1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/interrupt.h> 29 #include <linux/errno.h> 30 #include <linux/netdevice.h> 31 #include <linux/platform_device.h> 32 #include <linux/can/dev.h> 33 #include <linux/clk.h> 34 #include <linux/of.h> 35 #include <linux/of_device.h> 36 #include <linux/bitmap.h> 37 #include <linux/bitops.h> 38 #include <linux/iopoll.h> 39 #include <linux/reset.h> 40 41 #define RCANFD_DRV_NAME "rcar_canfd" 42 43 enum rcanfd_chip_id { 44 RENESAS_RCAR_GEN3 = 0, 45 RENESAS_RZG2L, 46 RENESAS_R8A779A0, 47 }; 48 49 /* Global register bits */ 50 51 /* RSCFDnCFDGRMCFG */ 52 #define RCANFD_GRMCFG_RCMC BIT(0) 53 54 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 55 #define RCANFD_GCFG_EEFE BIT(6) 56 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 57 #define RCANFD_GCFG_DCS BIT(4) 58 #define RCANFD_GCFG_DCE BIT(1) 59 #define RCANFD_GCFG_TPRI BIT(0) 60 61 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 62 #define RCANFD_GCTR_TSRST BIT(16) 63 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 64 #define RCANFD_GCTR_THLEIE BIT(10) 65 #define RCANFD_GCTR_MEIE BIT(9) 66 #define RCANFD_GCTR_DEIE BIT(8) 67 #define RCANFD_GCTR_GSLPR BIT(2) 68 #define RCANFD_GCTR_GMDC_MASK (0x3) 69 #define RCANFD_GCTR_GMDC_GOPM (0x0) 70 #define RCANFD_GCTR_GMDC_GRESET (0x1) 71 #define RCANFD_GCTR_GMDC_GTEST (0x2) 72 73 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 74 #define RCANFD_GSTS_GRAMINIT BIT(3) 75 #define RCANFD_GSTS_GSLPSTS BIT(2) 76 #define RCANFD_GSTS_GHLTSTS BIT(1) 77 #define RCANFD_GSTS_GRSTSTS BIT(0) 78 /* Non-operational status */ 79 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 80 81 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 82 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16) 83 #define RCANFD_GERFL_EEF1 BIT(17) 84 #define RCANFD_GERFL_EEF0 BIT(16) 85 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 86 #define RCANFD_GERFL_THLES BIT(2) 87 #define RCANFD_GERFL_MES BIT(1) 88 #define RCANFD_GERFL_DEF BIT(0) 89 90 #define RCANFD_GERFL_ERR(gpriv, x) \ 91 ((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \ 92 RCANFD_GERFL_EEF0 | RCANFD_GERFL_EEF1) | \ 93 RCANFD_GERFL_MES | \ 94 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))) 95 96 /* AFL Rx rules registers */ 97 98 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 99 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \ 100 (((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \ 101 (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) 102 103 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \ 104 (((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \ 105 reg_v3u(gpriv, 0x1ff, 0xff)) 106 107 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 108 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 109 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_v3u(gpriv, 0x7f, 0x1f)) 110 111 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 112 #define RCANFD_GAFLID_GAFLLB BIT(29) 113 114 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 115 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 116 117 /* Channel register bits */ 118 119 /* RSCFDnCmCFG - Classical CAN only */ 120 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 121 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 122 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 123 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 124 125 /* RSCFDnCFDCmNCFG - CAN FD only */ 126 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 127 (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24)) 128 129 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 130 (((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16)) 131 132 #define RCANFD_NCFG_NSJW(gpriv, x) \ 133 (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11)) 134 135 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 136 137 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 138 #define RCANFD_CCTR_CTME BIT(24) 139 #define RCANFD_CCTR_ERRD BIT(23) 140 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 141 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 142 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 143 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 144 #define RCANFD_CCTR_TDCVFIE BIT(19) 145 #define RCANFD_CCTR_SOCOIE BIT(18) 146 #define RCANFD_CCTR_EOCOIE BIT(17) 147 #define RCANFD_CCTR_TAIE BIT(16) 148 #define RCANFD_CCTR_ALIE BIT(15) 149 #define RCANFD_CCTR_BLIE BIT(14) 150 #define RCANFD_CCTR_OLIE BIT(13) 151 #define RCANFD_CCTR_BORIE BIT(12) 152 #define RCANFD_CCTR_BOEIE BIT(11) 153 #define RCANFD_CCTR_EPIE BIT(10) 154 #define RCANFD_CCTR_EWIE BIT(9) 155 #define RCANFD_CCTR_BEIE BIT(8) 156 #define RCANFD_CCTR_CSLPR BIT(2) 157 #define RCANFD_CCTR_CHMDC_MASK (0x3) 158 #define RCANFD_CCTR_CHDMC_COPM (0x0) 159 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 160 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 161 162 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 163 #define RCANFD_CSTS_COMSTS BIT(7) 164 #define RCANFD_CSTS_RECSTS BIT(6) 165 #define RCANFD_CSTS_TRMSTS BIT(5) 166 #define RCANFD_CSTS_BOSTS BIT(4) 167 #define RCANFD_CSTS_EPSTS BIT(3) 168 #define RCANFD_CSTS_SLPSTS BIT(2) 169 #define RCANFD_CSTS_HLTSTS BIT(1) 170 #define RCANFD_CSTS_CRSTSTS BIT(0) 171 172 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 173 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 174 175 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 176 #define RCANFD_CERFL_ADERR BIT(14) 177 #define RCANFD_CERFL_B0ERR BIT(13) 178 #define RCANFD_CERFL_B1ERR BIT(12) 179 #define RCANFD_CERFL_CERR BIT(11) 180 #define RCANFD_CERFL_AERR BIT(10) 181 #define RCANFD_CERFL_FERR BIT(9) 182 #define RCANFD_CERFL_SERR BIT(8) 183 #define RCANFD_CERFL_ALF BIT(7) 184 #define RCANFD_CERFL_BLF BIT(6) 185 #define RCANFD_CERFL_OVLF BIT(5) 186 #define RCANFD_CERFL_BORF BIT(4) 187 #define RCANFD_CERFL_BOEF BIT(3) 188 #define RCANFD_CERFL_EPF BIT(2) 189 #define RCANFD_CERFL_EWF BIT(1) 190 #define RCANFD_CERFL_BEF BIT(0) 191 192 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 193 194 /* RSCFDnCFDCmDCFG */ 195 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24) 196 197 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 198 (((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20)) 199 200 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 201 (((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16)) 202 203 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 204 205 /* RSCFDnCFDCmFDCFG */ 206 #define RCANFD_FDCFG_CLOE BIT(30) 207 #define RCANFD_FDCFG_FDOE BIT(28) 208 #define RCANFD_FDCFG_TDCE BIT(9) 209 #define RCANFD_FDCFG_TDCOC BIT(8) 210 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 211 212 /* RSCFDnCFDRFCCx */ 213 #define RCANFD_RFCC_RFIM BIT(12) 214 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 215 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 216 #define RCANFD_RFCC_RFIE BIT(1) 217 #define RCANFD_RFCC_RFE BIT(0) 218 219 /* RSCFDnCFDRFSTSx */ 220 #define RCANFD_RFSTS_RFIF BIT(3) 221 #define RCANFD_RFSTS_RFMLT BIT(2) 222 #define RCANFD_RFSTS_RFFLL BIT(1) 223 #define RCANFD_RFSTS_RFEMP BIT(0) 224 225 /* RSCFDnCFDRFIDx */ 226 #define RCANFD_RFID_RFIDE BIT(31) 227 #define RCANFD_RFID_RFRTR BIT(30) 228 229 /* RSCFDnCFDRFPTRx */ 230 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 231 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 232 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 233 234 /* RSCFDnCFDRFFDSTSx */ 235 #define RCANFD_RFFDSTS_RFFDF BIT(2) 236 #define RCANFD_RFFDSTS_RFBRS BIT(1) 237 #define RCANFD_RFFDSTS_RFESI BIT(0) 238 239 /* Common FIFO bits */ 240 241 /* RSCFDnCFDCFCCk */ 242 #define RCANFD_CFCC_CFTML(gpriv, x) (((x) & 0xf) << reg_v3u(gpriv, 16, 20)) 243 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_v3u(gpriv, 8, 16)) 244 #define RCANFD_CFCC_CFIM BIT(12) 245 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_v3u(gpriv, 21, 8)) 246 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 247 #define RCANFD_CFCC_CFTXIE BIT(2) 248 #define RCANFD_CFCC_CFE BIT(0) 249 250 /* RSCFDnCFDCFSTSk */ 251 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 252 #define RCANFD_CFSTS_CFTXIF BIT(4) 253 #define RCANFD_CFSTS_CFMLT BIT(2) 254 #define RCANFD_CFSTS_CFFLL BIT(1) 255 #define RCANFD_CFSTS_CFEMP BIT(0) 256 257 /* RSCFDnCFDCFIDk */ 258 #define RCANFD_CFID_CFIDE BIT(31) 259 #define RCANFD_CFID_CFRTR BIT(30) 260 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 261 262 /* RSCFDnCFDCFPTRk */ 263 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 264 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 265 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 266 267 /* RSCFDnCFDCFFDCSTSk */ 268 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 269 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 270 #define RCANFD_CFFDCSTS_CFESI BIT(0) 271 272 /* This controller supports either Classical CAN only mode or CAN FD only mode. 273 * These modes are supported in two separate set of register maps & names. 274 * However, some of the register offsets are common for both modes. Those 275 * offsets are listed below as Common registers. 276 * 277 * The CAN FD only mode specific registers & Classical CAN only mode specific 278 * registers are listed separately. Their register names starts with 279 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 280 */ 281 282 /* Common registers */ 283 284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 285 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 287 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 289 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 291 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 292 293 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 294 #define RCANFD_GCFG (0x0084) 295 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 296 #define RCANFD_GCTR (0x0088) 297 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 298 #define RCANFD_GSTS (0x008c) 299 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 300 #define RCANFD_GERFL (0x0090) 301 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 302 #define RCANFD_GTSC (0x0094) 303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 304 #define RCANFD_GAFLECTR (0x0098) 305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 306 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2))) 307 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 308 #define RCANFD_RMNB (0x00a4) 309 /* RSCFDnCFDRMND / RSCFDnRMND */ 310 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 311 312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 313 #define RCANFD_RFCC(gpriv, x) (reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x))) 314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 315 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 317 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 318 319 /* Common FIFO Control registers */ 320 321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 322 #define RCANFD_CFCC(gpriv, ch, idx) \ 323 (reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx))) 324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 325 #define RCANFD_CFSTS(gpriv, ch, idx) \ 326 (reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx))) 327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 328 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 329 (reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx))) 330 331 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 332 #define RCANFD_FESTS (0x0238) 333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 334 #define RCANFD_FFSTS (0x023c) 335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 336 #define RCANFD_FMSTS (0x0240) 337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 338 #define RCANFD_RFISTS (0x0244) 339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 340 #define RCANFD_CFRISTS (0x0248) 341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 342 #define RCANFD_CFTISTS (0x024c) 343 344 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 345 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 347 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 348 349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 350 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 352 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 354 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 356 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 358 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 359 360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 361 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 363 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 365 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 366 367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 368 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 370 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 372 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 373 374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 375 #define RCANFD_GTINTSTS0 (0x0460) 376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 377 #define RCANFD_GTINTSTS1 (0x0464) 378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 379 #define RCANFD_GTSTCFG (0x0468) 380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 381 #define RCANFD_GTSTCTR (0x046c) 382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 383 #define RCANFD_GLOCKK (0x047c) 384 /* RSCFDnCFDGRMCFG */ 385 #define RCANFD_GRMCFG (0x04fc) 386 387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 388 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 390 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 392 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 394 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 395 396 /* Classical CAN only mode register map */ 397 398 /* RSCFDnGAFLXXXj offset */ 399 #define RCANFD_C_GAFL_OFFSET (0x0500) 400 401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 402 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 403 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 404 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 405 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 406 407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 408 #define RCANFD_C_RFOFFSET (0x0e00) 409 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 410 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 411 #define RCANFD_C_RFDF(x, df) \ 412 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 413 414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 415 #define RCANFD_C_CFOFFSET (0x0e80) 416 417 #define RCANFD_C_CFID(ch, idx) \ 418 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 419 420 #define RCANFD_C_CFPTR(ch, idx) \ 421 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 422 423 #define RCANFD_C_CFDF(ch, idx, df) \ 424 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 425 426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 427 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 428 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 429 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 430 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 431 432 /* RSCFDnTHLACCm */ 433 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 434 /* RSCFDnRPGACCr */ 435 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 436 437 /* R-Car V3U Classical and CAN FD mode specific register map */ 438 #define RCANFD_V3U_CFDCFG (0x1314) 439 #define RCANFD_V3U_DCFG(m) (0x1400 + (0x20 * (m))) 440 441 #define RCANFD_V3U_GAFL_OFFSET (0x1800) 442 443 /* CAN FD mode specific register map */ 444 445 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 446 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m))) 447 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 448 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 449 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 450 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 451 452 /* RSCFDnCFDGAFLXXXj offset */ 453 #define RCANFD_F_GAFL_OFFSET (0x1000) 454 455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 456 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 457 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 458 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 459 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 460 461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 462 #define RCANFD_F_RFOFFSET(gpriv) reg_v3u(gpriv, 0x6000, 0x3000) 463 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 464 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 465 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 466 #define RCANFD_F_RFDF(gpriv, x, df) \ 467 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 468 469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 470 #define RCANFD_F_CFOFFSET(gpriv) reg_v3u(gpriv, 0x6400, 0x3400) 471 472 #define RCANFD_F_CFID(gpriv, ch, idx) \ 473 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 474 475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 476 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 477 478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 479 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 480 481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 482 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 483 (0x04 * (df))) 484 485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 486 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 487 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 488 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 489 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 490 491 /* RSCFDnCFDTHLACCm */ 492 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 493 /* RSCFDnCFDRPGACCr */ 494 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 495 496 /* Constants */ 497 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 498 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 499 500 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 501 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 502 503 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 504 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 505 506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 507 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 508 * number is added to RFFIFO index. 509 */ 510 #define RCANFD_RFFIFO_IDX 0 511 512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 513 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 514 */ 515 #define RCANFD_CFFIFO_IDX 0 516 517 /* fCAN clock select register settings */ 518 enum rcar_canfd_fcanclk { 519 RCANFD_CANFDCLK = 0, /* CANFD clock */ 520 RCANFD_EXTCLK, /* Externally input clock */ 521 }; 522 523 struct rcar_canfd_global; 524 525 /* Channel priv data */ 526 struct rcar_canfd_channel { 527 struct can_priv can; /* Must be the first member */ 528 struct net_device *ndev; 529 struct rcar_canfd_global *gpriv; /* Controller reference */ 530 void __iomem *base; /* Register base address */ 531 struct napi_struct napi; 532 u32 tx_head; /* Incremented on xmit */ 533 u32 tx_tail; /* Incremented on xmit done */ 534 u32 channel; /* Channel number */ 535 spinlock_t tx_lock; /* To protect tx path */ 536 }; 537 538 /* Global priv data */ 539 struct rcar_canfd_global { 540 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 541 void __iomem *base; /* Register base address */ 542 struct platform_device *pdev; /* Respective platform device */ 543 struct clk *clkp; /* Peripheral clock */ 544 struct clk *can_clk; /* fCAN clock */ 545 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 546 unsigned long channels_mask; /* Enabled channels mask */ 547 bool fdmode; /* CAN FD or Classical CAN only mode */ 548 struct reset_control *rstc1; 549 struct reset_control *rstc2; 550 enum rcanfd_chip_id chip_id; 551 u32 max_channels; 552 }; 553 554 /* CAN FD mode nominal rate constants */ 555 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 556 .name = RCANFD_DRV_NAME, 557 .tseg1_min = 2, 558 .tseg1_max = 128, 559 .tseg2_min = 2, 560 .tseg2_max = 32, 561 .sjw_max = 32, 562 .brp_min = 1, 563 .brp_max = 1024, 564 .brp_inc = 1, 565 }; 566 567 /* CAN FD mode data rate constants */ 568 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 569 .name = RCANFD_DRV_NAME, 570 .tseg1_min = 2, 571 .tseg1_max = 16, 572 .tseg2_min = 2, 573 .tseg2_max = 8, 574 .sjw_max = 8, 575 .brp_min = 1, 576 .brp_max = 256, 577 .brp_inc = 1, 578 }; 579 580 /* Classical CAN mode bitrate constants */ 581 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 582 .name = RCANFD_DRV_NAME, 583 .tseg1_min = 4, 584 .tseg1_max = 16, 585 .tseg2_min = 2, 586 .tseg2_max = 8, 587 .sjw_max = 4, 588 .brp_min = 1, 589 .brp_max = 1024, 590 .brp_inc = 1, 591 }; 592 593 /* Helper functions */ 594 static inline bool is_v3u(struct rcar_canfd_global *gpriv) 595 { 596 return gpriv->chip_id == RENESAS_R8A779A0; 597 } 598 599 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv, 600 u32 v3u, u32 not_v3u) 601 { 602 return is_v3u(gpriv) ? v3u : not_v3u; 603 } 604 605 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 606 { 607 u32 data = readl(reg); 608 609 data &= ~mask; 610 data |= (val & mask); 611 writel(data, reg); 612 } 613 614 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 615 { 616 return readl(base + (offset)); 617 } 618 619 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 620 { 621 writel(val, base + (offset)); 622 } 623 624 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 625 { 626 rcar_canfd_update(val, val, base + (reg)); 627 } 628 629 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 630 { 631 rcar_canfd_update(val, 0, base + (reg)); 632 } 633 634 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 635 u32 mask, u32 val) 636 { 637 rcar_canfd_update(mask, val, base + (reg)); 638 } 639 640 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 641 struct canfd_frame *cf, u32 off) 642 { 643 u32 i, lwords; 644 645 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 646 for (i = 0; i < lwords; i++) 647 *((u32 *)cf->data + i) = 648 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 649 } 650 651 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 652 struct canfd_frame *cf, u32 off) 653 { 654 u32 i, lwords; 655 656 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 657 for (i = 0; i < lwords; i++) 658 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 659 *((u32 *)cf->data + i)); 660 } 661 662 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 663 { 664 u32 i; 665 666 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 667 can_free_echo_skb(ndev, i, NULL); 668 } 669 670 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 671 { 672 if (is_v3u(gpriv)) { 673 if (gpriv->fdmode) 674 rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG, 675 RCANFD_FDCFG_FDOE); 676 else 677 rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG, 678 RCANFD_FDCFG_CLOE); 679 } else { 680 if (gpriv->fdmode) 681 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 682 RCANFD_GRMCFG_RCMC); 683 else 684 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 685 RCANFD_GRMCFG_RCMC); 686 } 687 } 688 689 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 690 { 691 u32 sts, ch; 692 int err; 693 694 /* Check RAMINIT flag as CAN RAM initialization takes place 695 * after the MCU reset 696 */ 697 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 698 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 699 if (err) { 700 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 701 return err; 702 } 703 704 /* Transition to Global Reset mode */ 705 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 706 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 707 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 708 709 /* Ensure Global reset mode */ 710 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 711 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 712 if (err) { 713 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 714 return err; 715 } 716 717 /* Reset Global error flags */ 718 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 719 720 /* Set the controller into appropriate mode */ 721 rcar_canfd_set_mode(gpriv); 722 723 /* Transition all Channels to reset mode */ 724 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) { 725 rcar_canfd_clear_bit(gpriv->base, 726 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 727 728 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 729 RCANFD_CCTR_CHMDC_MASK, 730 RCANFD_CCTR_CHDMC_CRESET); 731 732 /* Ensure Channel reset mode */ 733 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 734 (sts & RCANFD_CSTS_CRSTSTS), 735 2, 500000); 736 if (err) { 737 dev_dbg(&gpriv->pdev->dev, 738 "channel %u reset failed\n", ch); 739 return err; 740 } 741 } 742 return 0; 743 } 744 745 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 746 { 747 u32 cfg, ch; 748 749 /* Global configuration settings */ 750 751 /* ECC Error flag Enable */ 752 cfg = RCANFD_GCFG_EEFE; 753 754 if (gpriv->fdmode) 755 /* Truncate payload to configured message size RFPLS */ 756 cfg |= RCANFD_GCFG_CMPOC; 757 758 /* Set External Clock if selected */ 759 if (gpriv->fcan != RCANFD_CANFDCLK) 760 cfg |= RCANFD_GCFG_DCS; 761 762 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 763 764 /* Channel configuration settings */ 765 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) { 766 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 767 RCANFD_CCTR_ERRD); 768 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 769 RCANFD_CCTR_BOM_MASK, 770 RCANFD_CCTR_BOM_BENTRY); 771 } 772 } 773 774 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 775 u32 ch) 776 { 777 u32 cfg; 778 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 779 u32 ridx = ch + RCANFD_RFFIFO_IDX; 780 781 if (ch == 0) { 782 start = 0; /* Channel 0 always starts from 0th rule */ 783 } else { 784 /* Get number of Channel 0 rules and adjust */ 785 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch)); 786 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg); 787 } 788 789 /* Enable write access to entry */ 790 page = RCANFD_GAFL_PAGENUM(start); 791 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 792 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 793 RCANFD_GAFLECTR_AFLDAE)); 794 795 /* Write number of rules for channel */ 796 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch), 797 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules)); 798 if (is_v3u(gpriv)) 799 offset = RCANFD_V3U_GAFL_OFFSET; 800 else if (gpriv->fdmode) 801 offset = RCANFD_F_GAFL_OFFSET; 802 else 803 offset = RCANFD_C_GAFL_OFFSET; 804 805 /* Accept all IDs */ 806 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 807 /* IDE or RTR is not considered for matching */ 808 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 809 /* Any data length accepted */ 810 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 811 /* Place the msg in corresponding Rx FIFO entry */ 812 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start), 813 RCANFD_GAFLP1_GAFLFDP(ridx)); 814 815 /* Disable write access to page */ 816 rcar_canfd_clear_bit(gpriv->base, 817 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 818 } 819 820 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 821 { 822 /* Rx FIFO is used for reception */ 823 u32 cfg; 824 u16 rfdc, rfpls; 825 826 /* Select Rx FIFO based on channel */ 827 u32 ridx = ch + RCANFD_RFFIFO_IDX; 828 829 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 830 if (gpriv->fdmode) 831 rfpls = 7; /* b111 - Max 64 bytes payload */ 832 else 833 rfpls = 0; /* b000 - Max 8 bytes payload */ 834 835 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 836 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 837 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 838 } 839 840 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 841 { 842 /* Tx/Rx(Common) FIFO configured in Tx mode is 843 * used for transmission 844 * 845 * Each channel has 3 Common FIFO dedicated to them. 846 * Use the 1st (index 0) out of 3 847 */ 848 u32 cfg; 849 u16 cftml, cfm, cfdc, cfpls; 850 851 cftml = 0; /* 0th buffer */ 852 cfm = 1; /* b01 - Transmit mode */ 853 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 854 if (gpriv->fdmode) 855 cfpls = 7; /* b111 - Max 64 bytes payload */ 856 else 857 cfpls = 0; /* b000 - Max 8 bytes payload */ 858 859 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 860 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 861 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 862 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 863 864 if (gpriv->fdmode) 865 /* Clear FD mode specific control/status register */ 866 rcar_canfd_write(gpriv->base, 867 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 868 } 869 870 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 871 { 872 u32 ctr; 873 874 /* Clear any stray error interrupt flags */ 875 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 876 877 /* Global interrupts setup */ 878 ctr = RCANFD_GCTR_MEIE; 879 if (gpriv->fdmode) 880 ctr |= RCANFD_GCTR_CFMPOFIE; 881 882 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 883 } 884 885 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 886 *gpriv) 887 { 888 /* Disable all interrupts */ 889 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 890 891 /* Clear any stray error interrupt flags */ 892 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 893 } 894 895 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 896 *priv) 897 { 898 u32 ctr, ch = priv->channel; 899 900 /* Clear any stray error flags */ 901 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 902 903 /* Channel interrupts setup */ 904 ctr = (RCANFD_CCTR_TAIE | 905 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 906 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 907 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 908 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 909 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 910 } 911 912 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 913 *priv) 914 { 915 u32 ctr, ch = priv->channel; 916 917 ctr = (RCANFD_CCTR_TAIE | 918 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 919 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 920 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 921 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 922 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 923 924 /* Clear any stray error flags */ 925 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 926 } 927 928 static void rcar_canfd_global_error(struct net_device *ndev) 929 { 930 struct rcar_canfd_channel *priv = netdev_priv(ndev); 931 struct rcar_canfd_global *gpriv = priv->gpriv; 932 struct net_device_stats *stats = &ndev->stats; 933 u32 ch = priv->channel; 934 u32 gerfl, sts; 935 u32 ridx = ch + RCANFD_RFFIFO_IDX; 936 937 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 938 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) { 939 netdev_dbg(ndev, "Ch0: ECC Error flag\n"); 940 stats->tx_dropped++; 941 } 942 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) { 943 netdev_dbg(ndev, "Ch1: ECC Error flag\n"); 944 stats->tx_dropped++; 945 } 946 if (gerfl & RCANFD_GERFL_MES) { 947 sts = rcar_canfd_read(priv->base, 948 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 949 if (sts & RCANFD_CFSTS_CFMLT) { 950 netdev_dbg(ndev, "Tx Message Lost flag\n"); 951 stats->tx_dropped++; 952 rcar_canfd_write(priv->base, 953 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 954 sts & ~RCANFD_CFSTS_CFMLT); 955 } 956 957 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 958 if (sts & RCANFD_RFSTS_RFMLT) { 959 netdev_dbg(ndev, "Rx Message Lost flag\n"); 960 stats->rx_dropped++; 961 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 962 sts & ~RCANFD_RFSTS_RFMLT); 963 } 964 } 965 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 966 /* Message Lost flag will be set for respective channel 967 * when this condition happens with counters and flags 968 * already updated. 969 */ 970 netdev_dbg(ndev, "global payload overflow interrupt\n"); 971 } 972 973 /* Clear all global error interrupts. Only affected channels bits 974 * get cleared 975 */ 976 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 977 } 978 979 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 980 u16 txerr, u16 rxerr) 981 { 982 struct rcar_canfd_channel *priv = netdev_priv(ndev); 983 struct net_device_stats *stats = &ndev->stats; 984 struct can_frame *cf; 985 struct sk_buff *skb; 986 u32 ch = priv->channel; 987 988 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 989 990 /* Propagate the error condition to the CAN stack */ 991 skb = alloc_can_err_skb(ndev, &cf); 992 if (!skb) { 993 stats->rx_dropped++; 994 return; 995 } 996 997 /* Channel error interrupts */ 998 if (cerfl & RCANFD_CERFL_BEF) { 999 netdev_dbg(ndev, "Bus error\n"); 1000 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1001 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1002 priv->can.can_stats.bus_error++; 1003 } 1004 if (cerfl & RCANFD_CERFL_ADERR) { 1005 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1006 stats->tx_errors++; 1007 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1008 } 1009 if (cerfl & RCANFD_CERFL_B0ERR) { 1010 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1011 stats->tx_errors++; 1012 cf->data[2] |= CAN_ERR_PROT_BIT0; 1013 } 1014 if (cerfl & RCANFD_CERFL_B1ERR) { 1015 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1016 stats->tx_errors++; 1017 cf->data[2] |= CAN_ERR_PROT_BIT1; 1018 } 1019 if (cerfl & RCANFD_CERFL_CERR) { 1020 netdev_dbg(ndev, "CRC Error\n"); 1021 stats->rx_errors++; 1022 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1023 } 1024 if (cerfl & RCANFD_CERFL_AERR) { 1025 netdev_dbg(ndev, "ACK Error\n"); 1026 stats->tx_errors++; 1027 cf->can_id |= CAN_ERR_ACK; 1028 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1029 } 1030 if (cerfl & RCANFD_CERFL_FERR) { 1031 netdev_dbg(ndev, "Form Error\n"); 1032 stats->rx_errors++; 1033 cf->data[2] |= CAN_ERR_PROT_FORM; 1034 } 1035 if (cerfl & RCANFD_CERFL_SERR) { 1036 netdev_dbg(ndev, "Stuff Error\n"); 1037 stats->rx_errors++; 1038 cf->data[2] |= CAN_ERR_PROT_STUFF; 1039 } 1040 if (cerfl & RCANFD_CERFL_ALF) { 1041 netdev_dbg(ndev, "Arbitration lost Error\n"); 1042 priv->can.can_stats.arbitration_lost++; 1043 cf->can_id |= CAN_ERR_LOSTARB; 1044 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1045 } 1046 if (cerfl & RCANFD_CERFL_BLF) { 1047 netdev_dbg(ndev, "Bus Lock Error\n"); 1048 stats->rx_errors++; 1049 cf->can_id |= CAN_ERR_BUSERROR; 1050 } 1051 if (cerfl & RCANFD_CERFL_EWF) { 1052 netdev_dbg(ndev, "Error warning interrupt\n"); 1053 priv->can.state = CAN_STATE_ERROR_WARNING; 1054 priv->can.can_stats.error_warning++; 1055 cf->can_id |= CAN_ERR_CRTL; 1056 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1057 CAN_ERR_CRTL_RX_WARNING; 1058 cf->data[6] = txerr; 1059 cf->data[7] = rxerr; 1060 } 1061 if (cerfl & RCANFD_CERFL_EPF) { 1062 netdev_dbg(ndev, "Error passive interrupt\n"); 1063 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1064 priv->can.can_stats.error_passive++; 1065 cf->can_id |= CAN_ERR_CRTL; 1066 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1067 CAN_ERR_CRTL_RX_PASSIVE; 1068 cf->data[6] = txerr; 1069 cf->data[7] = rxerr; 1070 } 1071 if (cerfl & RCANFD_CERFL_BOEF) { 1072 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1073 rcar_canfd_tx_failure_cleanup(ndev); 1074 priv->can.state = CAN_STATE_BUS_OFF; 1075 priv->can.can_stats.bus_off++; 1076 can_bus_off(ndev); 1077 cf->can_id |= CAN_ERR_BUSOFF; 1078 } 1079 if (cerfl & RCANFD_CERFL_OVLF) { 1080 netdev_dbg(ndev, 1081 "Overload Frame Transmission error interrupt\n"); 1082 stats->tx_errors++; 1083 cf->can_id |= CAN_ERR_PROT; 1084 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1085 } 1086 1087 /* Clear channel error interrupts that are handled */ 1088 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1089 RCANFD_CERFL_ERR(~cerfl)); 1090 netif_rx(skb); 1091 } 1092 1093 static void rcar_canfd_tx_done(struct net_device *ndev) 1094 { 1095 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1096 struct rcar_canfd_global *gpriv = priv->gpriv; 1097 struct net_device_stats *stats = &ndev->stats; 1098 u32 sts; 1099 unsigned long flags; 1100 u32 ch = priv->channel; 1101 1102 do { 1103 u8 unsent, sent; 1104 1105 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1106 stats->tx_packets++; 1107 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1108 1109 spin_lock_irqsave(&priv->tx_lock, flags); 1110 priv->tx_tail++; 1111 sts = rcar_canfd_read(priv->base, 1112 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1113 unsent = RCANFD_CFSTS_CFMC(sts); 1114 1115 /* Wake producer only when there is room */ 1116 if (unsent != RCANFD_FIFO_DEPTH) 1117 netif_wake_queue(ndev); 1118 1119 if (priv->tx_head - priv->tx_tail <= unsent) { 1120 spin_unlock_irqrestore(&priv->tx_lock, flags); 1121 break; 1122 } 1123 spin_unlock_irqrestore(&priv->tx_lock, flags); 1124 1125 } while (1); 1126 1127 /* Clear interrupt */ 1128 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1129 sts & ~RCANFD_CFSTS_CFTXIF); 1130 } 1131 1132 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1133 { 1134 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1135 struct net_device *ndev = priv->ndev; 1136 u32 gerfl; 1137 1138 /* Handle global error interrupts */ 1139 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1140 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1141 rcar_canfd_global_error(ndev); 1142 } 1143 1144 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1145 { 1146 struct rcar_canfd_global *gpriv = dev_id; 1147 u32 ch; 1148 1149 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) 1150 rcar_canfd_handle_global_err(gpriv, ch); 1151 1152 return IRQ_HANDLED; 1153 } 1154 1155 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1156 { 1157 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1158 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1159 u32 sts; 1160 1161 /* Handle Rx interrupts */ 1162 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1163 if (likely(sts & RCANFD_RFSTS_RFIF)) { 1164 if (napi_schedule_prep(&priv->napi)) { 1165 /* Disable Rx FIFO interrupts */ 1166 rcar_canfd_clear_bit(priv->base, 1167 RCANFD_RFCC(gpriv, ridx), 1168 RCANFD_RFCC_RFIE); 1169 __napi_schedule(&priv->napi); 1170 } 1171 } 1172 } 1173 1174 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1175 { 1176 struct rcar_canfd_global *gpriv = dev_id; 1177 u32 ch; 1178 1179 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) 1180 rcar_canfd_handle_global_receive(gpriv, ch); 1181 1182 return IRQ_HANDLED; 1183 } 1184 1185 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1186 { 1187 struct rcar_canfd_global *gpriv = dev_id; 1188 u32 ch; 1189 1190 /* Global error interrupts still indicate a condition specific 1191 * to a channel. RxFIFO interrupt is a global interrupt. 1192 */ 1193 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) { 1194 rcar_canfd_handle_global_err(gpriv, ch); 1195 rcar_canfd_handle_global_receive(gpriv, ch); 1196 } 1197 return IRQ_HANDLED; 1198 } 1199 1200 static void rcar_canfd_state_change(struct net_device *ndev, 1201 u16 txerr, u16 rxerr) 1202 { 1203 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1204 struct net_device_stats *stats = &ndev->stats; 1205 enum can_state rx_state, tx_state, state = priv->can.state; 1206 struct can_frame *cf; 1207 struct sk_buff *skb; 1208 1209 /* Handle transition from error to normal states */ 1210 if (txerr < 96 && rxerr < 96) 1211 state = CAN_STATE_ERROR_ACTIVE; 1212 else if (txerr < 128 && rxerr < 128) 1213 state = CAN_STATE_ERROR_WARNING; 1214 1215 if (state != priv->can.state) { 1216 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1217 state, priv->can.state, txerr, rxerr); 1218 skb = alloc_can_err_skb(ndev, &cf); 1219 if (!skb) { 1220 stats->rx_dropped++; 1221 return; 1222 } 1223 tx_state = txerr >= rxerr ? state : 0; 1224 rx_state = txerr <= rxerr ? state : 0; 1225 1226 can_change_state(ndev, cf, tx_state, rx_state); 1227 netif_rx(skb); 1228 } 1229 } 1230 1231 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1232 { 1233 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1234 struct net_device *ndev = priv->ndev; 1235 u32 sts; 1236 1237 /* Handle Tx interrupts */ 1238 sts = rcar_canfd_read(priv->base, 1239 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1240 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1241 rcar_canfd_tx_done(ndev); 1242 } 1243 1244 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1245 { 1246 struct rcar_canfd_global *gpriv = dev_id; 1247 u32 ch; 1248 1249 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) 1250 rcar_canfd_handle_channel_tx(gpriv, ch); 1251 1252 return IRQ_HANDLED; 1253 } 1254 1255 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1256 { 1257 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1258 struct net_device *ndev = priv->ndev; 1259 u16 txerr, rxerr; 1260 u32 sts, cerfl; 1261 1262 /* Handle channel error interrupts */ 1263 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1264 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1265 txerr = RCANFD_CSTS_TECCNT(sts); 1266 rxerr = RCANFD_CSTS_RECCNT(sts); 1267 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1268 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1269 1270 /* Handle state change to lower states */ 1271 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1272 priv->can.state != CAN_STATE_BUS_OFF)) 1273 rcar_canfd_state_change(ndev, txerr, rxerr); 1274 } 1275 1276 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1277 { 1278 struct rcar_canfd_global *gpriv = dev_id; 1279 u32 ch; 1280 1281 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) 1282 rcar_canfd_handle_channel_err(gpriv, ch); 1283 1284 return IRQ_HANDLED; 1285 } 1286 1287 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1288 { 1289 struct rcar_canfd_global *gpriv = dev_id; 1290 u32 ch; 1291 1292 /* Common FIFO is a per channel resource */ 1293 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) { 1294 rcar_canfd_handle_channel_err(gpriv, ch); 1295 rcar_canfd_handle_channel_tx(gpriv, ch); 1296 } 1297 1298 return IRQ_HANDLED; 1299 } 1300 1301 static void rcar_canfd_set_bittiming(struct net_device *dev) 1302 { 1303 struct rcar_canfd_channel *priv = netdev_priv(dev); 1304 struct rcar_canfd_global *gpriv = priv->gpriv; 1305 const struct can_bittiming *bt = &priv->can.bittiming; 1306 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1307 u16 brp, sjw, tseg1, tseg2; 1308 u32 cfg; 1309 u32 ch = priv->channel; 1310 1311 /* Nominal bit timing settings */ 1312 brp = bt->brp - 1; 1313 sjw = bt->sjw - 1; 1314 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1315 tseg2 = bt->phase_seg2 - 1; 1316 1317 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1318 /* CAN FD only mode */ 1319 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1320 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1321 1322 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1323 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1324 brp, sjw, tseg1, tseg2); 1325 1326 /* Data bit timing settings */ 1327 brp = dbt->brp - 1; 1328 sjw = dbt->sjw - 1; 1329 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1330 tseg2 = dbt->phase_seg2 - 1; 1331 1332 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1333 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1334 1335 if (is_v3u(gpriv)) 1336 rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg); 1337 else 1338 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg); 1339 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1340 brp, sjw, tseg1, tseg2); 1341 } else { 1342 /* Classical CAN only mode */ 1343 if (is_v3u(gpriv)) { 1344 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | 1345 RCANFD_NCFG_NBRP(brp) | 1346 RCANFD_NCFG_NSJW(gpriv, sjw) | 1347 RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1348 } else { 1349 cfg = (RCANFD_CFG_TSEG1(tseg1) | 1350 RCANFD_CFG_BRP(brp) | 1351 RCANFD_CFG_SJW(sjw) | 1352 RCANFD_CFG_TSEG2(tseg2)); 1353 } 1354 1355 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1356 netdev_dbg(priv->ndev, 1357 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1358 brp, sjw, tseg1, tseg2); 1359 } 1360 } 1361 1362 static int rcar_canfd_start(struct net_device *ndev) 1363 { 1364 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1365 struct rcar_canfd_global *gpriv = priv->gpriv; 1366 int err = -EOPNOTSUPP; 1367 u32 sts, ch = priv->channel; 1368 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1369 1370 rcar_canfd_set_bittiming(ndev); 1371 1372 rcar_canfd_enable_channel_interrupts(priv); 1373 1374 /* Set channel to Operational mode */ 1375 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1376 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1377 1378 /* Verify channel mode change */ 1379 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1380 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1381 if (err) { 1382 netdev_err(ndev, "channel %u communication state failed\n", ch); 1383 goto fail_mode_change; 1384 } 1385 1386 /* Enable Common & Rx FIFO */ 1387 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1388 RCANFD_CFCC_CFE); 1389 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1390 1391 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1392 return 0; 1393 1394 fail_mode_change: 1395 rcar_canfd_disable_channel_interrupts(priv); 1396 return err; 1397 } 1398 1399 static int rcar_canfd_open(struct net_device *ndev) 1400 { 1401 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1402 struct rcar_canfd_global *gpriv = priv->gpriv; 1403 int err; 1404 1405 /* Peripheral clock is already enabled in probe */ 1406 err = clk_prepare_enable(gpriv->can_clk); 1407 if (err) { 1408 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); 1409 goto out_clock; 1410 } 1411 1412 err = open_candev(ndev); 1413 if (err) { 1414 netdev_err(ndev, "open_candev() failed, error %d\n", err); 1415 goto out_can_clock; 1416 } 1417 1418 napi_enable(&priv->napi); 1419 err = rcar_canfd_start(ndev); 1420 if (err) 1421 goto out_close; 1422 netif_start_queue(ndev); 1423 return 0; 1424 out_close: 1425 napi_disable(&priv->napi); 1426 close_candev(ndev); 1427 out_can_clock: 1428 clk_disable_unprepare(gpriv->can_clk); 1429 out_clock: 1430 return err; 1431 } 1432 1433 static void rcar_canfd_stop(struct net_device *ndev) 1434 { 1435 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1436 struct rcar_canfd_global *gpriv = priv->gpriv; 1437 int err; 1438 u32 sts, ch = priv->channel; 1439 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1440 1441 /* Transition to channel reset mode */ 1442 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1443 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1444 1445 /* Check Channel reset mode */ 1446 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1447 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1448 if (err) 1449 netdev_err(ndev, "channel %u reset failed\n", ch); 1450 1451 rcar_canfd_disable_channel_interrupts(priv); 1452 1453 /* Disable Common & Rx FIFO */ 1454 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1455 RCANFD_CFCC_CFE); 1456 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1457 1458 /* Set the state as STOPPED */ 1459 priv->can.state = CAN_STATE_STOPPED; 1460 } 1461 1462 static int rcar_canfd_close(struct net_device *ndev) 1463 { 1464 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1465 struct rcar_canfd_global *gpriv = priv->gpriv; 1466 1467 netif_stop_queue(ndev); 1468 rcar_canfd_stop(ndev); 1469 napi_disable(&priv->napi); 1470 clk_disable_unprepare(gpriv->can_clk); 1471 close_candev(ndev); 1472 return 0; 1473 } 1474 1475 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1476 struct net_device *ndev) 1477 { 1478 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1479 struct rcar_canfd_global *gpriv = priv->gpriv; 1480 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1481 u32 sts = 0, id, dlc; 1482 unsigned long flags; 1483 u32 ch = priv->channel; 1484 1485 if (can_dropped_invalid_skb(ndev, skb)) 1486 return NETDEV_TX_OK; 1487 1488 if (cf->can_id & CAN_EFF_FLAG) { 1489 id = cf->can_id & CAN_EFF_MASK; 1490 id |= RCANFD_CFID_CFIDE; 1491 } else { 1492 id = cf->can_id & CAN_SFF_MASK; 1493 } 1494 1495 if (cf->can_id & CAN_RTR_FLAG) 1496 id |= RCANFD_CFID_CFRTR; 1497 1498 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1499 1500 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) { 1501 rcar_canfd_write(priv->base, 1502 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1503 rcar_canfd_write(priv->base, 1504 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1505 1506 if (can_is_canfd_skb(skb)) { 1507 /* CAN FD frame format */ 1508 sts |= RCANFD_CFFDCSTS_CFFDF; 1509 if (cf->flags & CANFD_BRS) 1510 sts |= RCANFD_CFFDCSTS_CFBRS; 1511 1512 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1513 sts |= RCANFD_CFFDCSTS_CFESI; 1514 } 1515 1516 rcar_canfd_write(priv->base, 1517 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1518 1519 rcar_canfd_put_data(priv, cf, 1520 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1521 } else { 1522 rcar_canfd_write(priv->base, 1523 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1524 rcar_canfd_write(priv->base, 1525 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1526 rcar_canfd_put_data(priv, cf, 1527 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1528 } 1529 1530 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1531 1532 spin_lock_irqsave(&priv->tx_lock, flags); 1533 priv->tx_head++; 1534 1535 /* Stop the queue if we've filled all FIFO entries */ 1536 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1537 netif_stop_queue(ndev); 1538 1539 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1540 * pointer for the Common FIFO 1541 */ 1542 rcar_canfd_write(priv->base, 1543 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1544 1545 spin_unlock_irqrestore(&priv->tx_lock, flags); 1546 return NETDEV_TX_OK; 1547 } 1548 1549 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1550 { 1551 struct net_device_stats *stats = &priv->ndev->stats; 1552 struct rcar_canfd_global *gpriv = priv->gpriv; 1553 struct canfd_frame *cf; 1554 struct sk_buff *skb; 1555 u32 sts = 0, id, dlc; 1556 u32 ch = priv->channel; 1557 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1558 1559 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) { 1560 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1561 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1562 1563 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1564 1565 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1566 sts & RCANFD_RFFDSTS_RFFDF) 1567 skb = alloc_canfd_skb(priv->ndev, &cf); 1568 else 1569 skb = alloc_can_skb(priv->ndev, 1570 (struct can_frame **)&cf); 1571 } else { 1572 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1573 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1574 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1575 } 1576 1577 if (!skb) { 1578 stats->rx_dropped++; 1579 return; 1580 } 1581 1582 if (id & RCANFD_RFID_RFIDE) 1583 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1584 else 1585 cf->can_id = id & CAN_SFF_MASK; 1586 1587 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1588 if (sts & RCANFD_RFFDSTS_RFFDF) 1589 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1590 else 1591 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1592 1593 if (sts & RCANFD_RFFDSTS_RFESI) { 1594 cf->flags |= CANFD_ESI; 1595 netdev_dbg(priv->ndev, "ESI Error\n"); 1596 } 1597 1598 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1599 cf->can_id |= CAN_RTR_FLAG; 1600 } else { 1601 if (sts & RCANFD_RFFDSTS_RFBRS) 1602 cf->flags |= CANFD_BRS; 1603 1604 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1605 } 1606 } else { 1607 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1608 if (id & RCANFD_RFID_RFRTR) 1609 cf->can_id |= CAN_RTR_FLAG; 1610 else if (is_v3u(gpriv)) 1611 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1612 else 1613 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1614 } 1615 1616 /* Write 0xff to RFPC to increment the CPU-side 1617 * pointer of the Rx FIFO 1618 */ 1619 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1620 1621 if (!(cf->can_id & CAN_RTR_FLAG)) 1622 stats->rx_bytes += cf->len; 1623 stats->rx_packets++; 1624 netif_receive_skb(skb); 1625 } 1626 1627 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1628 { 1629 struct rcar_canfd_channel *priv = 1630 container_of(napi, struct rcar_canfd_channel, napi); 1631 struct rcar_canfd_global *gpriv = priv->gpriv; 1632 int num_pkts; 1633 u32 sts; 1634 u32 ch = priv->channel; 1635 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1636 1637 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1638 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1639 /* Check FIFO empty condition */ 1640 if (sts & RCANFD_RFSTS_RFEMP) 1641 break; 1642 1643 rcar_canfd_rx_pkt(priv); 1644 1645 /* Clear interrupt bit */ 1646 if (sts & RCANFD_RFSTS_RFIF) 1647 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1648 sts & ~RCANFD_RFSTS_RFIF); 1649 } 1650 1651 /* All packets processed */ 1652 if (num_pkts < quota) { 1653 if (napi_complete_done(napi, num_pkts)) { 1654 /* Enable Rx FIFO interrupts */ 1655 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1656 RCANFD_RFCC_RFIE); 1657 } 1658 } 1659 return num_pkts; 1660 } 1661 1662 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1663 { 1664 int err; 1665 1666 switch (mode) { 1667 case CAN_MODE_START: 1668 err = rcar_canfd_start(ndev); 1669 if (err) 1670 return err; 1671 netif_wake_queue(ndev); 1672 return 0; 1673 default: 1674 return -EOPNOTSUPP; 1675 } 1676 } 1677 1678 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1679 struct can_berr_counter *bec) 1680 { 1681 struct rcar_canfd_channel *priv = netdev_priv(dev); 1682 u32 val, ch = priv->channel; 1683 1684 /* Peripheral clock is already enabled in probe */ 1685 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1686 bec->txerr = RCANFD_CSTS_TECCNT(val); 1687 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1688 return 0; 1689 } 1690 1691 static const struct net_device_ops rcar_canfd_netdev_ops = { 1692 .ndo_open = rcar_canfd_open, 1693 .ndo_stop = rcar_canfd_close, 1694 .ndo_start_xmit = rcar_canfd_start_xmit, 1695 .ndo_change_mtu = can_change_mtu, 1696 }; 1697 1698 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1699 u32 fcan_freq) 1700 { 1701 struct platform_device *pdev = gpriv->pdev; 1702 struct rcar_canfd_channel *priv; 1703 struct net_device *ndev; 1704 int err = -ENODEV; 1705 1706 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1707 if (!ndev) { 1708 dev_err(&pdev->dev, "alloc_candev() failed\n"); 1709 return -ENOMEM; 1710 } 1711 priv = netdev_priv(ndev); 1712 1713 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1714 ndev->flags |= IFF_ECHO; 1715 priv->ndev = ndev; 1716 priv->base = gpriv->base; 1717 priv->channel = ch; 1718 priv->can.clock.freq = fcan_freq; 1719 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq); 1720 1721 if (gpriv->chip_id == RENESAS_RZG2L) { 1722 char *irq_name; 1723 int err_irq; 1724 int tx_irq; 1725 1726 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1727 if (err_irq < 0) { 1728 err = err_irq; 1729 goto fail; 1730 } 1731 1732 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1733 if (tx_irq < 0) { 1734 err = tx_irq; 1735 goto fail; 1736 } 1737 1738 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 1739 "canfd.ch%d_err", ch); 1740 if (!irq_name) { 1741 err = -ENOMEM; 1742 goto fail; 1743 } 1744 err = devm_request_irq(&pdev->dev, err_irq, 1745 rcar_canfd_channel_err_interrupt, 0, 1746 irq_name, gpriv); 1747 if (err) { 1748 dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n", 1749 err_irq, err); 1750 goto fail; 1751 } 1752 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 1753 "canfd.ch%d_trx", ch); 1754 if (!irq_name) { 1755 err = -ENOMEM; 1756 goto fail; 1757 } 1758 err = devm_request_irq(&pdev->dev, tx_irq, 1759 rcar_canfd_channel_tx_interrupt, 0, 1760 irq_name, gpriv); 1761 if (err) { 1762 dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n", 1763 tx_irq, err); 1764 goto fail; 1765 } 1766 } 1767 1768 if (gpriv->fdmode) { 1769 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1770 priv->can.data_bittiming_const = 1771 &rcar_canfd_data_bittiming_const; 1772 1773 /* Controller starts in CAN FD only mode */ 1774 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1775 if (err) 1776 goto fail; 1777 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1778 } else { 1779 /* Controller starts in Classical CAN only mode */ 1780 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1781 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1782 } 1783 1784 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1785 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1786 priv->gpriv = gpriv; 1787 SET_NETDEV_DEV(ndev, &pdev->dev); 1788 1789 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1790 RCANFD_NAPI_WEIGHT); 1791 spin_lock_init(&priv->tx_lock); 1792 gpriv->ch[priv->channel] = priv; 1793 err = register_candev(ndev); 1794 if (err) { 1795 dev_err(&pdev->dev, 1796 "register_candev() failed, error %d\n", err); 1797 goto fail_candev; 1798 } 1799 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel); 1800 return 0; 1801 1802 fail_candev: 1803 netif_napi_del(&priv->napi); 1804 fail: 1805 free_candev(ndev); 1806 return err; 1807 } 1808 1809 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1810 { 1811 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1812 1813 if (priv) { 1814 unregister_candev(priv->ndev); 1815 netif_napi_del(&priv->napi); 1816 free_candev(priv->ndev); 1817 } 1818 } 1819 1820 static int rcar_canfd_probe(struct platform_device *pdev) 1821 { 1822 void __iomem *addr; 1823 u32 sts, ch, fcan_freq; 1824 struct rcar_canfd_global *gpriv; 1825 struct device_node *of_child; 1826 unsigned long channels_mask = 0; 1827 int err, ch_irq, g_irq; 1828 int g_err_irq, g_recc_irq; 1829 bool fdmode = true; /* CAN FD only mode - default */ 1830 enum rcanfd_chip_id chip_id; 1831 int max_channels; 1832 char name[9] = "channelX"; 1833 int i; 1834 1835 chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev); 1836 max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2; 1837 1838 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd")) 1839 fdmode = false; /* Classical CAN only mode */ 1840 1841 for (i = 0; i < max_channels; ++i) { 1842 name[7] = '0' + i; 1843 of_child = of_get_child_by_name(pdev->dev.of_node, name); 1844 if (of_child && of_device_is_available(of_child)) 1845 channels_mask |= BIT(i); 1846 } 1847 1848 if (chip_id != RENESAS_RZG2L) { 1849 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1850 if (ch_irq < 0) { 1851 /* For backward compatibility get irq by index */ 1852 ch_irq = platform_get_irq(pdev, 0); 1853 if (ch_irq < 0) 1854 return ch_irq; 1855 } 1856 1857 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1858 if (g_irq < 0) { 1859 /* For backward compatibility get irq by index */ 1860 g_irq = platform_get_irq(pdev, 1); 1861 if (g_irq < 0) 1862 return g_irq; 1863 } 1864 } else { 1865 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1866 if (g_err_irq < 0) 1867 return g_err_irq; 1868 1869 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1870 if (g_recc_irq < 0) 1871 return g_recc_irq; 1872 } 1873 1874 /* Global controller context */ 1875 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL); 1876 if (!gpriv) { 1877 err = -ENOMEM; 1878 goto fail_dev; 1879 } 1880 gpriv->pdev = pdev; 1881 gpriv->channels_mask = channels_mask; 1882 gpriv->fdmode = fdmode; 1883 gpriv->chip_id = chip_id; 1884 gpriv->max_channels = max_channels; 1885 1886 if (gpriv->chip_id == RENESAS_RZG2L) { 1887 gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n"); 1888 if (IS_ERR(gpriv->rstc1)) 1889 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1), 1890 "failed to get rstp_n\n"); 1891 1892 gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n"); 1893 if (IS_ERR(gpriv->rstc2)) 1894 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2), 1895 "failed to get rstc_n\n"); 1896 } 1897 1898 /* Peripheral clock */ 1899 gpriv->clkp = devm_clk_get(&pdev->dev, "fck"); 1900 if (IS_ERR(gpriv->clkp)) { 1901 err = PTR_ERR(gpriv->clkp); 1902 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n", 1903 err); 1904 goto fail_dev; 1905 } 1906 1907 /* fCAN clock: Pick External clock. If not available fallback to 1908 * CANFD clock 1909 */ 1910 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1911 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1912 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd"); 1913 if (IS_ERR(gpriv->can_clk)) { 1914 err = PTR_ERR(gpriv->can_clk); 1915 dev_err(&pdev->dev, 1916 "cannot get canfd clock, error %d\n", err); 1917 goto fail_dev; 1918 } 1919 gpriv->fcan = RCANFD_CANFDCLK; 1920 1921 } else { 1922 gpriv->fcan = RCANFD_EXTCLK; 1923 } 1924 fcan_freq = clk_get_rate(gpriv->can_clk); 1925 1926 if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L) 1927 /* CANFD clock is further divided by (1/2) within the IP */ 1928 fcan_freq /= 2; 1929 1930 addr = devm_platform_ioremap_resource(pdev, 0); 1931 if (IS_ERR(addr)) { 1932 err = PTR_ERR(addr); 1933 goto fail_dev; 1934 } 1935 gpriv->base = addr; 1936 1937 /* Request IRQ that's common for both channels */ 1938 if (gpriv->chip_id != RENESAS_RZG2L) { 1939 err = devm_request_irq(&pdev->dev, ch_irq, 1940 rcar_canfd_channel_interrupt, 0, 1941 "canfd.ch_int", gpriv); 1942 if (err) { 1943 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1944 ch_irq, err); 1945 goto fail_dev; 1946 } 1947 1948 err = devm_request_irq(&pdev->dev, g_irq, 1949 rcar_canfd_global_interrupt, 0, 1950 "canfd.g_int", gpriv); 1951 if (err) { 1952 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1953 g_irq, err); 1954 goto fail_dev; 1955 } 1956 } else { 1957 err = devm_request_irq(&pdev->dev, g_recc_irq, 1958 rcar_canfd_global_receive_fifo_interrupt, 0, 1959 "canfd.g_recc", gpriv); 1960 1961 if (err) { 1962 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1963 g_recc_irq, err); 1964 goto fail_dev; 1965 } 1966 1967 err = devm_request_irq(&pdev->dev, g_err_irq, 1968 rcar_canfd_global_err_interrupt, 0, 1969 "canfd.g_err", gpriv); 1970 if (err) { 1971 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1972 g_err_irq, err); 1973 goto fail_dev; 1974 } 1975 } 1976 1977 err = reset_control_reset(gpriv->rstc1); 1978 if (err) 1979 goto fail_dev; 1980 err = reset_control_reset(gpriv->rstc2); 1981 if (err) { 1982 reset_control_assert(gpriv->rstc1); 1983 goto fail_dev; 1984 } 1985 1986 /* Enable peripheral clock for register access */ 1987 err = clk_prepare_enable(gpriv->clkp); 1988 if (err) { 1989 dev_err(&pdev->dev, 1990 "failed to enable peripheral clock, error %d\n", err); 1991 goto fail_reset; 1992 } 1993 1994 err = rcar_canfd_reset_controller(gpriv); 1995 if (err) { 1996 dev_err(&pdev->dev, "reset controller failed\n"); 1997 goto fail_clk; 1998 } 1999 2000 /* Controller in Global reset & Channel reset mode */ 2001 rcar_canfd_configure_controller(gpriv); 2002 2003 /* Configure per channel attributes */ 2004 for_each_set_bit(ch, &gpriv->channels_mask, max_channels) { 2005 /* Configure Channel's Rx fifo */ 2006 rcar_canfd_configure_rx(gpriv, ch); 2007 2008 /* Configure Channel's Tx (Common) fifo */ 2009 rcar_canfd_configure_tx(gpriv, ch); 2010 2011 /* Configure receive rules */ 2012 rcar_canfd_configure_afl_rules(gpriv, ch); 2013 } 2014 2015 /* Configure common interrupts */ 2016 rcar_canfd_enable_global_interrupts(gpriv); 2017 2018 /* Start Global operation mode */ 2019 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2020 RCANFD_GCTR_GMDC_GOPM); 2021 2022 /* Verify mode change */ 2023 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2024 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2025 if (err) { 2026 dev_err(&pdev->dev, "global operational mode failed\n"); 2027 goto fail_mode; 2028 } 2029 2030 for_each_set_bit(ch, &gpriv->channels_mask, max_channels) { 2031 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); 2032 if (err) 2033 goto fail_channel; 2034 } 2035 2036 platform_set_drvdata(pdev, gpriv); 2037 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n", 2038 gpriv->fcan, gpriv->fdmode); 2039 return 0; 2040 2041 fail_channel: 2042 for_each_set_bit(ch, &gpriv->channels_mask, max_channels) 2043 rcar_canfd_channel_remove(gpriv, ch); 2044 fail_mode: 2045 rcar_canfd_disable_global_interrupts(gpriv); 2046 fail_clk: 2047 clk_disable_unprepare(gpriv->clkp); 2048 fail_reset: 2049 reset_control_assert(gpriv->rstc1); 2050 reset_control_assert(gpriv->rstc2); 2051 fail_dev: 2052 return err; 2053 } 2054 2055 static int rcar_canfd_remove(struct platform_device *pdev) 2056 { 2057 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2058 u32 ch; 2059 2060 rcar_canfd_reset_controller(gpriv); 2061 rcar_canfd_disable_global_interrupts(gpriv); 2062 2063 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) { 2064 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2065 rcar_canfd_channel_remove(gpriv, ch); 2066 } 2067 2068 /* Enter global sleep mode */ 2069 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2070 clk_disable_unprepare(gpriv->clkp); 2071 reset_control_assert(gpriv->rstc1); 2072 reset_control_assert(gpriv->rstc2); 2073 2074 return 0; 2075 } 2076 2077 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2078 { 2079 return 0; 2080 } 2081 2082 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2083 { 2084 return 0; 2085 } 2086 2087 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2088 rcar_canfd_resume); 2089 2090 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2091 { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 }, 2092 { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L }, 2093 { .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 }, 2094 { } 2095 }; 2096 2097 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2098 2099 static struct platform_driver rcar_canfd_driver = { 2100 .driver = { 2101 .name = RCANFD_DRV_NAME, 2102 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2103 .pm = &rcar_canfd_pm_ops, 2104 }, 2105 .probe = rcar_canfd_probe, 2106 .remove = rcar_canfd_remove, 2107 }; 2108 2109 module_platform_driver(rcar_canfd_driver); 2110 2111 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2112 MODULE_LICENSE("GPL"); 2113 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2114 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2115