1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitmap.h> 25 #include <linux/bitops.h> 26 #include <linux/can/dev.h> 27 #include <linux/clk.h> 28 #include <linux/errno.h> 29 #include <linux/ethtool.h> 30 #include <linux/interrupt.h> 31 #include <linux/iopoll.h> 32 #include <linux/kernel.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/netdevice.h> 36 #include <linux/of.h> 37 #include <linux/phy/phy.h> 38 #include <linux/platform_device.h> 39 #include <linux/reset.h> 40 #include <linux/types.h> 41 42 #define RCANFD_DRV_NAME "rcar_canfd" 43 44 /* Global register bits */ 45 46 /* RSCFDnCFDGRMCFG */ 47 #define RCANFD_GRMCFG_RCMC BIT(0) 48 49 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 50 #define RCANFD_GCFG_EEFE BIT(6) 51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 52 #define RCANFD_GCFG_DCS BIT(4) 53 #define RCANFD_GCFG_DCE BIT(1) 54 #define RCANFD_GCFG_TPRI BIT(0) 55 56 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 57 #define RCANFD_GCTR_TSRST BIT(16) 58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 59 #define RCANFD_GCTR_THLEIE BIT(10) 60 #define RCANFD_GCTR_MEIE BIT(9) 61 #define RCANFD_GCTR_DEIE BIT(8) 62 #define RCANFD_GCTR_GSLPR BIT(2) 63 #define RCANFD_GCTR_GMDC_MASK (0x3) 64 #define RCANFD_GCTR_GMDC_GOPM (0x0) 65 #define RCANFD_GCTR_GMDC_GRESET (0x1) 66 #define RCANFD_GCTR_GMDC_GTEST (0x2) 67 68 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 69 #define RCANFD_GSTS_GRAMINIT BIT(3) 70 #define RCANFD_GSTS_GSLPSTS BIT(2) 71 #define RCANFD_GSTS_GHLTSTS BIT(1) 72 #define RCANFD_GSTS_GRSTSTS BIT(0) 73 /* Non-operational status */ 74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 75 76 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16) 78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch)) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \ 86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \ 87 RCANFD_GERFL_MES | \ 88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))) 89 90 /* AFL Rx rules registers */ 91 92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \ 94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \ 95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) 96 97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \ 98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \ 99 reg_gen4(gpriv, 0x1ff, 0xff)) 100 101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 102 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f)) 104 105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 106 #define RCANFD_GAFLID_GAFLLB BIT(29) 107 108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 110 111 /* Channel register bits */ 112 113 /* RSCFDnCmCFG - Classical CAN only */ 114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 118 119 /* RSCFDnCFDCmNCFG - CAN FD only */ 120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24)) 122 123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16)) 125 126 #define RCANFD_NCFG_NSJW(gpriv, x) \ 127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11)) 128 129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 130 131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 132 #define RCANFD_CCTR_CTME BIT(24) 133 #define RCANFD_CCTR_ERRD BIT(23) 134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 138 #define RCANFD_CCTR_TDCVFIE BIT(19) 139 #define RCANFD_CCTR_SOCOIE BIT(18) 140 #define RCANFD_CCTR_EOCOIE BIT(17) 141 #define RCANFD_CCTR_TAIE BIT(16) 142 #define RCANFD_CCTR_ALIE BIT(15) 143 #define RCANFD_CCTR_BLIE BIT(14) 144 #define RCANFD_CCTR_OLIE BIT(13) 145 #define RCANFD_CCTR_BORIE BIT(12) 146 #define RCANFD_CCTR_BOEIE BIT(11) 147 #define RCANFD_CCTR_EPIE BIT(10) 148 #define RCANFD_CCTR_EWIE BIT(9) 149 #define RCANFD_CCTR_BEIE BIT(8) 150 #define RCANFD_CCTR_CSLPR BIT(2) 151 #define RCANFD_CCTR_CHMDC_MASK (0x3) 152 #define RCANFD_CCTR_CHDMC_COPM (0x0) 153 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 154 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 155 156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 157 #define RCANFD_CSTS_COMSTS BIT(7) 158 #define RCANFD_CSTS_RECSTS BIT(6) 159 #define RCANFD_CSTS_TRMSTS BIT(5) 160 #define RCANFD_CSTS_BOSTS BIT(4) 161 #define RCANFD_CSTS_EPSTS BIT(3) 162 #define RCANFD_CSTS_SLPSTS BIT(2) 163 #define RCANFD_CSTS_HLTSTS BIT(1) 164 #define RCANFD_CSTS_CRSTSTS BIT(0) 165 166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 168 169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 170 #define RCANFD_CERFL_ADERR BIT(14) 171 #define RCANFD_CERFL_B0ERR BIT(13) 172 #define RCANFD_CERFL_B1ERR BIT(12) 173 #define RCANFD_CERFL_CERR BIT(11) 174 #define RCANFD_CERFL_AERR BIT(10) 175 #define RCANFD_CERFL_FERR BIT(9) 176 #define RCANFD_CERFL_SERR BIT(8) 177 #define RCANFD_CERFL_ALF BIT(7) 178 #define RCANFD_CERFL_BLF BIT(6) 179 #define RCANFD_CERFL_OVLF BIT(5) 180 #define RCANFD_CERFL_BORF BIT(4) 181 #define RCANFD_CERFL_BOEF BIT(3) 182 #define RCANFD_CERFL_EPF BIT(2) 183 #define RCANFD_CERFL_EWF BIT(1) 184 #define RCANFD_CERFL_BEF BIT(0) 185 186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 187 188 /* RSCFDnCFDCmDCFG */ 189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24) 190 191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20)) 193 194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16)) 196 197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 198 199 /* RSCFDnCFDCmFDCFG */ 200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 202 #define RCANFD_FDCFG_TDCE BIT(9) 203 #define RCANFD_FDCFG_TDCOC BIT(8) 204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 205 206 /* RSCFDnCFDRFCCx */ 207 #define RCANFD_RFCC_RFIM BIT(12) 208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 210 #define RCANFD_RFCC_RFIE BIT(1) 211 #define RCANFD_RFCC_RFE BIT(0) 212 213 /* RSCFDnCFDRFSTSx */ 214 #define RCANFD_RFSTS_RFIF BIT(3) 215 #define RCANFD_RFSTS_RFMLT BIT(2) 216 #define RCANFD_RFSTS_RFFLL BIT(1) 217 #define RCANFD_RFSTS_RFEMP BIT(0) 218 219 /* RSCFDnCFDRFIDx */ 220 #define RCANFD_RFID_RFIDE BIT(31) 221 #define RCANFD_RFID_RFRTR BIT(30) 222 223 /* RSCFDnCFDRFPTRx */ 224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 227 228 /* RSCFDnCFDRFFDSTSx */ 229 #define RCANFD_RFFDSTS_RFFDF BIT(2) 230 #define RCANFD_RFFDSTS_RFBRS BIT(1) 231 #define RCANFD_RFFDSTS_RFESI BIT(0) 232 233 /* Common FIFO bits */ 234 235 /* RSCFDnCFDCFCCk */ 236 #define RCANFD_CFCC_CFTML(gpriv, x) \ 237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20)) 238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16)) 239 #define RCANFD_CFCC_CFIM BIT(12) 240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8)) 241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 242 #define RCANFD_CFCC_CFTXIE BIT(2) 243 #define RCANFD_CFCC_CFE BIT(0) 244 245 /* RSCFDnCFDCFSTSk */ 246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 247 #define RCANFD_CFSTS_CFTXIF BIT(4) 248 #define RCANFD_CFSTS_CFMLT BIT(2) 249 #define RCANFD_CFSTS_CFFLL BIT(1) 250 #define RCANFD_CFSTS_CFEMP BIT(0) 251 252 /* RSCFDnCFDCFIDk */ 253 #define RCANFD_CFID_CFIDE BIT(31) 254 #define RCANFD_CFID_CFRTR BIT(30) 255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 256 257 /* RSCFDnCFDCFPTRk */ 258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 261 262 /* RSCFDnCFDCFFDCSTSk */ 263 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 264 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 265 #define RCANFD_CFFDCSTS_CFESI BIT(0) 266 267 /* This controller supports either Classical CAN only mode or CAN FD only mode. 268 * These modes are supported in two separate set of register maps & names. 269 * However, some of the register offsets are common for both modes. Those 270 * offsets are listed below as Common registers. 271 * 272 * The CAN FD only mode specific registers & Classical CAN only mode specific 273 * registers are listed separately. Their register names starts with 274 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 275 */ 276 277 /* Common registers */ 278 279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 287 288 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 289 #define RCANFD_GCFG (0x0084) 290 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 291 #define RCANFD_GCTR (0x0088) 292 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 293 #define RCANFD_GSTS (0x008c) 294 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 295 #define RCANFD_GERFL (0x0090) 296 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 297 #define RCANFD_GTSC (0x0094) 298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 299 #define RCANFD_GAFLECTR (0x0098) 300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2))) 302 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 303 #define RCANFD_RMNB (0x00a4) 304 /* RSCFDnCFDRMND / RSCFDnRMND */ 305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 306 307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x))) 309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 313 314 /* Common FIFO Control registers */ 315 316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 317 #define RCANFD_CFCC(gpriv, ch, idx) \ 318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx))) 319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 320 #define RCANFD_CFSTS(gpriv, ch, idx) \ 321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx))) 322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 323 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx))) 325 326 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 327 #define RCANFD_FESTS (0x0238) 328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 329 #define RCANFD_FFSTS (0x023c) 330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 331 #define RCANFD_FMSTS (0x0240) 332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 333 #define RCANFD_RFISTS (0x0244) 334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 335 #define RCANFD_CFRISTS (0x0248) 336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 337 #define RCANFD_CFTISTS (0x024c) 338 339 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 343 344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 354 355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 361 362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 368 369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 370 #define RCANFD_GTINTSTS0 (0x0460) 371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 372 #define RCANFD_GTINTSTS1 (0x0464) 373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 374 #define RCANFD_GTSTCFG (0x0468) 375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 376 #define RCANFD_GTSTCTR (0x046c) 377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 378 #define RCANFD_GLOCKK (0x047c) 379 /* RSCFDnCFDGRMCFG */ 380 #define RCANFD_GRMCFG (0x04fc) 381 382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 390 391 /* Classical CAN only mode register map */ 392 393 /* RSCFDnGAFLXXXj offset */ 394 #define RCANFD_C_GAFL_OFFSET (0x0500) 395 396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 401 402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 403 #define RCANFD_C_RFOFFSET (0x0e00) 404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 406 #define RCANFD_C_RFDF(x, df) \ 407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 408 409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 410 #define RCANFD_C_CFOFFSET (0x0e80) 411 412 #define RCANFD_C_CFID(ch, idx) \ 413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 414 415 #define RCANFD_C_CFPTR(ch, idx) \ 416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 417 418 #define RCANFD_C_CFDF(ch, idx, df) \ 419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 420 421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 426 427 /* RSCFDnTHLACCm */ 428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 429 /* RSCFDnRPGACCr */ 430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 431 432 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m))) 434 435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 436 437 /* CAN FD mode specific register map */ 438 439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m))) 441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 445 446 /* RSCFDnCFDGAFLXXXj offset */ 447 #define RCANFD_F_GAFL_OFFSET (0x1000) 448 449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 454 455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000) 457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 460 #define RCANFD_F_RFDF(gpriv, x, df) \ 461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 462 463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400) 465 466 #define RCANFD_F_CFID(gpriv, ch, idx) \ 467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 468 469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 471 472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 474 475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 477 (0x04 * (df))) 478 479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 484 485 /* RSCFDnCFDTHLACCm */ 486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 487 /* RSCFDnCFDRPGACCr */ 488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 489 490 /* Constants */ 491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 493 494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 496 497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 499 500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 502 * number is added to RFFIFO index. 503 */ 504 #define RCANFD_RFFIFO_IDX 0 505 506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 508 */ 509 #define RCANFD_CFFIFO_IDX 0 510 511 /* fCAN clock select register settings */ 512 enum rcar_canfd_fcanclk { 513 RCANFD_CANFDCLK = 0, /* CANFD clock */ 514 RCANFD_EXTCLK, /* Externally input clock */ 515 }; 516 517 struct rcar_canfd_global; 518 519 struct rcar_canfd_hw_info { 520 u8 max_channels; 521 u8 postdiv; 522 /* hardware features */ 523 unsigned shared_global_irqs:1; /* Has shared global irqs */ 524 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 525 }; 526 527 /* Channel priv data */ 528 struct rcar_canfd_channel { 529 struct can_priv can; /* Must be the first member */ 530 struct net_device *ndev; 531 struct rcar_canfd_global *gpriv; /* Controller reference */ 532 void __iomem *base; /* Register base address */ 533 struct phy *transceiver; /* Optional transceiver */ 534 struct napi_struct napi; 535 u32 tx_head; /* Incremented on xmit */ 536 u32 tx_tail; /* Incremented on xmit done */ 537 u32 channel; /* Channel number */ 538 spinlock_t tx_lock; /* To protect tx path */ 539 }; 540 541 /* Global priv data */ 542 struct rcar_canfd_global { 543 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 544 void __iomem *base; /* Register base address */ 545 struct platform_device *pdev; /* Respective platform device */ 546 struct clk *clkp; /* Peripheral clock */ 547 struct clk *can_clk; /* fCAN clock */ 548 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 549 unsigned long channels_mask; /* Enabled channels mask */ 550 bool fdmode; /* CAN FD or Classical CAN only mode */ 551 struct reset_control *rstc1; 552 struct reset_control *rstc2; 553 const struct rcar_canfd_hw_info *info; 554 }; 555 556 /* CAN FD mode nominal rate constants */ 557 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 558 .name = RCANFD_DRV_NAME, 559 .tseg1_min = 2, 560 .tseg1_max = 128, 561 .tseg2_min = 2, 562 .tseg2_max = 32, 563 .sjw_max = 32, 564 .brp_min = 1, 565 .brp_max = 1024, 566 .brp_inc = 1, 567 }; 568 569 /* CAN FD mode data rate constants */ 570 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 571 .name = RCANFD_DRV_NAME, 572 .tseg1_min = 2, 573 .tseg1_max = 16, 574 .tseg2_min = 2, 575 .tseg2_max = 8, 576 .sjw_max = 8, 577 .brp_min = 1, 578 .brp_max = 256, 579 .brp_inc = 1, 580 }; 581 582 /* Classical CAN mode bitrate constants */ 583 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 584 .name = RCANFD_DRV_NAME, 585 .tseg1_min = 4, 586 .tseg1_max = 16, 587 .tseg2_min = 2, 588 .tseg2_max = 8, 589 .sjw_max = 4, 590 .brp_min = 1, 591 .brp_max = 1024, 592 .brp_inc = 1, 593 }; 594 595 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 596 .max_channels = 2, 597 .postdiv = 2, 598 .shared_global_irqs = 1, 599 }; 600 601 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 602 .max_channels = 8, 603 .postdiv = 2, 604 .shared_global_irqs = 1, 605 }; 606 607 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 608 .max_channels = 2, 609 .postdiv = 1, 610 .multi_channel_irqs = 1, 611 }; 612 613 /* Helper functions */ 614 static inline bool is_gen4(struct rcar_canfd_global *gpriv) 615 { 616 return gpriv->info == &rcar_gen4_hw_info; 617 } 618 619 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv, 620 u32 gen4, u32 not_gen4) 621 { 622 return is_gen4(gpriv) ? gen4 : not_gen4; 623 } 624 625 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 626 { 627 u32 data = readl(reg); 628 629 data &= ~mask; 630 data |= (val & mask); 631 writel(data, reg); 632 } 633 634 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 635 { 636 return readl(base + (offset)); 637 } 638 639 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 640 { 641 writel(val, base + (offset)); 642 } 643 644 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 645 { 646 rcar_canfd_update(val, val, base + (reg)); 647 } 648 649 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 650 { 651 rcar_canfd_update(val, 0, base + (reg)); 652 } 653 654 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 655 u32 mask, u32 val) 656 { 657 rcar_canfd_update(mask, val, base + (reg)); 658 } 659 660 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 661 struct canfd_frame *cf, u32 off) 662 { 663 u32 i, lwords; 664 665 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 666 for (i = 0; i < lwords; i++) 667 *((u32 *)cf->data + i) = 668 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 669 } 670 671 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 672 struct canfd_frame *cf, u32 off) 673 { 674 u32 i, lwords; 675 676 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 677 for (i = 0; i < lwords; i++) 678 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 679 *((u32 *)cf->data + i)); 680 } 681 682 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 683 { 684 u32 i; 685 686 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 687 can_free_echo_skb(ndev, i, NULL); 688 } 689 690 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 691 { 692 if (is_gen4(gpriv)) { 693 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 694 : RCANFD_GEN4_FDCFG_CLOE; 695 696 for_each_set_bit(ch, &gpriv->channels_mask, 697 gpriv->info->max_channels) 698 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch), 699 val); 700 } else { 701 if (gpriv->fdmode) 702 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 703 RCANFD_GRMCFG_RCMC); 704 else 705 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 706 RCANFD_GRMCFG_RCMC); 707 } 708 } 709 710 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 711 { 712 u32 sts, ch; 713 int err; 714 715 /* Check RAMINIT flag as CAN RAM initialization takes place 716 * after the MCU reset 717 */ 718 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 719 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 720 if (err) { 721 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 722 return err; 723 } 724 725 /* Transition to Global Reset mode */ 726 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 727 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 728 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 729 730 /* Ensure Global reset mode */ 731 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 732 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 733 if (err) { 734 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 735 return err; 736 } 737 738 /* Reset Global error flags */ 739 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 740 741 /* Set the controller into appropriate mode */ 742 rcar_canfd_set_mode(gpriv); 743 744 /* Transition all Channels to reset mode */ 745 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 746 rcar_canfd_clear_bit(gpriv->base, 747 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 748 749 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 750 RCANFD_CCTR_CHMDC_MASK, 751 RCANFD_CCTR_CHDMC_CRESET); 752 753 /* Ensure Channel reset mode */ 754 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 755 (sts & RCANFD_CSTS_CRSTSTS), 756 2, 500000); 757 if (err) { 758 dev_dbg(&gpriv->pdev->dev, 759 "channel %u reset failed\n", ch); 760 return err; 761 } 762 } 763 return 0; 764 } 765 766 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 767 { 768 u32 cfg, ch; 769 770 /* Global configuration settings */ 771 772 /* ECC Error flag Enable */ 773 cfg = RCANFD_GCFG_EEFE; 774 775 if (gpriv->fdmode) 776 /* Truncate payload to configured message size RFPLS */ 777 cfg |= RCANFD_GCFG_CMPOC; 778 779 /* Set External Clock if selected */ 780 if (gpriv->fcan != RCANFD_CANFDCLK) 781 cfg |= RCANFD_GCFG_DCS; 782 783 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 784 785 /* Channel configuration settings */ 786 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 787 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 788 RCANFD_CCTR_ERRD); 789 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 790 RCANFD_CCTR_BOM_MASK, 791 RCANFD_CCTR_BOM_BENTRY); 792 } 793 } 794 795 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 796 u32 ch) 797 { 798 u32 cfg; 799 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 800 u32 ridx = ch + RCANFD_RFFIFO_IDX; 801 802 if (ch == 0) { 803 start = 0; /* Channel 0 always starts from 0th rule */ 804 } else { 805 /* Get number of Channel 0 rules and adjust */ 806 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch)); 807 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg); 808 } 809 810 /* Enable write access to entry */ 811 page = RCANFD_GAFL_PAGENUM(start); 812 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 813 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 814 RCANFD_GAFLECTR_AFLDAE)); 815 816 /* Write number of rules for channel */ 817 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch), 818 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules)); 819 if (is_gen4(gpriv)) 820 offset = RCANFD_GEN4_GAFL_OFFSET; 821 else if (gpriv->fdmode) 822 offset = RCANFD_F_GAFL_OFFSET; 823 else 824 offset = RCANFD_C_GAFL_OFFSET; 825 826 /* Accept all IDs */ 827 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 828 /* IDE or RTR is not considered for matching */ 829 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 830 /* Any data length accepted */ 831 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 832 /* Place the msg in corresponding Rx FIFO entry */ 833 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start), 834 RCANFD_GAFLP1_GAFLFDP(ridx)); 835 836 /* Disable write access to page */ 837 rcar_canfd_clear_bit(gpriv->base, 838 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 839 } 840 841 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 842 { 843 /* Rx FIFO is used for reception */ 844 u32 cfg; 845 u16 rfdc, rfpls; 846 847 /* Select Rx FIFO based on channel */ 848 u32 ridx = ch + RCANFD_RFFIFO_IDX; 849 850 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 851 if (gpriv->fdmode) 852 rfpls = 7; /* b111 - Max 64 bytes payload */ 853 else 854 rfpls = 0; /* b000 - Max 8 bytes payload */ 855 856 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 857 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 858 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 859 } 860 861 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 862 { 863 /* Tx/Rx(Common) FIFO configured in Tx mode is 864 * used for transmission 865 * 866 * Each channel has 3 Common FIFO dedicated to them. 867 * Use the 1st (index 0) out of 3 868 */ 869 u32 cfg; 870 u16 cftml, cfm, cfdc, cfpls; 871 872 cftml = 0; /* 0th buffer */ 873 cfm = 1; /* b01 - Transmit mode */ 874 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 875 if (gpriv->fdmode) 876 cfpls = 7; /* b111 - Max 64 bytes payload */ 877 else 878 cfpls = 0; /* b000 - Max 8 bytes payload */ 879 880 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 881 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 882 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 883 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 884 885 if (gpriv->fdmode) 886 /* Clear FD mode specific control/status register */ 887 rcar_canfd_write(gpriv->base, 888 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 889 } 890 891 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 892 { 893 u32 ctr; 894 895 /* Clear any stray error interrupt flags */ 896 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 897 898 /* Global interrupts setup */ 899 ctr = RCANFD_GCTR_MEIE; 900 if (gpriv->fdmode) 901 ctr |= RCANFD_GCTR_CFMPOFIE; 902 903 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 904 } 905 906 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 907 *gpriv) 908 { 909 /* Disable all interrupts */ 910 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 911 912 /* Clear any stray error interrupt flags */ 913 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 914 } 915 916 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 917 *priv) 918 { 919 u32 ctr, ch = priv->channel; 920 921 /* Clear any stray error flags */ 922 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 923 924 /* Channel interrupts setup */ 925 ctr = (RCANFD_CCTR_TAIE | 926 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 927 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 928 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 929 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 930 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 931 } 932 933 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 934 *priv) 935 { 936 u32 ctr, ch = priv->channel; 937 938 ctr = (RCANFD_CCTR_TAIE | 939 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 940 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 941 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 942 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 943 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 944 945 /* Clear any stray error flags */ 946 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 947 } 948 949 static void rcar_canfd_global_error(struct net_device *ndev) 950 { 951 struct rcar_canfd_channel *priv = netdev_priv(ndev); 952 struct rcar_canfd_global *gpriv = priv->gpriv; 953 struct net_device_stats *stats = &ndev->stats; 954 u32 ch = priv->channel; 955 u32 gerfl, sts; 956 u32 ridx = ch + RCANFD_RFFIFO_IDX; 957 958 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 959 if (gerfl & RCANFD_GERFL_EEF(ch)) { 960 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 961 stats->tx_dropped++; 962 } 963 if (gerfl & RCANFD_GERFL_MES) { 964 sts = rcar_canfd_read(priv->base, 965 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 966 if (sts & RCANFD_CFSTS_CFMLT) { 967 netdev_dbg(ndev, "Tx Message Lost flag\n"); 968 stats->tx_dropped++; 969 rcar_canfd_write(priv->base, 970 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 971 sts & ~RCANFD_CFSTS_CFMLT); 972 } 973 974 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 975 if (sts & RCANFD_RFSTS_RFMLT) { 976 netdev_dbg(ndev, "Rx Message Lost flag\n"); 977 stats->rx_dropped++; 978 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 979 sts & ~RCANFD_RFSTS_RFMLT); 980 } 981 } 982 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 983 /* Message Lost flag will be set for respective channel 984 * when this condition happens with counters and flags 985 * already updated. 986 */ 987 netdev_dbg(ndev, "global payload overflow interrupt\n"); 988 } 989 990 /* Clear all global error interrupts. Only affected channels bits 991 * get cleared 992 */ 993 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 994 } 995 996 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 997 u16 txerr, u16 rxerr) 998 { 999 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1000 struct net_device_stats *stats = &ndev->stats; 1001 struct can_frame *cf; 1002 struct sk_buff *skb; 1003 u32 ch = priv->channel; 1004 1005 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1006 1007 /* Propagate the error condition to the CAN stack */ 1008 skb = alloc_can_err_skb(ndev, &cf); 1009 if (!skb) { 1010 stats->rx_dropped++; 1011 return; 1012 } 1013 1014 /* Channel error interrupts */ 1015 if (cerfl & RCANFD_CERFL_BEF) { 1016 netdev_dbg(ndev, "Bus error\n"); 1017 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1018 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1019 priv->can.can_stats.bus_error++; 1020 } 1021 if (cerfl & RCANFD_CERFL_ADERR) { 1022 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1023 stats->tx_errors++; 1024 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1025 } 1026 if (cerfl & RCANFD_CERFL_B0ERR) { 1027 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1028 stats->tx_errors++; 1029 cf->data[2] |= CAN_ERR_PROT_BIT0; 1030 } 1031 if (cerfl & RCANFD_CERFL_B1ERR) { 1032 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1033 stats->tx_errors++; 1034 cf->data[2] |= CAN_ERR_PROT_BIT1; 1035 } 1036 if (cerfl & RCANFD_CERFL_CERR) { 1037 netdev_dbg(ndev, "CRC Error\n"); 1038 stats->rx_errors++; 1039 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1040 } 1041 if (cerfl & RCANFD_CERFL_AERR) { 1042 netdev_dbg(ndev, "ACK Error\n"); 1043 stats->tx_errors++; 1044 cf->can_id |= CAN_ERR_ACK; 1045 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1046 } 1047 if (cerfl & RCANFD_CERFL_FERR) { 1048 netdev_dbg(ndev, "Form Error\n"); 1049 stats->rx_errors++; 1050 cf->data[2] |= CAN_ERR_PROT_FORM; 1051 } 1052 if (cerfl & RCANFD_CERFL_SERR) { 1053 netdev_dbg(ndev, "Stuff Error\n"); 1054 stats->rx_errors++; 1055 cf->data[2] |= CAN_ERR_PROT_STUFF; 1056 } 1057 if (cerfl & RCANFD_CERFL_ALF) { 1058 netdev_dbg(ndev, "Arbitration lost Error\n"); 1059 priv->can.can_stats.arbitration_lost++; 1060 cf->can_id |= CAN_ERR_LOSTARB; 1061 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1062 } 1063 if (cerfl & RCANFD_CERFL_BLF) { 1064 netdev_dbg(ndev, "Bus Lock Error\n"); 1065 stats->rx_errors++; 1066 cf->can_id |= CAN_ERR_BUSERROR; 1067 } 1068 if (cerfl & RCANFD_CERFL_EWF) { 1069 netdev_dbg(ndev, "Error warning interrupt\n"); 1070 priv->can.state = CAN_STATE_ERROR_WARNING; 1071 priv->can.can_stats.error_warning++; 1072 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1073 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1074 CAN_ERR_CRTL_RX_WARNING; 1075 cf->data[6] = txerr; 1076 cf->data[7] = rxerr; 1077 } 1078 if (cerfl & RCANFD_CERFL_EPF) { 1079 netdev_dbg(ndev, "Error passive interrupt\n"); 1080 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1081 priv->can.can_stats.error_passive++; 1082 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1083 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1084 CAN_ERR_CRTL_RX_PASSIVE; 1085 cf->data[6] = txerr; 1086 cf->data[7] = rxerr; 1087 } 1088 if (cerfl & RCANFD_CERFL_BOEF) { 1089 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1090 rcar_canfd_tx_failure_cleanup(ndev); 1091 priv->can.state = CAN_STATE_BUS_OFF; 1092 priv->can.can_stats.bus_off++; 1093 can_bus_off(ndev); 1094 cf->can_id |= CAN_ERR_BUSOFF; 1095 } 1096 if (cerfl & RCANFD_CERFL_OVLF) { 1097 netdev_dbg(ndev, 1098 "Overload Frame Transmission error interrupt\n"); 1099 stats->tx_errors++; 1100 cf->can_id |= CAN_ERR_PROT; 1101 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1102 } 1103 1104 /* Clear channel error interrupts that are handled */ 1105 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1106 RCANFD_CERFL_ERR(~cerfl)); 1107 netif_rx(skb); 1108 } 1109 1110 static void rcar_canfd_tx_done(struct net_device *ndev) 1111 { 1112 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1113 struct rcar_canfd_global *gpriv = priv->gpriv; 1114 struct net_device_stats *stats = &ndev->stats; 1115 u32 sts; 1116 unsigned long flags; 1117 u32 ch = priv->channel; 1118 1119 do { 1120 u8 unsent, sent; 1121 1122 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1123 stats->tx_packets++; 1124 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1125 1126 spin_lock_irqsave(&priv->tx_lock, flags); 1127 priv->tx_tail++; 1128 sts = rcar_canfd_read(priv->base, 1129 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1130 unsent = RCANFD_CFSTS_CFMC(sts); 1131 1132 /* Wake producer only when there is room */ 1133 if (unsent != RCANFD_FIFO_DEPTH) 1134 netif_wake_queue(ndev); 1135 1136 if (priv->tx_head - priv->tx_tail <= unsent) { 1137 spin_unlock_irqrestore(&priv->tx_lock, flags); 1138 break; 1139 } 1140 spin_unlock_irqrestore(&priv->tx_lock, flags); 1141 1142 } while (1); 1143 1144 /* Clear interrupt */ 1145 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1146 sts & ~RCANFD_CFSTS_CFTXIF); 1147 } 1148 1149 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1150 { 1151 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1152 struct net_device *ndev = priv->ndev; 1153 u32 gerfl; 1154 1155 /* Handle global error interrupts */ 1156 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1157 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1158 rcar_canfd_global_error(ndev); 1159 } 1160 1161 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1162 { 1163 struct rcar_canfd_global *gpriv = dev_id; 1164 u32 ch; 1165 1166 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1167 rcar_canfd_handle_global_err(gpriv, ch); 1168 1169 return IRQ_HANDLED; 1170 } 1171 1172 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1173 { 1174 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1175 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1176 u32 sts, cc; 1177 1178 /* Handle Rx interrupts */ 1179 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1180 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1181 if (likely(sts & RCANFD_RFSTS_RFIF && 1182 cc & RCANFD_RFCC_RFIE)) { 1183 if (napi_schedule_prep(&priv->napi)) { 1184 /* Disable Rx FIFO interrupts */ 1185 rcar_canfd_clear_bit(priv->base, 1186 RCANFD_RFCC(gpriv, ridx), 1187 RCANFD_RFCC_RFIE); 1188 __napi_schedule(&priv->napi); 1189 } 1190 } 1191 } 1192 1193 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1194 { 1195 struct rcar_canfd_global *gpriv = dev_id; 1196 u32 ch; 1197 1198 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1199 rcar_canfd_handle_global_receive(gpriv, ch); 1200 1201 return IRQ_HANDLED; 1202 } 1203 1204 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1205 { 1206 struct rcar_canfd_global *gpriv = dev_id; 1207 u32 ch; 1208 1209 /* Global error interrupts still indicate a condition specific 1210 * to a channel. RxFIFO interrupt is a global interrupt. 1211 */ 1212 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1213 rcar_canfd_handle_global_err(gpriv, ch); 1214 rcar_canfd_handle_global_receive(gpriv, ch); 1215 } 1216 return IRQ_HANDLED; 1217 } 1218 1219 static void rcar_canfd_state_change(struct net_device *ndev, 1220 u16 txerr, u16 rxerr) 1221 { 1222 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1223 struct net_device_stats *stats = &ndev->stats; 1224 enum can_state rx_state, tx_state, state = priv->can.state; 1225 struct can_frame *cf; 1226 struct sk_buff *skb; 1227 1228 /* Handle transition from error to normal states */ 1229 if (txerr < 96 && rxerr < 96) 1230 state = CAN_STATE_ERROR_ACTIVE; 1231 else if (txerr < 128 && rxerr < 128) 1232 state = CAN_STATE_ERROR_WARNING; 1233 1234 if (state != priv->can.state) { 1235 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1236 state, priv->can.state, txerr, rxerr); 1237 skb = alloc_can_err_skb(ndev, &cf); 1238 if (!skb) { 1239 stats->rx_dropped++; 1240 return; 1241 } 1242 tx_state = txerr >= rxerr ? state : 0; 1243 rx_state = txerr <= rxerr ? state : 0; 1244 1245 can_change_state(ndev, cf, tx_state, rx_state); 1246 netif_rx(skb); 1247 } 1248 } 1249 1250 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1251 { 1252 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1253 struct net_device *ndev = priv->ndev; 1254 u32 sts; 1255 1256 /* Handle Tx interrupts */ 1257 sts = rcar_canfd_read(priv->base, 1258 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1259 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1260 rcar_canfd_tx_done(ndev); 1261 } 1262 1263 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1264 { 1265 struct rcar_canfd_channel *priv = dev_id; 1266 1267 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1268 1269 return IRQ_HANDLED; 1270 } 1271 1272 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1273 { 1274 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1275 struct net_device *ndev = priv->ndev; 1276 u16 txerr, rxerr; 1277 u32 sts, cerfl; 1278 1279 /* Handle channel error interrupts */ 1280 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1281 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1282 txerr = RCANFD_CSTS_TECCNT(sts); 1283 rxerr = RCANFD_CSTS_RECCNT(sts); 1284 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1285 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1286 1287 /* Handle state change to lower states */ 1288 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1289 priv->can.state != CAN_STATE_BUS_OFF)) 1290 rcar_canfd_state_change(ndev, txerr, rxerr); 1291 } 1292 1293 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1294 { 1295 struct rcar_canfd_channel *priv = dev_id; 1296 1297 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1298 1299 return IRQ_HANDLED; 1300 } 1301 1302 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1303 { 1304 struct rcar_canfd_global *gpriv = dev_id; 1305 u32 ch; 1306 1307 /* Common FIFO is a per channel resource */ 1308 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1309 rcar_canfd_handle_channel_err(gpriv, ch); 1310 rcar_canfd_handle_channel_tx(gpriv, ch); 1311 } 1312 1313 return IRQ_HANDLED; 1314 } 1315 1316 static void rcar_canfd_set_bittiming(struct net_device *dev) 1317 { 1318 struct rcar_canfd_channel *priv = netdev_priv(dev); 1319 struct rcar_canfd_global *gpriv = priv->gpriv; 1320 const struct can_bittiming *bt = &priv->can.bittiming; 1321 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1322 u16 brp, sjw, tseg1, tseg2; 1323 u32 cfg; 1324 u32 ch = priv->channel; 1325 1326 /* Nominal bit timing settings */ 1327 brp = bt->brp - 1; 1328 sjw = bt->sjw - 1; 1329 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1330 tseg2 = bt->phase_seg2 - 1; 1331 1332 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1333 /* CAN FD only mode */ 1334 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1335 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1336 1337 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1338 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1339 brp, sjw, tseg1, tseg2); 1340 1341 /* Data bit timing settings */ 1342 brp = dbt->brp - 1; 1343 sjw = dbt->sjw - 1; 1344 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1345 tseg2 = dbt->phase_seg2 - 1; 1346 1347 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1348 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1349 1350 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg); 1351 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1352 brp, sjw, tseg1, tseg2); 1353 } else { 1354 /* Classical CAN only mode */ 1355 if (is_gen4(gpriv)) { 1356 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | 1357 RCANFD_NCFG_NBRP(brp) | 1358 RCANFD_NCFG_NSJW(gpriv, sjw) | 1359 RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1360 } else { 1361 cfg = (RCANFD_CFG_TSEG1(tseg1) | 1362 RCANFD_CFG_BRP(brp) | 1363 RCANFD_CFG_SJW(sjw) | 1364 RCANFD_CFG_TSEG2(tseg2)); 1365 } 1366 1367 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1368 netdev_dbg(priv->ndev, 1369 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1370 brp, sjw, tseg1, tseg2); 1371 } 1372 } 1373 1374 static int rcar_canfd_start(struct net_device *ndev) 1375 { 1376 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1377 struct rcar_canfd_global *gpriv = priv->gpriv; 1378 int err = -EOPNOTSUPP; 1379 u32 sts, ch = priv->channel; 1380 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1381 1382 rcar_canfd_set_bittiming(ndev); 1383 1384 rcar_canfd_enable_channel_interrupts(priv); 1385 1386 /* Set channel to Operational mode */ 1387 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1388 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1389 1390 /* Verify channel mode change */ 1391 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1392 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1393 if (err) { 1394 netdev_err(ndev, "channel %u communication state failed\n", ch); 1395 goto fail_mode_change; 1396 } 1397 1398 /* Enable Common & Rx FIFO */ 1399 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1400 RCANFD_CFCC_CFE); 1401 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1402 1403 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1404 return 0; 1405 1406 fail_mode_change: 1407 rcar_canfd_disable_channel_interrupts(priv); 1408 return err; 1409 } 1410 1411 static int rcar_canfd_open(struct net_device *ndev) 1412 { 1413 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1414 struct rcar_canfd_global *gpriv = priv->gpriv; 1415 int err; 1416 1417 err = phy_power_on(priv->transceiver); 1418 if (err) { 1419 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1420 return err; 1421 } 1422 1423 /* Peripheral clock is already enabled in probe */ 1424 err = clk_prepare_enable(gpriv->can_clk); 1425 if (err) { 1426 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1427 goto out_phy; 1428 } 1429 1430 err = open_candev(ndev); 1431 if (err) { 1432 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1433 goto out_can_clock; 1434 } 1435 1436 napi_enable(&priv->napi); 1437 err = rcar_canfd_start(ndev); 1438 if (err) 1439 goto out_close; 1440 netif_start_queue(ndev); 1441 return 0; 1442 out_close: 1443 napi_disable(&priv->napi); 1444 close_candev(ndev); 1445 out_can_clock: 1446 clk_disable_unprepare(gpriv->can_clk); 1447 out_phy: 1448 phy_power_off(priv->transceiver); 1449 return err; 1450 } 1451 1452 static void rcar_canfd_stop(struct net_device *ndev) 1453 { 1454 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1455 struct rcar_canfd_global *gpriv = priv->gpriv; 1456 int err; 1457 u32 sts, ch = priv->channel; 1458 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1459 1460 /* Transition to channel reset mode */ 1461 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1462 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1463 1464 /* Check Channel reset mode */ 1465 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1466 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1467 if (err) 1468 netdev_err(ndev, "channel %u reset failed\n", ch); 1469 1470 rcar_canfd_disable_channel_interrupts(priv); 1471 1472 /* Disable Common & Rx FIFO */ 1473 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1474 RCANFD_CFCC_CFE); 1475 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1476 1477 /* Set the state as STOPPED */ 1478 priv->can.state = CAN_STATE_STOPPED; 1479 } 1480 1481 static int rcar_canfd_close(struct net_device *ndev) 1482 { 1483 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1484 struct rcar_canfd_global *gpriv = priv->gpriv; 1485 1486 netif_stop_queue(ndev); 1487 rcar_canfd_stop(ndev); 1488 napi_disable(&priv->napi); 1489 clk_disable_unprepare(gpriv->can_clk); 1490 close_candev(ndev); 1491 phy_power_off(priv->transceiver); 1492 return 0; 1493 } 1494 1495 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1496 struct net_device *ndev) 1497 { 1498 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1499 struct rcar_canfd_global *gpriv = priv->gpriv; 1500 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1501 u32 sts = 0, id, dlc; 1502 unsigned long flags; 1503 u32 ch = priv->channel; 1504 1505 if (can_dev_dropped_skb(ndev, skb)) 1506 return NETDEV_TX_OK; 1507 1508 if (cf->can_id & CAN_EFF_FLAG) { 1509 id = cf->can_id & CAN_EFF_MASK; 1510 id |= RCANFD_CFID_CFIDE; 1511 } else { 1512 id = cf->can_id & CAN_SFF_MASK; 1513 } 1514 1515 if (cf->can_id & CAN_RTR_FLAG) 1516 id |= RCANFD_CFID_CFRTR; 1517 1518 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1519 1520 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1521 rcar_canfd_write(priv->base, 1522 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1523 rcar_canfd_write(priv->base, 1524 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1525 1526 if (can_is_canfd_skb(skb)) { 1527 /* CAN FD frame format */ 1528 sts |= RCANFD_CFFDCSTS_CFFDF; 1529 if (cf->flags & CANFD_BRS) 1530 sts |= RCANFD_CFFDCSTS_CFBRS; 1531 1532 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1533 sts |= RCANFD_CFFDCSTS_CFESI; 1534 } 1535 1536 rcar_canfd_write(priv->base, 1537 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1538 1539 rcar_canfd_put_data(priv, cf, 1540 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1541 } else { 1542 rcar_canfd_write(priv->base, 1543 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1544 rcar_canfd_write(priv->base, 1545 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1546 rcar_canfd_put_data(priv, cf, 1547 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1548 } 1549 1550 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1551 1552 spin_lock_irqsave(&priv->tx_lock, flags); 1553 priv->tx_head++; 1554 1555 /* Stop the queue if we've filled all FIFO entries */ 1556 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1557 netif_stop_queue(ndev); 1558 1559 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1560 * pointer for the Common FIFO 1561 */ 1562 rcar_canfd_write(priv->base, 1563 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1564 1565 spin_unlock_irqrestore(&priv->tx_lock, flags); 1566 return NETDEV_TX_OK; 1567 } 1568 1569 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1570 { 1571 struct net_device_stats *stats = &priv->ndev->stats; 1572 struct rcar_canfd_global *gpriv = priv->gpriv; 1573 struct canfd_frame *cf; 1574 struct sk_buff *skb; 1575 u32 sts = 0, id, dlc; 1576 u32 ch = priv->channel; 1577 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1578 1579 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1580 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1581 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1582 1583 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1584 1585 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1586 sts & RCANFD_RFFDSTS_RFFDF) 1587 skb = alloc_canfd_skb(priv->ndev, &cf); 1588 else 1589 skb = alloc_can_skb(priv->ndev, 1590 (struct can_frame **)&cf); 1591 } else { 1592 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1593 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1594 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1595 } 1596 1597 if (!skb) { 1598 stats->rx_dropped++; 1599 return; 1600 } 1601 1602 if (id & RCANFD_RFID_RFIDE) 1603 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1604 else 1605 cf->can_id = id & CAN_SFF_MASK; 1606 1607 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1608 if (sts & RCANFD_RFFDSTS_RFFDF) 1609 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1610 else 1611 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1612 1613 if (sts & RCANFD_RFFDSTS_RFESI) { 1614 cf->flags |= CANFD_ESI; 1615 netdev_dbg(priv->ndev, "ESI Error\n"); 1616 } 1617 1618 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1619 cf->can_id |= CAN_RTR_FLAG; 1620 } else { 1621 if (sts & RCANFD_RFFDSTS_RFBRS) 1622 cf->flags |= CANFD_BRS; 1623 1624 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1625 } 1626 } else { 1627 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1628 if (id & RCANFD_RFID_RFRTR) 1629 cf->can_id |= CAN_RTR_FLAG; 1630 else if (is_gen4(gpriv)) 1631 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1632 else 1633 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1634 } 1635 1636 /* Write 0xff to RFPC to increment the CPU-side 1637 * pointer of the Rx FIFO 1638 */ 1639 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1640 1641 if (!(cf->can_id & CAN_RTR_FLAG)) 1642 stats->rx_bytes += cf->len; 1643 stats->rx_packets++; 1644 netif_receive_skb(skb); 1645 } 1646 1647 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1648 { 1649 struct rcar_canfd_channel *priv = 1650 container_of(napi, struct rcar_canfd_channel, napi); 1651 struct rcar_canfd_global *gpriv = priv->gpriv; 1652 int num_pkts; 1653 u32 sts; 1654 u32 ch = priv->channel; 1655 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1656 1657 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1658 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1659 /* Check FIFO empty condition */ 1660 if (sts & RCANFD_RFSTS_RFEMP) 1661 break; 1662 1663 rcar_canfd_rx_pkt(priv); 1664 1665 /* Clear interrupt bit */ 1666 if (sts & RCANFD_RFSTS_RFIF) 1667 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1668 sts & ~RCANFD_RFSTS_RFIF); 1669 } 1670 1671 /* All packets processed */ 1672 if (num_pkts < quota) { 1673 if (napi_complete_done(napi, num_pkts)) { 1674 /* Enable Rx FIFO interrupts */ 1675 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1676 RCANFD_RFCC_RFIE); 1677 } 1678 } 1679 return num_pkts; 1680 } 1681 1682 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1683 { 1684 int err; 1685 1686 switch (mode) { 1687 case CAN_MODE_START: 1688 err = rcar_canfd_start(ndev); 1689 if (err) 1690 return err; 1691 netif_wake_queue(ndev); 1692 return 0; 1693 default: 1694 return -EOPNOTSUPP; 1695 } 1696 } 1697 1698 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1699 struct can_berr_counter *bec) 1700 { 1701 struct rcar_canfd_channel *priv = netdev_priv(dev); 1702 u32 val, ch = priv->channel; 1703 1704 /* Peripheral clock is already enabled in probe */ 1705 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1706 bec->txerr = RCANFD_CSTS_TECCNT(val); 1707 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1708 return 0; 1709 } 1710 1711 static const struct net_device_ops rcar_canfd_netdev_ops = { 1712 .ndo_open = rcar_canfd_open, 1713 .ndo_stop = rcar_canfd_close, 1714 .ndo_start_xmit = rcar_canfd_start_xmit, 1715 .ndo_change_mtu = can_change_mtu, 1716 }; 1717 1718 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1719 .get_ts_info = ethtool_op_get_ts_info, 1720 }; 1721 1722 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1723 u32 fcan_freq, struct phy *transceiver) 1724 { 1725 const struct rcar_canfd_hw_info *info = gpriv->info; 1726 struct platform_device *pdev = gpriv->pdev; 1727 struct device *dev = &pdev->dev; 1728 struct rcar_canfd_channel *priv; 1729 struct net_device *ndev; 1730 int err = -ENODEV; 1731 1732 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1733 if (!ndev) 1734 return -ENOMEM; 1735 1736 priv = netdev_priv(ndev); 1737 1738 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1739 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1740 ndev->flags |= IFF_ECHO; 1741 priv->ndev = ndev; 1742 priv->base = gpriv->base; 1743 priv->transceiver = transceiver; 1744 priv->channel = ch; 1745 priv->gpriv = gpriv; 1746 if (transceiver) 1747 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1748 priv->can.clock.freq = fcan_freq; 1749 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1750 1751 if (info->multi_channel_irqs) { 1752 char *irq_name; 1753 int err_irq; 1754 int tx_irq; 1755 1756 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1757 if (err_irq < 0) { 1758 err = err_irq; 1759 goto fail; 1760 } 1761 1762 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1763 if (tx_irq < 0) { 1764 err = tx_irq; 1765 goto fail; 1766 } 1767 1768 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1769 ch); 1770 if (!irq_name) { 1771 err = -ENOMEM; 1772 goto fail; 1773 } 1774 err = devm_request_irq(dev, err_irq, 1775 rcar_canfd_channel_err_interrupt, 0, 1776 irq_name, priv); 1777 if (err) { 1778 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1779 err_irq, ERR_PTR(err)); 1780 goto fail; 1781 } 1782 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1783 ch); 1784 if (!irq_name) { 1785 err = -ENOMEM; 1786 goto fail; 1787 } 1788 err = devm_request_irq(dev, tx_irq, 1789 rcar_canfd_channel_tx_interrupt, 0, 1790 irq_name, priv); 1791 if (err) { 1792 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1793 tx_irq, ERR_PTR(err)); 1794 goto fail; 1795 } 1796 } 1797 1798 if (gpriv->fdmode) { 1799 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1800 priv->can.data_bittiming_const = 1801 &rcar_canfd_data_bittiming_const; 1802 1803 /* Controller starts in CAN FD only mode */ 1804 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1805 if (err) 1806 goto fail; 1807 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1808 } else { 1809 /* Controller starts in Classical CAN only mode */ 1810 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1811 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1812 } 1813 1814 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1815 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1816 SET_NETDEV_DEV(ndev, dev); 1817 1818 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1819 RCANFD_NAPI_WEIGHT); 1820 spin_lock_init(&priv->tx_lock); 1821 gpriv->ch[priv->channel] = priv; 1822 err = register_candev(ndev); 1823 if (err) { 1824 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1825 goto fail_candev; 1826 } 1827 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1828 return 0; 1829 1830 fail_candev: 1831 netif_napi_del(&priv->napi); 1832 fail: 1833 free_candev(ndev); 1834 return err; 1835 } 1836 1837 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1838 { 1839 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1840 1841 if (priv) { 1842 unregister_candev(priv->ndev); 1843 netif_napi_del(&priv->napi); 1844 free_candev(priv->ndev); 1845 } 1846 } 1847 1848 static int rcar_canfd_probe(struct platform_device *pdev) 1849 { 1850 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1851 const struct rcar_canfd_hw_info *info; 1852 struct device *dev = &pdev->dev; 1853 void __iomem *addr; 1854 u32 sts, ch, fcan_freq; 1855 struct rcar_canfd_global *gpriv; 1856 struct device_node *of_child; 1857 unsigned long channels_mask = 0; 1858 int err, ch_irq, g_irq; 1859 int g_err_irq, g_recc_irq; 1860 bool fdmode = true; /* CAN FD only mode - default */ 1861 char name[9] = "channelX"; 1862 int i; 1863 1864 info = of_device_get_match_data(dev); 1865 1866 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1867 fdmode = false; /* Classical CAN only mode */ 1868 1869 for (i = 0; i < info->max_channels; ++i) { 1870 name[7] = '0' + i; 1871 of_child = of_get_child_by_name(dev->of_node, name); 1872 if (of_child && of_device_is_available(of_child)) { 1873 channels_mask |= BIT(i); 1874 transceivers[i] = devm_of_phy_optional_get(dev, 1875 of_child, NULL); 1876 } 1877 of_node_put(of_child); 1878 if (IS_ERR(transceivers[i])) 1879 return PTR_ERR(transceivers[i]); 1880 } 1881 1882 if (info->shared_global_irqs) { 1883 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1884 if (ch_irq < 0) { 1885 /* For backward compatibility get irq by index */ 1886 ch_irq = platform_get_irq(pdev, 0); 1887 if (ch_irq < 0) 1888 return ch_irq; 1889 } 1890 1891 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1892 if (g_irq < 0) { 1893 /* For backward compatibility get irq by index */ 1894 g_irq = platform_get_irq(pdev, 1); 1895 if (g_irq < 0) 1896 return g_irq; 1897 } 1898 } else { 1899 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1900 if (g_err_irq < 0) 1901 return g_err_irq; 1902 1903 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1904 if (g_recc_irq < 0) 1905 return g_recc_irq; 1906 } 1907 1908 /* Global controller context */ 1909 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 1910 if (!gpriv) 1911 return -ENOMEM; 1912 1913 gpriv->pdev = pdev; 1914 gpriv->channels_mask = channels_mask; 1915 gpriv->fdmode = fdmode; 1916 gpriv->info = info; 1917 1918 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 1919 if (IS_ERR(gpriv->rstc1)) 1920 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 1921 "failed to get rstp_n\n"); 1922 1923 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 1924 if (IS_ERR(gpriv->rstc2)) 1925 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 1926 "failed to get rstc_n\n"); 1927 1928 /* Peripheral clock */ 1929 gpriv->clkp = devm_clk_get(dev, "fck"); 1930 if (IS_ERR(gpriv->clkp)) 1931 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 1932 "cannot get peripheral clock\n"); 1933 1934 /* fCAN clock: Pick External clock. If not available fallback to 1935 * CANFD clock 1936 */ 1937 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 1938 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1939 gpriv->can_clk = devm_clk_get(dev, "canfd"); 1940 if (IS_ERR(gpriv->can_clk)) 1941 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 1942 "cannot get canfd clock\n"); 1943 1944 gpriv->fcan = RCANFD_CANFDCLK; 1945 1946 } else { 1947 gpriv->fcan = RCANFD_EXTCLK; 1948 } 1949 fcan_freq = clk_get_rate(gpriv->can_clk); 1950 1951 if (gpriv->fcan == RCANFD_CANFDCLK) 1952 /* CANFD clock is further divided by (1/2) within the IP */ 1953 fcan_freq /= info->postdiv; 1954 1955 addr = devm_platform_ioremap_resource(pdev, 0); 1956 if (IS_ERR(addr)) { 1957 err = PTR_ERR(addr); 1958 goto fail_dev; 1959 } 1960 gpriv->base = addr; 1961 1962 /* Request IRQ that's common for both channels */ 1963 if (info->shared_global_irqs) { 1964 err = devm_request_irq(dev, ch_irq, 1965 rcar_canfd_channel_interrupt, 0, 1966 "canfd.ch_int", gpriv); 1967 if (err) { 1968 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1969 ch_irq, ERR_PTR(err)); 1970 goto fail_dev; 1971 } 1972 1973 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 1974 0, "canfd.g_int", gpriv); 1975 if (err) { 1976 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1977 g_irq, ERR_PTR(err)); 1978 goto fail_dev; 1979 } 1980 } else { 1981 err = devm_request_irq(dev, g_recc_irq, 1982 rcar_canfd_global_receive_fifo_interrupt, 0, 1983 "canfd.g_recc", gpriv); 1984 1985 if (err) { 1986 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1987 g_recc_irq, ERR_PTR(err)); 1988 goto fail_dev; 1989 } 1990 1991 err = devm_request_irq(dev, g_err_irq, 1992 rcar_canfd_global_err_interrupt, 0, 1993 "canfd.g_err", gpriv); 1994 if (err) { 1995 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1996 g_err_irq, ERR_PTR(err)); 1997 goto fail_dev; 1998 } 1999 } 2000 2001 err = reset_control_reset(gpriv->rstc1); 2002 if (err) 2003 goto fail_dev; 2004 err = reset_control_reset(gpriv->rstc2); 2005 if (err) { 2006 reset_control_assert(gpriv->rstc1); 2007 goto fail_dev; 2008 } 2009 2010 /* Enable peripheral clock for register access */ 2011 err = clk_prepare_enable(gpriv->clkp); 2012 if (err) { 2013 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2014 ERR_PTR(err)); 2015 goto fail_reset; 2016 } 2017 2018 err = rcar_canfd_reset_controller(gpriv); 2019 if (err) { 2020 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2021 goto fail_clk; 2022 } 2023 2024 /* Controller in Global reset & Channel reset mode */ 2025 rcar_canfd_configure_controller(gpriv); 2026 2027 /* Configure per channel attributes */ 2028 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2029 /* Configure Channel's Rx fifo */ 2030 rcar_canfd_configure_rx(gpriv, ch); 2031 2032 /* Configure Channel's Tx (Common) fifo */ 2033 rcar_canfd_configure_tx(gpriv, ch); 2034 2035 /* Configure receive rules */ 2036 rcar_canfd_configure_afl_rules(gpriv, ch); 2037 } 2038 2039 /* Configure common interrupts */ 2040 rcar_canfd_enable_global_interrupts(gpriv); 2041 2042 /* Start Global operation mode */ 2043 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2044 RCANFD_GCTR_GMDC_GOPM); 2045 2046 /* Verify mode change */ 2047 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2048 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2049 if (err) { 2050 dev_err(dev, "global operational mode failed\n"); 2051 goto fail_mode; 2052 } 2053 2054 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2055 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2056 transceivers[ch]); 2057 if (err) 2058 goto fail_channel; 2059 } 2060 2061 platform_set_drvdata(pdev, gpriv); 2062 dev_info(dev, "global operational state (clk %d, fdmode %d)\n", 2063 gpriv->fcan, gpriv->fdmode); 2064 return 0; 2065 2066 fail_channel: 2067 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2068 rcar_canfd_channel_remove(gpriv, ch); 2069 fail_mode: 2070 rcar_canfd_disable_global_interrupts(gpriv); 2071 fail_clk: 2072 clk_disable_unprepare(gpriv->clkp); 2073 fail_reset: 2074 reset_control_assert(gpriv->rstc1); 2075 reset_control_assert(gpriv->rstc2); 2076 fail_dev: 2077 return err; 2078 } 2079 2080 static void rcar_canfd_remove(struct platform_device *pdev) 2081 { 2082 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2083 u32 ch; 2084 2085 rcar_canfd_reset_controller(gpriv); 2086 rcar_canfd_disable_global_interrupts(gpriv); 2087 2088 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2089 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2090 rcar_canfd_channel_remove(gpriv, ch); 2091 } 2092 2093 /* Enter global sleep mode */ 2094 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2095 clk_disable_unprepare(gpriv->clkp); 2096 reset_control_assert(gpriv->rstc1); 2097 reset_control_assert(gpriv->rstc2); 2098 } 2099 2100 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2101 { 2102 return 0; 2103 } 2104 2105 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2106 { 2107 return 0; 2108 } 2109 2110 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2111 rcar_canfd_resume); 2112 2113 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2114 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2115 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2116 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2117 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2118 { } 2119 }; 2120 2121 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2122 2123 static struct platform_driver rcar_canfd_driver = { 2124 .driver = { 2125 .name = RCANFD_DRV_NAME, 2126 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2127 .pm = &rcar_canfd_pm_ops, 2128 }, 2129 .probe = rcar_canfd_probe, 2130 .remove_new = rcar_canfd_remove, 2131 }; 2132 2133 module_platform_driver(rcar_canfd_driver); 2134 2135 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2136 MODULE_LICENSE("GPL"); 2137 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2138 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2139