 1052 1053 spin_lock_irqsave(&priv->tx_lock, flags); 1054 priv->tx_tail++; 1055 sts = rcar_canfd_read(priv->base, 1056 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1057 unsent = RCANFD_CFSTS_CFMC(sts); 1058 1059 /* Wake producer only when there is room */ 1060 if (unsent != RCANFD_FIFO_DEPTH) 1061 netif_wake_queue(ndev); 1062 1063 if (priv->tx_head - priv->tx_tail <= unsent) { 1064 spin_unlock_irqrestore(&priv->tx_lock, flags); 1065 break; 1066 } 1067 spin_unlock_irqrestore(&priv->tx_lock, flags); 1068 1069 } while (1); 1070 1071 /* Clear interrupt */ 1072 rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 1073 sts & ~RCANFD_CFSTS_CFTXIF); 1074 can_led_event(ndev, CAN_LED_EVENT_TX); 1075 } 1076 1077 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1078 { 1079 struct rcar_canfd_global *gpriv = dev_id; 1080 struct net_device *ndev; 1081 struct rcar_canfd_channel *priv; 1082 u32 sts, gerfl; 1083 u32 ch, ridx; 1084 1085 /* Global error interrupts still indicate a condition specific 1086 * to a channel. RxFIFO interrupt is a global interrupt. 1087 */ 1088 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1089 priv = gpriv->ch[ch]; 1090 ndev = priv->ndev; 1091 ridx = ch + RCANFD_RFFIFO_IDX; 1092 1093 /* Global error interrupts */ 1094 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1095 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1096 rcar_canfd_global_error(ndev); 1097 1098 /* Handle Rx interrupts */ 1099 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1100 if (likely(sts & RCANFD_RFSTS_RFIF)) { 1101 if (napi_schedule_prep(&priv->napi)) { 1102 /* Disable Rx FIFO interrupts */ 1103 rcar_canfd_clear_bit(priv->base, 1104 RCANFD_RFCC(ridx), 1105 RCANFD_RFCC_RFIE); 1106 __napi_schedule(&priv->napi); 1107 } 1108 } 1109 } 1110 return IRQ_HANDLED; 1111 } 1112 1113 static void rcar_canfd_state_change(struct net_device *ndev, 1114 u16 txerr, u16 rxerr) 1115 { 1116 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1117 struct net_device_stats *stats = &ndev->stats; 1118 enum can_state rx_state, tx_state, state = priv->can.state; 1119 struct can_frame *cf; 1120 struct sk_buff *skb; 1121 1122 /* Handle transition from error to normal states */ 1123 if (txerr < 96 && rxerr < 96) 1124 state = CAN_STATE_ERROR_ACTIVE; 1125 else if (txerr < 128 && rxerr < 128) 1126 state = CAN_STATE_ERROR_WARNING; 1127 1128 if (state != priv->can.state) { 1129 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1130 state, priv->can.state, txerr, rxerr); 1131 skb = alloc_can_err_skb(ndev, &cf); 1132 if (!skb) { 1133 stats->rx_dropped++; 1134 return; 1135 } 1136 tx_state = txerr >= rxerr ? state : 0; 1137 rx_state = txerr <= rxerr ? state : 0; 1138 1139 can_change_state(ndev, cf, tx_state, rx_state); 1140 stats->rx_packets++; 1141 stats->rx_bytes += cf->can_dlc; 1142 netif_rx(skb); 1143 } 1144 } 1145 1146 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1147 { 1148 struct rcar_canfd_global *gpriv = dev_id; 1149 struct net_device *ndev; 1150 struct rcar_canfd_channel *priv; 1151 u32 sts, ch, cerfl; 1152 u16 txerr, rxerr; 1153 1154 /* Common FIFO is a per channel resource */ 1155 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1156 priv = gpriv->ch[ch]; 1157 ndev = priv->ndev; 1158 1159 /* Channel error interrupts */ 1160 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1161 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1162 txerr = RCANFD_CSTS_TECCNT(sts); 1163 rxerr = RCANFD_CSTS_RECCNT(sts); 1164 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1165 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1166 1167 /* Handle state change to lower states */ 1168 if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) && 1169 (priv->can.state != CAN_STATE_BUS_OFF))) 1170 rcar_canfd_state_change(ndev, txerr, rxerr); 1171 1172 /* Handle Tx interrupts */ 1173 sts = rcar_canfd_read(priv->base, 1174 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1175 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1176 rcar_canfd_tx_done(ndev); 1177 } 1178 return IRQ_HANDLED; 1179 } 1180 1181 static void rcar_canfd_set_bittiming(struct net_device *dev) 1182 { 1183 struct rcar_canfd_channel *priv = netdev_priv(dev); 1184 const struct can_bittiming *bt = &priv->can.bittiming; 1185 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1186 u16 brp, sjw, tseg1, tseg2; 1187 u32 cfg; 1188 u32 ch = priv->channel; 1189 1190 /* Nominal bit timing settings */ 1191 brp = bt->brp - 1; 1192 sjw = bt->sjw - 1; 1193 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1194 tseg2 = bt->phase_seg2 - 1; 1195 1196 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1197 /* CAN FD only mode */ 1198 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) | 1199 RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2)); 1200 1201 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1202 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1203 brp, sjw, tseg1, tseg2); 1204 1205 /* Data bit timing settings */ 1206 brp = dbt->brp - 1; 1207 sjw = dbt->sjw - 1; 1208 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1209 tseg2 = dbt->phase_seg2 - 1; 1210 1211 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) | 1212 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2)); 1213 1214 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg); 1215 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1216 brp, sjw, tseg1, tseg2); 1217 } else { 1218 /* Classical CAN only mode */ 1219 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1220 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1221 1222 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1223 netdev_dbg(priv->ndev, 1224 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1225 brp, sjw, tseg1, tseg2); 1226 } 1227 } 1228 1229 static int rcar_canfd_start(struct net_device *ndev) 1230 { 1231 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1232 int err = -EOPNOTSUPP; 1233 u32 sts, ch = priv->channel; 1234 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1235 1236 rcar_canfd_set_bittiming(ndev); 1237 1238 rcar_canfd_enable_channel_interrupts(priv); 1239 1240 /* Set channel to Operational mode */ 1241 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1242 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1243 1244 /* Verify channel mode change */ 1245 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1246 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1247 if (err) { 1248 netdev_err(ndev, "channel %u communication state failed\n", ch); 1249 goto fail_mode_change; 1250 } 1251 1252 /* Enable Common & Rx FIFO */ 1253 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1254 RCANFD_CFCC_CFE); 1255 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1256 1257 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1258 return 0; 1259 1260 fail_mode_change: 1261 rcar_canfd_disable_channel_interrupts(priv); 1262 return err; 1263 } 1264 1265 static int rcar_canfd_open(struct net_device *ndev) 1266 { 1267 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1268 struct rcar_canfd_global *gpriv = priv->gpriv; 1269 int err; 1270 1271 /* Peripheral clock is already enabled in probe */ 1272 err = clk_prepare_enable(gpriv->can_clk); 1273 if (err) { 1274 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); 1275 goto out_clock; 1276 } 1277 1278 err = open_candev(ndev); 1279 if (err) { 1280 netdev_err(ndev, "open_candev() failed, error %d\n", err); 1281 goto out_can_clock; 1282 } 1283 1284 napi_enable(&priv->napi); 1285 err = rcar_canfd_start(ndev); 1286 if (err) 1287 goto out_close; 1288 netif_start_queue(ndev); 1289 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1290 return 0; 1291 out_close: 1292 napi_disable(&priv->napi); 1293 close_candev(ndev); 1294 out_can_clock: 1295 clk_disable_unprepare(gpriv->can_clk); 1296 out_clock: 1297 return err; 1298 } 1299 1300 static void rcar_canfd_stop(struct net_device *ndev) 1301 { 1302 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1303 int err; 1304 u32 sts, ch = priv->channel; 1305 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1306 1307 /* Transition to channel reset mode */ 1308 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1309 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1310 1311 /* Check Channel reset mode */ 1312 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1313 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1314 if (err) 1315 netdev_err(ndev, "channel %u reset failed\n", ch); 1316 1317 rcar_canfd_disable_channel_interrupts(priv); 1318 1319 /* Disable Common & Rx FIFO */ 1320 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1321 RCANFD_CFCC_CFE); 1322 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1323 1324 /* Set the state as STOPPED */ 1325 priv->can.state = CAN_STATE_STOPPED; 1326 } 1327 1328 static int rcar_canfd_close(struct net_device *ndev) 1329 { 1330 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1331 struct rcar_canfd_global *gpriv = priv->gpriv; 1332 1333 netif_stop_queue(ndev); 1334 rcar_canfd_stop(ndev); 1335 napi_disable(&priv->napi); 1336 clk_disable_unprepare(gpriv->can_clk); 1337 close_candev(ndev); 1338 can_led_event(ndev, CAN_LED_EVENT_STOP); 1339 return 0; 1340 } 1341 1342 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1343 struct net_device *ndev) 1344 { 1345 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1346 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1347 u32 sts = 0, id, dlc; 1348 unsigned long flags; 1349 u32 ch = priv->channel; 1350 1351 if (can_dropped_invalid_skb(ndev, skb)) 1352 return NETDEV_TX_OK; 1353 1354 if (cf->can_id & CAN_EFF_FLAG) { 1355 id = cf->can_id & CAN_EFF_MASK; 1356 id |= RCANFD_CFID_CFIDE; 1357 } else { 1358 id = cf->can_id & CAN_SFF_MASK; 1359 } 1360 1361 if (cf->can_id & CAN_RTR_FLAG) 1362 id |= RCANFD_CFID_CFRTR; 1363 1364 dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len)); 1365 1366 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1367 rcar_canfd_write(priv->base, 1368 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id); 1369 rcar_canfd_write(priv->base, 1370 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1371 1372 if (can_is_canfd_skb(skb)) { 1373 /* CAN FD frame format */ 1374 sts |= RCANFD_CFFDCSTS_CFFDF; 1375 if (cf->flags & CANFD_BRS) 1376 sts |= RCANFD_CFFDCSTS_CFBRS; 1377 1378 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1379 sts |= RCANFD_CFFDCSTS_CFESI; 1380 } 1381 1382 rcar_canfd_write(priv->base, 1383 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts); 1384 1385 rcar_canfd_put_data(priv, cf, 1386 RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1387 } else { 1388 rcar_canfd_write(priv->base, 1389 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1390 rcar_canfd_write(priv->base, 1391 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1392 rcar_canfd_put_data(priv, cf, 1393 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1394 } 1395 1396 priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len; 1397 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH); 1398 1399 spin_lock_irqsave(&priv->tx_lock, flags); 1400 priv->tx_head++; 1401 1402 /* Stop the queue if we've filled all FIFO entries */ 1403 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1404 netif_stop_queue(ndev); 1405 1406 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1407 * pointer for the Common FIFO 1408 */ 1409 rcar_canfd_write(priv->base, 1410 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff); 1411 1412 spin_unlock_irqrestore(&priv->tx_lock, flags); 1413 return NETDEV_TX_OK; 1414 } 1415 1416 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1417 { 1418 struct net_device_stats *stats = &priv->ndev->stats; 1419 struct canfd_frame *cf; 1420 struct sk_buff *skb; 1421 u32 sts = 0, id, dlc; 1422 u32 ch = priv->channel; 1423 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1424 1425 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1426 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx)); 1427 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx)); 1428 1429 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx)); 1430 if (sts & RCANFD_RFFDSTS_RFFDF) 1431 skb = alloc_canfd_skb(priv->ndev, &cf); 1432 else 1433 skb = alloc_can_skb(priv->ndev, 1434 (struct can_frame **)&cf); 1435 } else { 1436 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1437 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1438 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1439 } 1440 1441 if (!skb) { 1442 stats->rx_dropped++; 1443 return; 1444 } 1445 1446 if (id & RCANFD_RFID_RFIDE) 1447 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1448 else 1449 cf->can_id = id & CAN_SFF_MASK; 1450 1451 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1452 if (sts & RCANFD_RFFDSTS_RFFDF) 1453 cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1454 else 1455 cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc)); 1456 1457 if (sts & RCANFD_RFFDSTS_RFESI) { 1458 cf->flags |= CANFD_ESI; 1459 netdev_dbg(priv->ndev, "ESI Error\n"); 1460 } 1461 1462 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1463 cf->can_id |= CAN_RTR_FLAG; 1464 } else { 1465 if (sts & RCANFD_RFFDSTS_RFBRS) 1466 cf->flags |= CANFD_BRS; 1467 1468 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0)); 1469 } 1470 } else { 1471 cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc)); 1472 if (id & RCANFD_RFID_RFRTR) 1473 cf->can_id |= CAN_RTR_FLAG; 1474 else 1475 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1476 } 1477 1478 /* Write 0xff to RFPC to increment the CPU-side 1479 * pointer of the Rx FIFO 1480 */ 1481 rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff); 1482 1483 can_led_event(priv->ndev, CAN_LED_EVENT_RX); 1484 1485 stats->rx_bytes += cf->len; 1486 stats->rx_packets++; 1487 netif_receive_skb(skb); 1488 } 1489 1490 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1491 { 1492 struct rcar_canfd_channel *priv = 1493 container_of(napi, struct rcar_canfd_channel, napi); 1494 int num_pkts; 1495 u32 sts; 1496 u32 ch = priv->channel; 1497 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1498 1499 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1500 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1501 /* Check FIFO empty condition */ 1502 if (sts & RCANFD_RFSTS_RFEMP) 1503 break; 1504 1505 rcar_canfd_rx_pkt(priv); 1506 1507 /* Clear interrupt bit */ 1508 if (sts & RCANFD_RFSTS_RFIF) 1509 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 1510 sts & ~RCANFD_RFSTS_RFIF); 1511 } 1512 1513 /* All packets processed */ 1514 if (num_pkts < quota) { 1515 napi_complete_done(napi, num_pkts); 1516 /* Enable Rx FIFO interrupts */ 1517 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), 1518 RCANFD_RFCC_RFIE); 1519 } 1520 return num_pkts; 1521 } 1522 1523 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1524 { 1525 int err; 1526 1527 switch (mode) { 1528 case CAN_MODE_START: 1529 err = rcar_canfd_start(ndev); 1530 if (err) 1531 return err; 1532 netif_wake_queue(ndev); 1533 return 0; 1534 default: 1535 return -EOPNOTSUPP; 1536 } 1537 } 1538 1539 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1540 struct can_berr_counter *bec) 1541 { 1542 struct rcar_canfd_channel *priv = netdev_priv(dev); 1543 u32 val, ch = priv->channel; 1544 1545 /* Peripheral clock is already enabled in probe */ 1546 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1547 bec->txerr = RCANFD_CSTS_TECCNT(val); 1548 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1549 return 0; 1550 } 1551 1552 static const struct net_device_ops rcar_canfd_netdev_ops = { 1553 .ndo_open = rcar_canfd_open, 1554 .ndo_stop = rcar_canfd_close, 1555 .ndo_start_xmit = rcar_canfd_start_xmit, 1556 .ndo_change_mtu = can_change_mtu, 1557 }; 1558 1559 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1560 u32 fcan_freq) 1561 { 1562 struct platform_device *pdev = gpriv->pdev; 1563 struct rcar_canfd_channel *priv; 1564 struct net_device *ndev; 1565 int err = -ENODEV; 1566 1567 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1568 if (!ndev) { 1569 dev_err(&pdev->dev, "alloc_candev() failed\n"); 1570 err = -ENOMEM; 1571 goto fail; 1572 } 1573 priv = netdev_priv(ndev); 1574 1575 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1576 ndev->flags |= IFF_ECHO; 1577 priv->ndev = ndev; 1578 priv->base = gpriv->base; 1579 priv->channel = ch; 1580 priv->can.clock.freq = fcan_freq; 1581 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq); 1582 1583 if (gpriv->fdmode) { 1584 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1585 priv->can.data_bittiming_const = 1586 &rcar_canfd_data_bittiming_const; 1587 1588 /* Controller starts in CAN FD only mode */ 1589 can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1590 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1591 } else { 1592 /* Controller starts in Classical CAN only mode */ 1593 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1594 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1595 } 1596 1597 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1598 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1599 priv->gpriv = gpriv; 1600 SET_NETDEV_DEV(ndev, &pdev->dev); 1601 1602 netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll, 1603 RCANFD_NAPI_WEIGHT); 1604 err = register_candev(ndev); 1605 if (err) { 1606 dev_err(&pdev->dev, 1607 "register_candev() failed, error %d\n", err); 1608 goto fail_candev; 1609 } 1610 spin_lock_init(&priv->tx_lock); 1611 devm_can_led_init(ndev); 1612 gpriv->ch[priv->channel] = priv; 1613 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel); 1614 return 0; 1615 1616 fail_candev: 1617 netif_napi_del(&priv->napi); 1618 free_candev(ndev); 1619 fail: 1620 return err; 1621 } 1622 1623 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1624 { 1625 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1626 1627 if (priv) { 1628 unregister_candev(priv->ndev); 1629 netif_napi_del(&priv->napi); 1630 free_candev(priv->ndev); 1631 } 1632 } 1633 1634 static int rcar_canfd_probe(struct platform_device *pdev) 1635 { 1636 struct resource *mem; 1637 void __iomem *addr; 1638 u32 sts, ch, fcan_freq; 1639 struct rcar_canfd_global *gpriv; 1640 struct device_node *of_child; 1641 unsigned long channels_mask = 0; 1642 int err, ch_irq, g_irq; 1643 bool fdmode = true; /* CAN FD only mode - default */ 1644 1645 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd")) 1646 fdmode = false; /* Classical CAN only mode */ 1647 1648 of_child = of_get_child_by_name(pdev->dev.of_node, "channel0"); 1649 if (of_child && of_device_is_available(of_child)) 1650 channels_mask |= BIT(0); /* Channel 0 */ 1651 1652 of_child = of_get_child_by_name(pdev->dev.of_node, "channel1"); 1653 if (of_child && of_device_is_available(of_child)) 1654 channels_mask |= BIT(1); /* Channel 1 */ 1655 1656 ch_irq = platform_get_irq(pdev, 0); 1657 if (ch_irq < 0) { 1658 dev_err(&pdev->dev, "no Channel IRQ resource\n"); 1659 err = ch_irq; 1660 goto fail_dev; 1661 } 1662 1663 g_irq = platform_get_irq(pdev, 1); 1664 if (g_irq < 0) { 1665 dev_err(&pdev->dev, "no Global IRQ resource\n"); 1666 err = g_irq; 1667 goto fail_dev; 1668 } 1669 1670 /* Global controller context */ 1671 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL); 1672 if (!gpriv) { 1673 err = -ENOMEM; 1674 goto fail_dev; 1675 } 1676 gpriv->pdev = pdev; 1677 gpriv->channels_mask = channels_mask; 1678 gpriv->fdmode = fdmode; 1679 1680 /* Peripheral clock */ 1681 gpriv->clkp = devm_clk_get(&pdev->dev, "fck"); 1682 if (IS_ERR(gpriv->clkp)) { 1683 err = PTR_ERR(gpriv->clkp); 1684 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n", 1685 err); 1686 goto fail_dev; 1687 } 1688 1689 /* fCAN clock: Pick External clock. If not available fallback to 1690 * CANFD clock 1691 */ 1692 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1693 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1694 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd"); 1695 if (IS_ERR(gpriv->can_clk)) { 1696 err = PTR_ERR(gpriv->can_clk); 1697 dev_err(&pdev->dev, 1698 "cannot get canfd clock, error %d\n", err); 1699 goto fail_dev; 1700 } 1701 gpriv->fcan = RCANFD_CANFDCLK; 1702 1703 } else { 1704 gpriv->fcan = RCANFD_EXTCLK; 1705 } 1706 fcan_freq = clk_get_rate(gpriv->can_clk); 1707 1708 if (gpriv->fcan == RCANFD_CANFDCLK) 1709 /* CANFD clock is further divided by (1/2) within the IP */ 1710 fcan_freq /= 2; 1711 1712 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1713 addr = devm_ioremap_resource(&pdev->dev, mem); 1714 if (IS_ERR(addr)) { 1715 err = PTR_ERR(addr); 1716 goto fail_dev; 1717 } 1718 gpriv->base = addr; 1719 1720 /* Request IRQ that's common for both channels */ 1721 err = devm_request_irq(&pdev->dev, ch_irq, 1722 rcar_canfd_channel_interrupt, 0, 1723 "canfd.chn", gpriv); 1724 if (err) { 1725 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1726 ch_irq, err); 1727 goto fail_dev; 1728 } 1729 err = devm_request_irq(&pdev->dev, g_irq, 1730 rcar_canfd_global_interrupt, 0, 1731 "canfd.gbl", gpriv); 1732 if (err) { 1733 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1734 g_irq, err); 1735 goto fail_dev; 1736 } 1737 1738 /* Enable peripheral clock for register access */ 1739 err = clk_prepare_enable(gpriv->clkp); 1740 if (err) { 1741 dev_err(&pdev->dev, 1742 "failed to enable peripheral clock, error %d\n", err); 1743 goto fail_dev; 1744 } 1745 1746 err = rcar_canfd_reset_controller(gpriv); 1747 if (err) { 1748 dev_err(&pdev->dev, "reset controller failed\n"); 1749 goto fail_clk; 1750 } 1751 1752 /* Controller in Global reset & Channel reset mode */ 1753 rcar_canfd_configure_controller(gpriv); 1754 1755 /* Configure per channel attributes */ 1756 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1757 /* Configure Channel's Rx fifo */ 1758 rcar_canfd_configure_rx(gpriv, ch); 1759 1760 /* Configure Channel's Tx (Common) fifo */ 1761 rcar_canfd_configure_tx(gpriv, ch); 1762 1763 /* Configure receive rules */ 1764 rcar_canfd_configure_afl_rules(gpriv, ch); 1765 } 1766 1767 /* Configure common interrupts */ 1768 rcar_canfd_enable_global_interrupts(gpriv); 1769 1770 /* Start Global operation mode */ 1771 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 1772 RCANFD_GCTR_GMDC_GOPM); 1773 1774 /* Verify mode change */ 1775 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 1776 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 1777 if (err) { 1778 dev_err(&pdev->dev, "global operational mode failed\n"); 1779 goto fail_mode; 1780 } 1781 1782 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1783 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); 1784 if (err) 1785 goto fail_channel; 1786 } 1787 1788 platform_set_drvdata(pdev, gpriv); 1789 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n", 1790 gpriv->fcan, gpriv->fdmode); 1791 return 0; 1792 1793 fail_channel: 1794 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1795 rcar_canfd_channel_remove(gpriv, ch); 1796 fail_mode: 1797 rcar_canfd_disable_global_interrupts(gpriv); 1798 fail_clk: 1799 clk_disable_unprepare(gpriv->clkp); 1800 fail_dev: 1801 return err; 1802 } 1803 1804 static int rcar_canfd_remove(struct platform_device *pdev) 1805 { 1806 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 1807 u32 ch; 1808 1809 rcar_canfd_reset_controller(gpriv); 1810 rcar_canfd_disable_global_interrupts(gpriv); 1811 1812 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1813 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 1814 rcar_canfd_channel_remove(gpriv, ch); 1815 } 1816 1817 /* Enter global sleep mode */ 1818 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 1819 clk_disable_unprepare(gpriv->clkp); 1820 return 0; 1821 } 1822 1823 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 1824 { 1825 return 0; 1826 } 1827 1828 static int __maybe_unused rcar_canfd_resume(struct device *dev) 1829 { 1830 return 0; 1831 } 1832 1833 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 1834 rcar_canfd_resume); 1835 1836 static const struct of_device_id rcar_canfd_of_table[] = { 1837 { .compatible = "renesas,rcar-gen3-canfd" }, 1838 { } 1839 }; 1840 1841 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 1842 1843 static struct platform_driver rcar_canfd_driver = { 1844 .driver = { 1845 .name = RCANFD_DRV_NAME, 1846 .of_match_table = of_match_ptr(rcar_canfd_of_table), 1847 .pm = &rcar_canfd_pm_ops, 1848 }, 1849 .probe = rcar_canfd_probe, 1850 .remove = rcar_canfd_remove, 1851 }; 1852 1853 module_platform_driver(rcar_canfd_driver); 1854 1855 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 1856 MODULE_LICENSE("GPL"); 1857 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 1858 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 1859