1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitmap.h> 25 #include <linux/bitops.h> 26 #include <linux/can/dev.h> 27 #include <linux/clk.h> 28 #include <linux/errno.h> 29 #include <linux/ethtool.h> 30 #include <linux/interrupt.h> 31 #include <linux/iopoll.h> 32 #include <linux/kernel.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/netdevice.h> 36 #include <linux/of.h> 37 #include <linux/of_device.h> 38 #include <linux/platform_device.h> 39 #include <linux/reset.h> 40 #include <linux/types.h> 41 42 #define RCANFD_DRV_NAME "rcar_canfd" 43 44 /* Global register bits */ 45 46 /* RSCFDnCFDGRMCFG */ 47 #define RCANFD_GRMCFG_RCMC BIT(0) 48 49 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 50 #define RCANFD_GCFG_EEFE BIT(6) 51 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 52 #define RCANFD_GCFG_DCS BIT(4) 53 #define RCANFD_GCFG_DCE BIT(1) 54 #define RCANFD_GCFG_TPRI BIT(0) 55 56 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 57 #define RCANFD_GCTR_TSRST BIT(16) 58 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 59 #define RCANFD_GCTR_THLEIE BIT(10) 60 #define RCANFD_GCTR_MEIE BIT(9) 61 #define RCANFD_GCTR_DEIE BIT(8) 62 #define RCANFD_GCTR_GSLPR BIT(2) 63 #define RCANFD_GCTR_GMDC_MASK (0x3) 64 #define RCANFD_GCTR_GMDC_GOPM (0x0) 65 #define RCANFD_GCTR_GMDC_GRESET (0x1) 66 #define RCANFD_GCTR_GMDC_GTEST (0x2) 67 68 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 69 #define RCANFD_GSTS_GRAMINIT BIT(3) 70 #define RCANFD_GSTS_GSLPSTS BIT(2) 71 #define RCANFD_GSTS_GHLTSTS BIT(1) 72 #define RCANFD_GSTS_GRSTSTS BIT(0) 73 /* Non-operational status */ 74 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 75 76 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 77 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16) 78 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch)) 79 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 80 #define RCANFD_GERFL_THLES BIT(2) 81 #define RCANFD_GERFL_MES BIT(1) 82 #define RCANFD_GERFL_DEF BIT(0) 83 84 #define RCANFD_GERFL_ERR(gpriv, x) \ 85 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \ 86 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \ 87 RCANFD_GERFL_MES | \ 88 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))) 89 90 /* AFL Rx rules registers */ 91 92 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 93 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \ 94 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \ 95 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) 96 97 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \ 98 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \ 99 reg_gen4(gpriv, 0x1ff, 0xff)) 100 101 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 102 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 103 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f)) 104 105 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 106 #define RCANFD_GAFLID_GAFLLB BIT(29) 107 108 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 109 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 110 111 /* Channel register bits */ 112 113 /* RSCFDnCmCFG - Classical CAN only */ 114 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 115 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 116 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 117 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 118 119 /* RSCFDnCFDCmNCFG - CAN FD only */ 120 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 121 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24)) 122 123 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 124 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16)) 125 126 #define RCANFD_NCFG_NSJW(gpriv, x) \ 127 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11)) 128 129 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 130 131 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 132 #define RCANFD_CCTR_CTME BIT(24) 133 #define RCANFD_CCTR_ERRD BIT(23) 134 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 135 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 136 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 137 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 138 #define RCANFD_CCTR_TDCVFIE BIT(19) 139 #define RCANFD_CCTR_SOCOIE BIT(18) 140 #define RCANFD_CCTR_EOCOIE BIT(17) 141 #define RCANFD_CCTR_TAIE BIT(16) 142 #define RCANFD_CCTR_ALIE BIT(15) 143 #define RCANFD_CCTR_BLIE BIT(14) 144 #define RCANFD_CCTR_OLIE BIT(13) 145 #define RCANFD_CCTR_BORIE BIT(12) 146 #define RCANFD_CCTR_BOEIE BIT(11) 147 #define RCANFD_CCTR_EPIE BIT(10) 148 #define RCANFD_CCTR_EWIE BIT(9) 149 #define RCANFD_CCTR_BEIE BIT(8) 150 #define RCANFD_CCTR_CSLPR BIT(2) 151 #define RCANFD_CCTR_CHMDC_MASK (0x3) 152 #define RCANFD_CCTR_CHDMC_COPM (0x0) 153 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 154 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 155 156 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 157 #define RCANFD_CSTS_COMSTS BIT(7) 158 #define RCANFD_CSTS_RECSTS BIT(6) 159 #define RCANFD_CSTS_TRMSTS BIT(5) 160 #define RCANFD_CSTS_BOSTS BIT(4) 161 #define RCANFD_CSTS_EPSTS BIT(3) 162 #define RCANFD_CSTS_SLPSTS BIT(2) 163 #define RCANFD_CSTS_HLTSTS BIT(1) 164 #define RCANFD_CSTS_CRSTSTS BIT(0) 165 166 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 167 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 168 169 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 170 #define RCANFD_CERFL_ADERR BIT(14) 171 #define RCANFD_CERFL_B0ERR BIT(13) 172 #define RCANFD_CERFL_B1ERR BIT(12) 173 #define RCANFD_CERFL_CERR BIT(11) 174 #define RCANFD_CERFL_AERR BIT(10) 175 #define RCANFD_CERFL_FERR BIT(9) 176 #define RCANFD_CERFL_SERR BIT(8) 177 #define RCANFD_CERFL_ALF BIT(7) 178 #define RCANFD_CERFL_BLF BIT(6) 179 #define RCANFD_CERFL_OVLF BIT(5) 180 #define RCANFD_CERFL_BORF BIT(4) 181 #define RCANFD_CERFL_BOEF BIT(3) 182 #define RCANFD_CERFL_EPF BIT(2) 183 #define RCANFD_CERFL_EWF BIT(1) 184 #define RCANFD_CERFL_BEF BIT(0) 185 186 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 187 188 /* RSCFDnCFDCmDCFG */ 189 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24) 190 191 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 192 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20)) 193 194 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 195 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16)) 196 197 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 198 199 /* RSCFDnCFDCmFDCFG */ 200 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 201 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 202 #define RCANFD_FDCFG_TDCE BIT(9) 203 #define RCANFD_FDCFG_TDCOC BIT(8) 204 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 205 206 /* RSCFDnCFDRFCCx */ 207 #define RCANFD_RFCC_RFIM BIT(12) 208 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 209 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 210 #define RCANFD_RFCC_RFIE BIT(1) 211 #define RCANFD_RFCC_RFE BIT(0) 212 213 /* RSCFDnCFDRFSTSx */ 214 #define RCANFD_RFSTS_RFIF BIT(3) 215 #define RCANFD_RFSTS_RFMLT BIT(2) 216 #define RCANFD_RFSTS_RFFLL BIT(1) 217 #define RCANFD_RFSTS_RFEMP BIT(0) 218 219 /* RSCFDnCFDRFIDx */ 220 #define RCANFD_RFID_RFIDE BIT(31) 221 #define RCANFD_RFID_RFRTR BIT(30) 222 223 /* RSCFDnCFDRFPTRx */ 224 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 225 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 226 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 227 228 /* RSCFDnCFDRFFDSTSx */ 229 #define RCANFD_RFFDSTS_RFFDF BIT(2) 230 #define RCANFD_RFFDSTS_RFBRS BIT(1) 231 #define RCANFD_RFFDSTS_RFESI BIT(0) 232 233 /* Common FIFO bits */ 234 235 /* RSCFDnCFDCFCCk */ 236 #define RCANFD_CFCC_CFTML(gpriv, x) \ 237 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20)) 238 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16)) 239 #define RCANFD_CFCC_CFIM BIT(12) 240 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8)) 241 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 242 #define RCANFD_CFCC_CFTXIE BIT(2) 243 #define RCANFD_CFCC_CFE BIT(0) 244 245 /* RSCFDnCFDCFSTSk */ 246 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 247 #define RCANFD_CFSTS_CFTXIF BIT(4) 248 #define RCANFD_CFSTS_CFMLT BIT(2) 249 #define RCANFD_CFSTS_CFFLL BIT(1) 250 #define RCANFD_CFSTS_CFEMP BIT(0) 251 252 /* RSCFDnCFDCFIDk */ 253 #define RCANFD_CFID_CFIDE BIT(31) 254 #define RCANFD_CFID_CFRTR BIT(30) 255 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 256 257 /* RSCFDnCFDCFPTRk */ 258 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 259 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 260 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 261 262 /* RSCFDnCFDCFFDCSTSk */ 263 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 264 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 265 #define RCANFD_CFFDCSTS_CFESI BIT(0) 266 267 /* This controller supports either Classical CAN only mode or CAN FD only mode. 268 * These modes are supported in two separate set of register maps & names. 269 * However, some of the register offsets are common for both modes. Those 270 * offsets are listed below as Common registers. 271 * 272 * The CAN FD only mode specific registers & Classical CAN only mode specific 273 * registers are listed separately. Their register names starts with 274 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 275 */ 276 277 /* Common registers */ 278 279 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 280 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 281 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 282 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 283 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 284 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 285 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 286 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 287 288 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 289 #define RCANFD_GCFG (0x0084) 290 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 291 #define RCANFD_GCTR (0x0088) 292 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 293 #define RCANFD_GSTS (0x008c) 294 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 295 #define RCANFD_GERFL (0x0090) 296 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 297 #define RCANFD_GTSC (0x0094) 298 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 299 #define RCANFD_GAFLECTR (0x0098) 300 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 301 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2))) 302 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 303 #define RCANFD_RMNB (0x00a4) 304 /* RSCFDnCFDRMND / RSCFDnRMND */ 305 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 306 307 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 308 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x))) 309 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 310 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 311 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 312 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 313 314 /* Common FIFO Control registers */ 315 316 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 317 #define RCANFD_CFCC(gpriv, ch, idx) \ 318 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx))) 319 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 320 #define RCANFD_CFSTS(gpriv, ch, idx) \ 321 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx))) 322 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 323 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 324 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx))) 325 326 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 327 #define RCANFD_FESTS (0x0238) 328 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 329 #define RCANFD_FFSTS (0x023c) 330 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 331 #define RCANFD_FMSTS (0x0240) 332 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 333 #define RCANFD_RFISTS (0x0244) 334 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 335 #define RCANFD_CFRISTS (0x0248) 336 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 337 #define RCANFD_CFTISTS (0x024c) 338 339 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 340 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 341 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 342 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 343 344 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 345 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 346 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 347 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 348 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 349 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 350 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 351 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 352 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 353 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 354 355 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 356 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 357 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 358 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 359 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 360 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 361 362 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 363 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 364 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 365 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 366 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 367 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 368 369 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 370 #define RCANFD_GTINTSTS0 (0x0460) 371 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 372 #define RCANFD_GTINTSTS1 (0x0464) 373 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 374 #define RCANFD_GTSTCFG (0x0468) 375 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 376 #define RCANFD_GTSTCTR (0x046c) 377 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 378 #define RCANFD_GLOCKK (0x047c) 379 /* RSCFDnCFDGRMCFG */ 380 #define RCANFD_GRMCFG (0x04fc) 381 382 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 383 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 384 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 385 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 386 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 387 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 388 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 389 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 390 391 /* Classical CAN only mode register map */ 392 393 /* RSCFDnGAFLXXXj offset */ 394 #define RCANFD_C_GAFL_OFFSET (0x0500) 395 396 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 397 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 398 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 399 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 400 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 401 402 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 403 #define RCANFD_C_RFOFFSET (0x0e00) 404 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 405 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 406 #define RCANFD_C_RFDF(x, df) \ 407 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 408 409 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 410 #define RCANFD_C_CFOFFSET (0x0e80) 411 412 #define RCANFD_C_CFID(ch, idx) \ 413 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 414 415 #define RCANFD_C_CFPTR(ch, idx) \ 416 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 417 418 #define RCANFD_C_CFDF(ch, idx, df) \ 419 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 420 421 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 422 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 423 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 424 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 425 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 426 427 /* RSCFDnTHLACCm */ 428 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 429 /* RSCFDnRPGACCr */ 430 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 431 432 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 433 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m))) 434 435 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 436 437 /* CAN FD mode specific register map */ 438 439 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 440 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m))) 441 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 442 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 443 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 444 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 445 446 /* RSCFDnCFDGAFLXXXj offset */ 447 #define RCANFD_F_GAFL_OFFSET (0x1000) 448 449 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 450 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 451 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 452 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 453 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 454 455 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 456 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000) 457 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 458 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 459 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 460 #define RCANFD_F_RFDF(gpriv, x, df) \ 461 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 462 463 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 464 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400) 465 466 #define RCANFD_F_CFID(gpriv, ch, idx) \ 467 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 468 469 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 470 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 471 472 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 473 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 474 475 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 476 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 477 (0x04 * (df))) 478 479 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 480 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 481 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 482 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 483 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 484 485 /* RSCFDnCFDTHLACCm */ 486 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 487 /* RSCFDnCFDRPGACCr */ 488 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 489 490 /* Constants */ 491 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 492 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 493 494 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 495 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 496 497 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 498 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 499 500 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 501 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 502 * number is added to RFFIFO index. 503 */ 504 #define RCANFD_RFFIFO_IDX 0 505 506 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 507 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 508 */ 509 #define RCANFD_CFFIFO_IDX 0 510 511 /* fCAN clock select register settings */ 512 enum rcar_canfd_fcanclk { 513 RCANFD_CANFDCLK = 0, /* CANFD clock */ 514 RCANFD_EXTCLK, /* Externally input clock */ 515 }; 516 517 struct rcar_canfd_global; 518 519 struct rcar_canfd_hw_info { 520 u8 max_channels; 521 u8 postdiv; 522 /* hardware features */ 523 unsigned shared_global_irqs:1; /* Has shared global irqs */ 524 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 525 }; 526 527 /* Channel priv data */ 528 struct rcar_canfd_channel { 529 struct can_priv can; /* Must be the first member */ 530 struct net_device *ndev; 531 struct rcar_canfd_global *gpriv; /* Controller reference */ 532 void __iomem *base; /* Register base address */ 533 struct napi_struct napi; 534 u32 tx_head; /* Incremented on xmit */ 535 u32 tx_tail; /* Incremented on xmit done */ 536 u32 channel; /* Channel number */ 537 spinlock_t tx_lock; /* To protect tx path */ 538 }; 539 540 /* Global priv data */ 541 struct rcar_canfd_global { 542 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 543 void __iomem *base; /* Register base address */ 544 struct platform_device *pdev; /* Respective platform device */ 545 struct clk *clkp; /* Peripheral clock */ 546 struct clk *can_clk; /* fCAN clock */ 547 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 548 unsigned long channels_mask; /* Enabled channels mask */ 549 bool fdmode; /* CAN FD or Classical CAN only mode */ 550 struct reset_control *rstc1; 551 struct reset_control *rstc2; 552 const struct rcar_canfd_hw_info *info; 553 }; 554 555 /* CAN FD mode nominal rate constants */ 556 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 557 .name = RCANFD_DRV_NAME, 558 .tseg1_min = 2, 559 .tseg1_max = 128, 560 .tseg2_min = 2, 561 .tseg2_max = 32, 562 .sjw_max = 32, 563 .brp_min = 1, 564 .brp_max = 1024, 565 .brp_inc = 1, 566 }; 567 568 /* CAN FD mode data rate constants */ 569 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 570 .name = RCANFD_DRV_NAME, 571 .tseg1_min = 2, 572 .tseg1_max = 16, 573 .tseg2_min = 2, 574 .tseg2_max = 8, 575 .sjw_max = 8, 576 .brp_min = 1, 577 .brp_max = 256, 578 .brp_inc = 1, 579 }; 580 581 /* Classical CAN mode bitrate constants */ 582 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 583 .name = RCANFD_DRV_NAME, 584 .tseg1_min = 4, 585 .tseg1_max = 16, 586 .tseg2_min = 2, 587 .tseg2_max = 8, 588 .sjw_max = 4, 589 .brp_min = 1, 590 .brp_max = 1024, 591 .brp_inc = 1, 592 }; 593 594 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 595 .max_channels = 2, 596 .postdiv = 2, 597 .shared_global_irqs = 1, 598 }; 599 600 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 601 .max_channels = 8, 602 .postdiv = 2, 603 .shared_global_irqs = 1, 604 }; 605 606 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 607 .max_channels = 2, 608 .postdiv = 1, 609 .multi_channel_irqs = 1, 610 }; 611 612 /* Helper functions */ 613 static inline bool is_gen4(struct rcar_canfd_global *gpriv) 614 { 615 return gpriv->info == &rcar_gen4_hw_info; 616 } 617 618 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv, 619 u32 gen4, u32 not_gen4) 620 { 621 return is_gen4(gpriv) ? gen4 : not_gen4; 622 } 623 624 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 625 { 626 u32 data = readl(reg); 627 628 data &= ~mask; 629 data |= (val & mask); 630 writel(data, reg); 631 } 632 633 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 634 { 635 return readl(base + (offset)); 636 } 637 638 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 639 { 640 writel(val, base + (offset)); 641 } 642 643 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 644 { 645 rcar_canfd_update(val, val, base + (reg)); 646 } 647 648 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 649 { 650 rcar_canfd_update(val, 0, base + (reg)); 651 } 652 653 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 654 u32 mask, u32 val) 655 { 656 rcar_canfd_update(mask, val, base + (reg)); 657 } 658 659 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 660 struct canfd_frame *cf, u32 off) 661 { 662 u32 i, lwords; 663 664 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 665 for (i = 0; i < lwords; i++) 666 *((u32 *)cf->data + i) = 667 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 668 } 669 670 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 671 struct canfd_frame *cf, u32 off) 672 { 673 u32 i, lwords; 674 675 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 676 for (i = 0; i < lwords; i++) 677 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 678 *((u32 *)cf->data + i)); 679 } 680 681 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 682 { 683 u32 i; 684 685 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 686 can_free_echo_skb(ndev, i, NULL); 687 } 688 689 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 690 { 691 if (is_gen4(gpriv)) { 692 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 693 : RCANFD_GEN4_FDCFG_CLOE; 694 695 for_each_set_bit(ch, &gpriv->channels_mask, 696 gpriv->info->max_channels) 697 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch), 698 val); 699 } else { 700 if (gpriv->fdmode) 701 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 702 RCANFD_GRMCFG_RCMC); 703 else 704 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 705 RCANFD_GRMCFG_RCMC); 706 } 707 } 708 709 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 710 { 711 u32 sts, ch; 712 int err; 713 714 /* Check RAMINIT flag as CAN RAM initialization takes place 715 * after the MCU reset 716 */ 717 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 718 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 719 if (err) { 720 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 721 return err; 722 } 723 724 /* Transition to Global Reset mode */ 725 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 726 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 727 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 728 729 /* Ensure Global reset mode */ 730 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 731 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 732 if (err) { 733 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 734 return err; 735 } 736 737 /* Reset Global error flags */ 738 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 739 740 /* Set the controller into appropriate mode */ 741 rcar_canfd_set_mode(gpriv); 742 743 /* Transition all Channels to reset mode */ 744 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 745 rcar_canfd_clear_bit(gpriv->base, 746 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 747 748 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 749 RCANFD_CCTR_CHMDC_MASK, 750 RCANFD_CCTR_CHDMC_CRESET); 751 752 /* Ensure Channel reset mode */ 753 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 754 (sts & RCANFD_CSTS_CRSTSTS), 755 2, 500000); 756 if (err) { 757 dev_dbg(&gpriv->pdev->dev, 758 "channel %u reset failed\n", ch); 759 return err; 760 } 761 } 762 return 0; 763 } 764 765 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 766 { 767 u32 cfg, ch; 768 769 /* Global configuration settings */ 770 771 /* ECC Error flag Enable */ 772 cfg = RCANFD_GCFG_EEFE; 773 774 if (gpriv->fdmode) 775 /* Truncate payload to configured message size RFPLS */ 776 cfg |= RCANFD_GCFG_CMPOC; 777 778 /* Set External Clock if selected */ 779 if (gpriv->fcan != RCANFD_CANFDCLK) 780 cfg |= RCANFD_GCFG_DCS; 781 782 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 783 784 /* Channel configuration settings */ 785 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 786 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 787 RCANFD_CCTR_ERRD); 788 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 789 RCANFD_CCTR_BOM_MASK, 790 RCANFD_CCTR_BOM_BENTRY); 791 } 792 } 793 794 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 795 u32 ch) 796 { 797 u32 cfg; 798 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 799 u32 ridx = ch + RCANFD_RFFIFO_IDX; 800 801 if (ch == 0) { 802 start = 0; /* Channel 0 always starts from 0th rule */ 803 } else { 804 /* Get number of Channel 0 rules and adjust */ 805 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch)); 806 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg); 807 } 808 809 /* Enable write access to entry */ 810 page = RCANFD_GAFL_PAGENUM(start); 811 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 812 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 813 RCANFD_GAFLECTR_AFLDAE)); 814 815 /* Write number of rules for channel */ 816 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch), 817 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules)); 818 if (is_gen4(gpriv)) 819 offset = RCANFD_GEN4_GAFL_OFFSET; 820 else if (gpriv->fdmode) 821 offset = RCANFD_F_GAFL_OFFSET; 822 else 823 offset = RCANFD_C_GAFL_OFFSET; 824 825 /* Accept all IDs */ 826 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 827 /* IDE or RTR is not considered for matching */ 828 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 829 /* Any data length accepted */ 830 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 831 /* Place the msg in corresponding Rx FIFO entry */ 832 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start), 833 RCANFD_GAFLP1_GAFLFDP(ridx)); 834 835 /* Disable write access to page */ 836 rcar_canfd_clear_bit(gpriv->base, 837 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 838 } 839 840 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 841 { 842 /* Rx FIFO is used for reception */ 843 u32 cfg; 844 u16 rfdc, rfpls; 845 846 /* Select Rx FIFO based on channel */ 847 u32 ridx = ch + RCANFD_RFFIFO_IDX; 848 849 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 850 if (gpriv->fdmode) 851 rfpls = 7; /* b111 - Max 64 bytes payload */ 852 else 853 rfpls = 0; /* b000 - Max 8 bytes payload */ 854 855 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 856 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 857 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 858 } 859 860 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 861 { 862 /* Tx/Rx(Common) FIFO configured in Tx mode is 863 * used for transmission 864 * 865 * Each channel has 3 Common FIFO dedicated to them. 866 * Use the 1st (index 0) out of 3 867 */ 868 u32 cfg; 869 u16 cftml, cfm, cfdc, cfpls; 870 871 cftml = 0; /* 0th buffer */ 872 cfm = 1; /* b01 - Transmit mode */ 873 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 874 if (gpriv->fdmode) 875 cfpls = 7; /* b111 - Max 64 bytes payload */ 876 else 877 cfpls = 0; /* b000 - Max 8 bytes payload */ 878 879 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 880 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 881 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 882 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 883 884 if (gpriv->fdmode) 885 /* Clear FD mode specific control/status register */ 886 rcar_canfd_write(gpriv->base, 887 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 888 } 889 890 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 891 { 892 u32 ctr; 893 894 /* Clear any stray error interrupt flags */ 895 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 896 897 /* Global interrupts setup */ 898 ctr = RCANFD_GCTR_MEIE; 899 if (gpriv->fdmode) 900 ctr |= RCANFD_GCTR_CFMPOFIE; 901 902 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 903 } 904 905 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 906 *gpriv) 907 { 908 /* Disable all interrupts */ 909 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 910 911 /* Clear any stray error interrupt flags */ 912 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 913 } 914 915 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 916 *priv) 917 { 918 u32 ctr, ch = priv->channel; 919 920 /* Clear any stray error flags */ 921 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 922 923 /* Channel interrupts setup */ 924 ctr = (RCANFD_CCTR_TAIE | 925 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 926 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 927 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 928 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 929 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 930 } 931 932 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 933 *priv) 934 { 935 u32 ctr, ch = priv->channel; 936 937 ctr = (RCANFD_CCTR_TAIE | 938 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 939 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 940 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 941 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 942 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 943 944 /* Clear any stray error flags */ 945 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 946 } 947 948 static void rcar_canfd_global_error(struct net_device *ndev) 949 { 950 struct rcar_canfd_channel *priv = netdev_priv(ndev); 951 struct rcar_canfd_global *gpriv = priv->gpriv; 952 struct net_device_stats *stats = &ndev->stats; 953 u32 ch = priv->channel; 954 u32 gerfl, sts; 955 u32 ridx = ch + RCANFD_RFFIFO_IDX; 956 957 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 958 if (gerfl & RCANFD_GERFL_EEF(ch)) { 959 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 960 stats->tx_dropped++; 961 } 962 if (gerfl & RCANFD_GERFL_MES) { 963 sts = rcar_canfd_read(priv->base, 964 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 965 if (sts & RCANFD_CFSTS_CFMLT) { 966 netdev_dbg(ndev, "Tx Message Lost flag\n"); 967 stats->tx_dropped++; 968 rcar_canfd_write(priv->base, 969 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 970 sts & ~RCANFD_CFSTS_CFMLT); 971 } 972 973 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 974 if (sts & RCANFD_RFSTS_RFMLT) { 975 netdev_dbg(ndev, "Rx Message Lost flag\n"); 976 stats->rx_dropped++; 977 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 978 sts & ~RCANFD_RFSTS_RFMLT); 979 } 980 } 981 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 982 /* Message Lost flag will be set for respective channel 983 * when this condition happens with counters and flags 984 * already updated. 985 */ 986 netdev_dbg(ndev, "global payload overflow interrupt\n"); 987 } 988 989 /* Clear all global error interrupts. Only affected channels bits 990 * get cleared 991 */ 992 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 993 } 994 995 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 996 u16 txerr, u16 rxerr) 997 { 998 struct rcar_canfd_channel *priv = netdev_priv(ndev); 999 struct net_device_stats *stats = &ndev->stats; 1000 struct can_frame *cf; 1001 struct sk_buff *skb; 1002 u32 ch = priv->channel; 1003 1004 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1005 1006 /* Propagate the error condition to the CAN stack */ 1007 skb = alloc_can_err_skb(ndev, &cf); 1008 if (!skb) { 1009 stats->rx_dropped++; 1010 return; 1011 } 1012 1013 /* Channel error interrupts */ 1014 if (cerfl & RCANFD_CERFL_BEF) { 1015 netdev_dbg(ndev, "Bus error\n"); 1016 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1017 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1018 priv->can.can_stats.bus_error++; 1019 } 1020 if (cerfl & RCANFD_CERFL_ADERR) { 1021 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1022 stats->tx_errors++; 1023 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1024 } 1025 if (cerfl & RCANFD_CERFL_B0ERR) { 1026 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1027 stats->tx_errors++; 1028 cf->data[2] |= CAN_ERR_PROT_BIT0; 1029 } 1030 if (cerfl & RCANFD_CERFL_B1ERR) { 1031 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1032 stats->tx_errors++; 1033 cf->data[2] |= CAN_ERR_PROT_BIT1; 1034 } 1035 if (cerfl & RCANFD_CERFL_CERR) { 1036 netdev_dbg(ndev, "CRC Error\n"); 1037 stats->rx_errors++; 1038 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1039 } 1040 if (cerfl & RCANFD_CERFL_AERR) { 1041 netdev_dbg(ndev, "ACK Error\n"); 1042 stats->tx_errors++; 1043 cf->can_id |= CAN_ERR_ACK; 1044 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1045 } 1046 if (cerfl & RCANFD_CERFL_FERR) { 1047 netdev_dbg(ndev, "Form Error\n"); 1048 stats->rx_errors++; 1049 cf->data[2] |= CAN_ERR_PROT_FORM; 1050 } 1051 if (cerfl & RCANFD_CERFL_SERR) { 1052 netdev_dbg(ndev, "Stuff Error\n"); 1053 stats->rx_errors++; 1054 cf->data[2] |= CAN_ERR_PROT_STUFF; 1055 } 1056 if (cerfl & RCANFD_CERFL_ALF) { 1057 netdev_dbg(ndev, "Arbitration lost Error\n"); 1058 priv->can.can_stats.arbitration_lost++; 1059 cf->can_id |= CAN_ERR_LOSTARB; 1060 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1061 } 1062 if (cerfl & RCANFD_CERFL_BLF) { 1063 netdev_dbg(ndev, "Bus Lock Error\n"); 1064 stats->rx_errors++; 1065 cf->can_id |= CAN_ERR_BUSERROR; 1066 } 1067 if (cerfl & RCANFD_CERFL_EWF) { 1068 netdev_dbg(ndev, "Error warning interrupt\n"); 1069 priv->can.state = CAN_STATE_ERROR_WARNING; 1070 priv->can.can_stats.error_warning++; 1071 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1072 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1073 CAN_ERR_CRTL_RX_WARNING; 1074 cf->data[6] = txerr; 1075 cf->data[7] = rxerr; 1076 } 1077 if (cerfl & RCANFD_CERFL_EPF) { 1078 netdev_dbg(ndev, "Error passive interrupt\n"); 1079 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1080 priv->can.can_stats.error_passive++; 1081 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1082 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1083 CAN_ERR_CRTL_RX_PASSIVE; 1084 cf->data[6] = txerr; 1085 cf->data[7] = rxerr; 1086 } 1087 if (cerfl & RCANFD_CERFL_BOEF) { 1088 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1089 rcar_canfd_tx_failure_cleanup(ndev); 1090 priv->can.state = CAN_STATE_BUS_OFF; 1091 priv->can.can_stats.bus_off++; 1092 can_bus_off(ndev); 1093 cf->can_id |= CAN_ERR_BUSOFF; 1094 } 1095 if (cerfl & RCANFD_CERFL_OVLF) { 1096 netdev_dbg(ndev, 1097 "Overload Frame Transmission error interrupt\n"); 1098 stats->tx_errors++; 1099 cf->can_id |= CAN_ERR_PROT; 1100 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1101 } 1102 1103 /* Clear channel error interrupts that are handled */ 1104 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1105 RCANFD_CERFL_ERR(~cerfl)); 1106 netif_rx(skb); 1107 } 1108 1109 static void rcar_canfd_tx_done(struct net_device *ndev) 1110 { 1111 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1112 struct rcar_canfd_global *gpriv = priv->gpriv; 1113 struct net_device_stats *stats = &ndev->stats; 1114 u32 sts; 1115 unsigned long flags; 1116 u32 ch = priv->channel; 1117 1118 do { 1119 u8 unsent, sent; 1120 1121 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1122 stats->tx_packets++; 1123 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1124 1125 spin_lock_irqsave(&priv->tx_lock, flags); 1126 priv->tx_tail++; 1127 sts = rcar_canfd_read(priv->base, 1128 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1129 unsent = RCANFD_CFSTS_CFMC(sts); 1130 1131 /* Wake producer only when there is room */ 1132 if (unsent != RCANFD_FIFO_DEPTH) 1133 netif_wake_queue(ndev); 1134 1135 if (priv->tx_head - priv->tx_tail <= unsent) { 1136 spin_unlock_irqrestore(&priv->tx_lock, flags); 1137 break; 1138 } 1139 spin_unlock_irqrestore(&priv->tx_lock, flags); 1140 1141 } while (1); 1142 1143 /* Clear interrupt */ 1144 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1145 sts & ~RCANFD_CFSTS_CFTXIF); 1146 } 1147 1148 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1149 { 1150 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1151 struct net_device *ndev = priv->ndev; 1152 u32 gerfl; 1153 1154 /* Handle global error interrupts */ 1155 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1156 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1157 rcar_canfd_global_error(ndev); 1158 } 1159 1160 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1161 { 1162 struct rcar_canfd_global *gpriv = dev_id; 1163 u32 ch; 1164 1165 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1166 rcar_canfd_handle_global_err(gpriv, ch); 1167 1168 return IRQ_HANDLED; 1169 } 1170 1171 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1172 { 1173 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1174 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1175 u32 sts, cc; 1176 1177 /* Handle Rx interrupts */ 1178 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1179 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1180 if (likely(sts & RCANFD_RFSTS_RFIF && 1181 cc & RCANFD_RFCC_RFIE)) { 1182 if (napi_schedule_prep(&priv->napi)) { 1183 /* Disable Rx FIFO interrupts */ 1184 rcar_canfd_clear_bit(priv->base, 1185 RCANFD_RFCC(gpriv, ridx), 1186 RCANFD_RFCC_RFIE); 1187 __napi_schedule(&priv->napi); 1188 } 1189 } 1190 } 1191 1192 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1193 { 1194 struct rcar_canfd_global *gpriv = dev_id; 1195 u32 ch; 1196 1197 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1198 rcar_canfd_handle_global_receive(gpriv, ch); 1199 1200 return IRQ_HANDLED; 1201 } 1202 1203 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1204 { 1205 struct rcar_canfd_global *gpriv = dev_id; 1206 u32 ch; 1207 1208 /* Global error interrupts still indicate a condition specific 1209 * to a channel. RxFIFO interrupt is a global interrupt. 1210 */ 1211 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1212 rcar_canfd_handle_global_err(gpriv, ch); 1213 rcar_canfd_handle_global_receive(gpriv, ch); 1214 } 1215 return IRQ_HANDLED; 1216 } 1217 1218 static void rcar_canfd_state_change(struct net_device *ndev, 1219 u16 txerr, u16 rxerr) 1220 { 1221 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1222 struct net_device_stats *stats = &ndev->stats; 1223 enum can_state rx_state, tx_state, state = priv->can.state; 1224 struct can_frame *cf; 1225 struct sk_buff *skb; 1226 1227 /* Handle transition from error to normal states */ 1228 if (txerr < 96 && rxerr < 96) 1229 state = CAN_STATE_ERROR_ACTIVE; 1230 else if (txerr < 128 && rxerr < 128) 1231 state = CAN_STATE_ERROR_WARNING; 1232 1233 if (state != priv->can.state) { 1234 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1235 state, priv->can.state, txerr, rxerr); 1236 skb = alloc_can_err_skb(ndev, &cf); 1237 if (!skb) { 1238 stats->rx_dropped++; 1239 return; 1240 } 1241 tx_state = txerr >= rxerr ? state : 0; 1242 rx_state = txerr <= rxerr ? state : 0; 1243 1244 can_change_state(ndev, cf, tx_state, rx_state); 1245 netif_rx(skb); 1246 } 1247 } 1248 1249 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1250 { 1251 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1252 struct net_device *ndev = priv->ndev; 1253 u32 sts; 1254 1255 /* Handle Tx interrupts */ 1256 sts = rcar_canfd_read(priv->base, 1257 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1258 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1259 rcar_canfd_tx_done(ndev); 1260 } 1261 1262 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1263 { 1264 struct rcar_canfd_channel *priv = dev_id; 1265 1266 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1267 1268 return IRQ_HANDLED; 1269 } 1270 1271 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1272 { 1273 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1274 struct net_device *ndev = priv->ndev; 1275 u16 txerr, rxerr; 1276 u32 sts, cerfl; 1277 1278 /* Handle channel error interrupts */ 1279 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1280 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1281 txerr = RCANFD_CSTS_TECCNT(sts); 1282 rxerr = RCANFD_CSTS_RECCNT(sts); 1283 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1284 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1285 1286 /* Handle state change to lower states */ 1287 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1288 priv->can.state != CAN_STATE_BUS_OFF)) 1289 rcar_canfd_state_change(ndev, txerr, rxerr); 1290 } 1291 1292 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1293 { 1294 struct rcar_canfd_channel *priv = dev_id; 1295 1296 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1297 1298 return IRQ_HANDLED; 1299 } 1300 1301 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1302 { 1303 struct rcar_canfd_global *gpriv = dev_id; 1304 u32 ch; 1305 1306 /* Common FIFO is a per channel resource */ 1307 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1308 rcar_canfd_handle_channel_err(gpriv, ch); 1309 rcar_canfd_handle_channel_tx(gpriv, ch); 1310 } 1311 1312 return IRQ_HANDLED; 1313 } 1314 1315 static void rcar_canfd_set_bittiming(struct net_device *dev) 1316 { 1317 struct rcar_canfd_channel *priv = netdev_priv(dev); 1318 struct rcar_canfd_global *gpriv = priv->gpriv; 1319 const struct can_bittiming *bt = &priv->can.bittiming; 1320 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1321 u16 brp, sjw, tseg1, tseg2; 1322 u32 cfg; 1323 u32 ch = priv->channel; 1324 1325 /* Nominal bit timing settings */ 1326 brp = bt->brp - 1; 1327 sjw = bt->sjw - 1; 1328 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1329 tseg2 = bt->phase_seg2 - 1; 1330 1331 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1332 /* CAN FD only mode */ 1333 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1334 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1335 1336 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1337 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1338 brp, sjw, tseg1, tseg2); 1339 1340 /* Data bit timing settings */ 1341 brp = dbt->brp - 1; 1342 sjw = dbt->sjw - 1; 1343 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1344 tseg2 = dbt->phase_seg2 - 1; 1345 1346 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1347 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1348 1349 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg); 1350 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1351 brp, sjw, tseg1, tseg2); 1352 } else { 1353 /* Classical CAN only mode */ 1354 if (is_gen4(gpriv)) { 1355 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | 1356 RCANFD_NCFG_NBRP(brp) | 1357 RCANFD_NCFG_NSJW(gpriv, sjw) | 1358 RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1359 } else { 1360 cfg = (RCANFD_CFG_TSEG1(tseg1) | 1361 RCANFD_CFG_BRP(brp) | 1362 RCANFD_CFG_SJW(sjw) | 1363 RCANFD_CFG_TSEG2(tseg2)); 1364 } 1365 1366 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1367 netdev_dbg(priv->ndev, 1368 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1369 brp, sjw, tseg1, tseg2); 1370 } 1371 } 1372 1373 static int rcar_canfd_start(struct net_device *ndev) 1374 { 1375 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1376 struct rcar_canfd_global *gpriv = priv->gpriv; 1377 int err = -EOPNOTSUPP; 1378 u32 sts, ch = priv->channel; 1379 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1380 1381 rcar_canfd_set_bittiming(ndev); 1382 1383 rcar_canfd_enable_channel_interrupts(priv); 1384 1385 /* Set channel to Operational mode */ 1386 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1387 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1388 1389 /* Verify channel mode change */ 1390 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1391 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1392 if (err) { 1393 netdev_err(ndev, "channel %u communication state failed\n", ch); 1394 goto fail_mode_change; 1395 } 1396 1397 /* Enable Common & Rx FIFO */ 1398 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1399 RCANFD_CFCC_CFE); 1400 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1401 1402 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1403 return 0; 1404 1405 fail_mode_change: 1406 rcar_canfd_disable_channel_interrupts(priv); 1407 return err; 1408 } 1409 1410 static int rcar_canfd_open(struct net_device *ndev) 1411 { 1412 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1413 struct rcar_canfd_global *gpriv = priv->gpriv; 1414 int err; 1415 1416 /* Peripheral clock is already enabled in probe */ 1417 err = clk_prepare_enable(gpriv->can_clk); 1418 if (err) { 1419 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); 1420 goto out_clock; 1421 } 1422 1423 err = open_candev(ndev); 1424 if (err) { 1425 netdev_err(ndev, "open_candev() failed, error %d\n", err); 1426 goto out_can_clock; 1427 } 1428 1429 napi_enable(&priv->napi); 1430 err = rcar_canfd_start(ndev); 1431 if (err) 1432 goto out_close; 1433 netif_start_queue(ndev); 1434 return 0; 1435 out_close: 1436 napi_disable(&priv->napi); 1437 close_candev(ndev); 1438 out_can_clock: 1439 clk_disable_unprepare(gpriv->can_clk); 1440 out_clock: 1441 return err; 1442 } 1443 1444 static void rcar_canfd_stop(struct net_device *ndev) 1445 { 1446 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1447 struct rcar_canfd_global *gpriv = priv->gpriv; 1448 int err; 1449 u32 sts, ch = priv->channel; 1450 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1451 1452 /* Transition to channel reset mode */ 1453 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1454 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1455 1456 /* Check Channel reset mode */ 1457 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1458 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1459 if (err) 1460 netdev_err(ndev, "channel %u reset failed\n", ch); 1461 1462 rcar_canfd_disable_channel_interrupts(priv); 1463 1464 /* Disable Common & Rx FIFO */ 1465 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1466 RCANFD_CFCC_CFE); 1467 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1468 1469 /* Set the state as STOPPED */ 1470 priv->can.state = CAN_STATE_STOPPED; 1471 } 1472 1473 static int rcar_canfd_close(struct net_device *ndev) 1474 { 1475 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1476 struct rcar_canfd_global *gpriv = priv->gpriv; 1477 1478 netif_stop_queue(ndev); 1479 rcar_canfd_stop(ndev); 1480 napi_disable(&priv->napi); 1481 clk_disable_unprepare(gpriv->can_clk); 1482 close_candev(ndev); 1483 return 0; 1484 } 1485 1486 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1487 struct net_device *ndev) 1488 { 1489 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1490 struct rcar_canfd_global *gpriv = priv->gpriv; 1491 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1492 u32 sts = 0, id, dlc; 1493 unsigned long flags; 1494 u32 ch = priv->channel; 1495 1496 if (can_dev_dropped_skb(ndev, skb)) 1497 return NETDEV_TX_OK; 1498 1499 if (cf->can_id & CAN_EFF_FLAG) { 1500 id = cf->can_id & CAN_EFF_MASK; 1501 id |= RCANFD_CFID_CFIDE; 1502 } else { 1503 id = cf->can_id & CAN_SFF_MASK; 1504 } 1505 1506 if (cf->can_id & CAN_RTR_FLAG) 1507 id |= RCANFD_CFID_CFRTR; 1508 1509 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1510 1511 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1512 rcar_canfd_write(priv->base, 1513 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1514 rcar_canfd_write(priv->base, 1515 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1516 1517 if (can_is_canfd_skb(skb)) { 1518 /* CAN FD frame format */ 1519 sts |= RCANFD_CFFDCSTS_CFFDF; 1520 if (cf->flags & CANFD_BRS) 1521 sts |= RCANFD_CFFDCSTS_CFBRS; 1522 1523 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1524 sts |= RCANFD_CFFDCSTS_CFESI; 1525 } 1526 1527 rcar_canfd_write(priv->base, 1528 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1529 1530 rcar_canfd_put_data(priv, cf, 1531 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1532 } else { 1533 rcar_canfd_write(priv->base, 1534 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1535 rcar_canfd_write(priv->base, 1536 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1537 rcar_canfd_put_data(priv, cf, 1538 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1539 } 1540 1541 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1542 1543 spin_lock_irqsave(&priv->tx_lock, flags); 1544 priv->tx_head++; 1545 1546 /* Stop the queue if we've filled all FIFO entries */ 1547 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1548 netif_stop_queue(ndev); 1549 1550 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1551 * pointer for the Common FIFO 1552 */ 1553 rcar_canfd_write(priv->base, 1554 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1555 1556 spin_unlock_irqrestore(&priv->tx_lock, flags); 1557 return NETDEV_TX_OK; 1558 } 1559 1560 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1561 { 1562 struct net_device_stats *stats = &priv->ndev->stats; 1563 struct rcar_canfd_global *gpriv = priv->gpriv; 1564 struct canfd_frame *cf; 1565 struct sk_buff *skb; 1566 u32 sts = 0, id, dlc; 1567 u32 ch = priv->channel; 1568 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1569 1570 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1571 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1572 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1573 1574 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1575 1576 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1577 sts & RCANFD_RFFDSTS_RFFDF) 1578 skb = alloc_canfd_skb(priv->ndev, &cf); 1579 else 1580 skb = alloc_can_skb(priv->ndev, 1581 (struct can_frame **)&cf); 1582 } else { 1583 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1584 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1585 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1586 } 1587 1588 if (!skb) { 1589 stats->rx_dropped++; 1590 return; 1591 } 1592 1593 if (id & RCANFD_RFID_RFIDE) 1594 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1595 else 1596 cf->can_id = id & CAN_SFF_MASK; 1597 1598 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1599 if (sts & RCANFD_RFFDSTS_RFFDF) 1600 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1601 else 1602 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1603 1604 if (sts & RCANFD_RFFDSTS_RFESI) { 1605 cf->flags |= CANFD_ESI; 1606 netdev_dbg(priv->ndev, "ESI Error\n"); 1607 } 1608 1609 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1610 cf->can_id |= CAN_RTR_FLAG; 1611 } else { 1612 if (sts & RCANFD_RFFDSTS_RFBRS) 1613 cf->flags |= CANFD_BRS; 1614 1615 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1616 } 1617 } else { 1618 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1619 if (id & RCANFD_RFID_RFRTR) 1620 cf->can_id |= CAN_RTR_FLAG; 1621 else if (is_gen4(gpriv)) 1622 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1623 else 1624 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1625 } 1626 1627 /* Write 0xff to RFPC to increment the CPU-side 1628 * pointer of the Rx FIFO 1629 */ 1630 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1631 1632 if (!(cf->can_id & CAN_RTR_FLAG)) 1633 stats->rx_bytes += cf->len; 1634 stats->rx_packets++; 1635 netif_receive_skb(skb); 1636 } 1637 1638 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1639 { 1640 struct rcar_canfd_channel *priv = 1641 container_of(napi, struct rcar_canfd_channel, napi); 1642 struct rcar_canfd_global *gpriv = priv->gpriv; 1643 int num_pkts; 1644 u32 sts; 1645 u32 ch = priv->channel; 1646 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1647 1648 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1649 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1650 /* Check FIFO empty condition */ 1651 if (sts & RCANFD_RFSTS_RFEMP) 1652 break; 1653 1654 rcar_canfd_rx_pkt(priv); 1655 1656 /* Clear interrupt bit */ 1657 if (sts & RCANFD_RFSTS_RFIF) 1658 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1659 sts & ~RCANFD_RFSTS_RFIF); 1660 } 1661 1662 /* All packets processed */ 1663 if (num_pkts < quota) { 1664 if (napi_complete_done(napi, num_pkts)) { 1665 /* Enable Rx FIFO interrupts */ 1666 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1667 RCANFD_RFCC_RFIE); 1668 } 1669 } 1670 return num_pkts; 1671 } 1672 1673 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1674 { 1675 int err; 1676 1677 switch (mode) { 1678 case CAN_MODE_START: 1679 err = rcar_canfd_start(ndev); 1680 if (err) 1681 return err; 1682 netif_wake_queue(ndev); 1683 return 0; 1684 default: 1685 return -EOPNOTSUPP; 1686 } 1687 } 1688 1689 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1690 struct can_berr_counter *bec) 1691 { 1692 struct rcar_canfd_channel *priv = netdev_priv(dev); 1693 u32 val, ch = priv->channel; 1694 1695 /* Peripheral clock is already enabled in probe */ 1696 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1697 bec->txerr = RCANFD_CSTS_TECCNT(val); 1698 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1699 return 0; 1700 } 1701 1702 static const struct net_device_ops rcar_canfd_netdev_ops = { 1703 .ndo_open = rcar_canfd_open, 1704 .ndo_stop = rcar_canfd_close, 1705 .ndo_start_xmit = rcar_canfd_start_xmit, 1706 .ndo_change_mtu = can_change_mtu, 1707 }; 1708 1709 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1710 .get_ts_info = ethtool_op_get_ts_info, 1711 }; 1712 1713 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1714 u32 fcan_freq) 1715 { 1716 const struct rcar_canfd_hw_info *info = gpriv->info; 1717 struct platform_device *pdev = gpriv->pdev; 1718 struct device *dev = &pdev->dev; 1719 struct rcar_canfd_channel *priv; 1720 struct net_device *ndev; 1721 int err = -ENODEV; 1722 1723 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1724 if (!ndev) { 1725 dev_err(dev, "alloc_candev() failed\n"); 1726 return -ENOMEM; 1727 } 1728 priv = netdev_priv(ndev); 1729 1730 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1731 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1732 ndev->flags |= IFF_ECHO; 1733 priv->ndev = ndev; 1734 priv->base = gpriv->base; 1735 priv->channel = ch; 1736 priv->gpriv = gpriv; 1737 priv->can.clock.freq = fcan_freq; 1738 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1739 1740 if (info->multi_channel_irqs) { 1741 char *irq_name; 1742 int err_irq; 1743 int tx_irq; 1744 1745 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1746 if (err_irq < 0) { 1747 err = err_irq; 1748 goto fail; 1749 } 1750 1751 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1752 if (tx_irq < 0) { 1753 err = tx_irq; 1754 goto fail; 1755 } 1756 1757 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1758 ch); 1759 if (!irq_name) { 1760 err = -ENOMEM; 1761 goto fail; 1762 } 1763 err = devm_request_irq(dev, err_irq, 1764 rcar_canfd_channel_err_interrupt, 0, 1765 irq_name, priv); 1766 if (err) { 1767 dev_err(dev, "devm_request_irq CH Err(%d) failed, error %d\n", 1768 err_irq, err); 1769 goto fail; 1770 } 1771 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1772 ch); 1773 if (!irq_name) { 1774 err = -ENOMEM; 1775 goto fail; 1776 } 1777 err = devm_request_irq(dev, tx_irq, 1778 rcar_canfd_channel_tx_interrupt, 0, 1779 irq_name, priv); 1780 if (err) { 1781 dev_err(dev, "devm_request_irq Tx (%d) failed, error %d\n", 1782 tx_irq, err); 1783 goto fail; 1784 } 1785 } 1786 1787 if (gpriv->fdmode) { 1788 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1789 priv->can.data_bittiming_const = 1790 &rcar_canfd_data_bittiming_const; 1791 1792 /* Controller starts in CAN FD only mode */ 1793 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1794 if (err) 1795 goto fail; 1796 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1797 } else { 1798 /* Controller starts in Classical CAN only mode */ 1799 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1800 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1801 } 1802 1803 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1804 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1805 SET_NETDEV_DEV(ndev, dev); 1806 1807 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1808 RCANFD_NAPI_WEIGHT); 1809 spin_lock_init(&priv->tx_lock); 1810 gpriv->ch[priv->channel] = priv; 1811 err = register_candev(ndev); 1812 if (err) { 1813 dev_err(dev, "register_candev() failed, error %d\n", err); 1814 goto fail_candev; 1815 } 1816 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1817 return 0; 1818 1819 fail_candev: 1820 netif_napi_del(&priv->napi); 1821 fail: 1822 free_candev(ndev); 1823 return err; 1824 } 1825 1826 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1827 { 1828 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1829 1830 if (priv) { 1831 unregister_candev(priv->ndev); 1832 netif_napi_del(&priv->napi); 1833 free_candev(priv->ndev); 1834 } 1835 } 1836 1837 static int rcar_canfd_probe(struct platform_device *pdev) 1838 { 1839 const struct rcar_canfd_hw_info *info; 1840 struct device *dev = &pdev->dev; 1841 void __iomem *addr; 1842 u32 sts, ch, fcan_freq; 1843 struct rcar_canfd_global *gpriv; 1844 struct device_node *of_child; 1845 unsigned long channels_mask = 0; 1846 int err, ch_irq, g_irq; 1847 int g_err_irq, g_recc_irq; 1848 bool fdmode = true; /* CAN FD only mode - default */ 1849 char name[9] = "channelX"; 1850 int i; 1851 1852 info = of_device_get_match_data(dev); 1853 1854 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1855 fdmode = false; /* Classical CAN only mode */ 1856 1857 for (i = 0; i < info->max_channels; ++i) { 1858 name[7] = '0' + i; 1859 of_child = of_get_child_by_name(dev->of_node, name); 1860 if (of_child && of_device_is_available(of_child)) 1861 channels_mask |= BIT(i); 1862 of_node_put(of_child); 1863 } 1864 1865 if (info->shared_global_irqs) { 1866 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1867 if (ch_irq < 0) { 1868 /* For backward compatibility get irq by index */ 1869 ch_irq = platform_get_irq(pdev, 0); 1870 if (ch_irq < 0) 1871 return ch_irq; 1872 } 1873 1874 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1875 if (g_irq < 0) { 1876 /* For backward compatibility get irq by index */ 1877 g_irq = platform_get_irq(pdev, 1); 1878 if (g_irq < 0) 1879 return g_irq; 1880 } 1881 } else { 1882 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1883 if (g_err_irq < 0) 1884 return g_err_irq; 1885 1886 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1887 if (g_recc_irq < 0) 1888 return g_recc_irq; 1889 } 1890 1891 /* Global controller context */ 1892 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 1893 if (!gpriv) 1894 return -ENOMEM; 1895 1896 gpriv->pdev = pdev; 1897 gpriv->channels_mask = channels_mask; 1898 gpriv->fdmode = fdmode; 1899 gpriv->info = info; 1900 1901 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 1902 if (IS_ERR(gpriv->rstc1)) 1903 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 1904 "failed to get rstp_n\n"); 1905 1906 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 1907 if (IS_ERR(gpriv->rstc2)) 1908 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 1909 "failed to get rstc_n\n"); 1910 1911 /* Peripheral clock */ 1912 gpriv->clkp = devm_clk_get(dev, "fck"); 1913 if (IS_ERR(gpriv->clkp)) 1914 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 1915 "cannot get peripheral clock\n"); 1916 1917 /* fCAN clock: Pick External clock. If not available fallback to 1918 * CANFD clock 1919 */ 1920 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 1921 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1922 gpriv->can_clk = devm_clk_get(dev, "canfd"); 1923 if (IS_ERR(gpriv->can_clk)) 1924 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 1925 "cannot get canfd clock\n"); 1926 1927 gpriv->fcan = RCANFD_CANFDCLK; 1928 1929 } else { 1930 gpriv->fcan = RCANFD_EXTCLK; 1931 } 1932 fcan_freq = clk_get_rate(gpriv->can_clk); 1933 1934 if (gpriv->fcan == RCANFD_CANFDCLK) 1935 /* CANFD clock is further divided by (1/2) within the IP */ 1936 fcan_freq /= info->postdiv; 1937 1938 addr = devm_platform_ioremap_resource(pdev, 0); 1939 if (IS_ERR(addr)) { 1940 err = PTR_ERR(addr); 1941 goto fail_dev; 1942 } 1943 gpriv->base = addr; 1944 1945 /* Request IRQ that's common for both channels */ 1946 if (info->shared_global_irqs) { 1947 err = devm_request_irq(dev, ch_irq, 1948 rcar_canfd_channel_interrupt, 0, 1949 "canfd.ch_int", gpriv); 1950 if (err) { 1951 dev_err(dev, "devm_request_irq(%d) failed, error %d\n", 1952 ch_irq, err); 1953 goto fail_dev; 1954 } 1955 1956 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 1957 0, "canfd.g_int", gpriv); 1958 if (err) { 1959 dev_err(dev, "devm_request_irq(%d) failed, error %d\n", 1960 g_irq, err); 1961 goto fail_dev; 1962 } 1963 } else { 1964 err = devm_request_irq(dev, g_recc_irq, 1965 rcar_canfd_global_receive_fifo_interrupt, 0, 1966 "canfd.g_recc", gpriv); 1967 1968 if (err) { 1969 dev_err(dev, "devm_request_irq(%d) failed, error %d\n", 1970 g_recc_irq, err); 1971 goto fail_dev; 1972 } 1973 1974 err = devm_request_irq(dev, g_err_irq, 1975 rcar_canfd_global_err_interrupt, 0, 1976 "canfd.g_err", gpriv); 1977 if (err) { 1978 dev_err(dev, "devm_request_irq(%d) failed, error %d\n", 1979 g_err_irq, err); 1980 goto fail_dev; 1981 } 1982 } 1983 1984 err = reset_control_reset(gpriv->rstc1); 1985 if (err) 1986 goto fail_dev; 1987 err = reset_control_reset(gpriv->rstc2); 1988 if (err) { 1989 reset_control_assert(gpriv->rstc1); 1990 goto fail_dev; 1991 } 1992 1993 /* Enable peripheral clock for register access */ 1994 err = clk_prepare_enable(gpriv->clkp); 1995 if (err) { 1996 dev_err(dev, "failed to enable peripheral clock, error %d\n", 1997 err); 1998 goto fail_reset; 1999 } 2000 2001 err = rcar_canfd_reset_controller(gpriv); 2002 if (err) { 2003 dev_err(dev, "reset controller failed\n"); 2004 goto fail_clk; 2005 } 2006 2007 /* Controller in Global reset & Channel reset mode */ 2008 rcar_canfd_configure_controller(gpriv); 2009 2010 /* Configure per channel attributes */ 2011 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2012 /* Configure Channel's Rx fifo */ 2013 rcar_canfd_configure_rx(gpriv, ch); 2014 2015 /* Configure Channel's Tx (Common) fifo */ 2016 rcar_canfd_configure_tx(gpriv, ch); 2017 2018 /* Configure receive rules */ 2019 rcar_canfd_configure_afl_rules(gpriv, ch); 2020 } 2021 2022 /* Configure common interrupts */ 2023 rcar_canfd_enable_global_interrupts(gpriv); 2024 2025 /* Start Global operation mode */ 2026 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2027 RCANFD_GCTR_GMDC_GOPM); 2028 2029 /* Verify mode change */ 2030 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2031 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2032 if (err) { 2033 dev_err(dev, "global operational mode failed\n"); 2034 goto fail_mode; 2035 } 2036 2037 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2038 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); 2039 if (err) 2040 goto fail_channel; 2041 } 2042 2043 platform_set_drvdata(pdev, gpriv); 2044 dev_info(dev, "global operational state (clk %d, fdmode %d)\n", 2045 gpriv->fcan, gpriv->fdmode); 2046 return 0; 2047 2048 fail_channel: 2049 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2050 rcar_canfd_channel_remove(gpriv, ch); 2051 fail_mode: 2052 rcar_canfd_disable_global_interrupts(gpriv); 2053 fail_clk: 2054 clk_disable_unprepare(gpriv->clkp); 2055 fail_reset: 2056 reset_control_assert(gpriv->rstc1); 2057 reset_control_assert(gpriv->rstc2); 2058 fail_dev: 2059 return err; 2060 } 2061 2062 static int rcar_canfd_remove(struct platform_device *pdev) 2063 { 2064 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2065 u32 ch; 2066 2067 rcar_canfd_reset_controller(gpriv); 2068 rcar_canfd_disable_global_interrupts(gpriv); 2069 2070 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2071 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2072 rcar_canfd_channel_remove(gpriv, ch); 2073 } 2074 2075 /* Enter global sleep mode */ 2076 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2077 clk_disable_unprepare(gpriv->clkp); 2078 reset_control_assert(gpriv->rstc1); 2079 reset_control_assert(gpriv->rstc2); 2080 2081 return 0; 2082 } 2083 2084 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2085 { 2086 return 0; 2087 } 2088 2089 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2090 { 2091 return 0; 2092 } 2093 2094 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2095 rcar_canfd_resume); 2096 2097 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2098 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2099 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2100 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2101 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2102 { } 2103 }; 2104 2105 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2106 2107 static struct platform_driver rcar_canfd_driver = { 2108 .driver = { 2109 .name = RCANFD_DRV_NAME, 2110 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2111 .pm = &rcar_canfd_pm_ops, 2112 }, 2113 .probe = rcar_canfd_probe, 2114 .remove = rcar_canfd_remove, 2115 }; 2116 2117 module_platform_driver(rcar_canfd_driver); 2118 2119 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2120 MODULE_LICENSE("GPL"); 2121 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2122 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2123