xref: /openbmc/linux/drivers/net/can/rcar/rcar_canfd.c (revision 447395e18ae084b1ac96d4efeca43a711cf5a36b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6 
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/netdevice.h>
32 #include <linux/platform_device.h>
33 #include <linux/can/dev.h>
34 #include <linux/clk.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 #include <linux/iopoll.h>
40 #include <linux/reset.h>
41 
42 #define RCANFD_DRV_NAME			"rcar_canfd"
43 
44 enum rcanfd_chip_id {
45 	RENESAS_RCAR_GEN3 = 0,
46 	RENESAS_RZG2L,
47 	RENESAS_R8A779A0,
48 };
49 
50 /* Global register bits */
51 
52 /* RSCFDnCFDGRMCFG */
53 #define RCANFD_GRMCFG_RCMC		BIT(0)
54 
55 /* RSCFDnCFDGCFG / RSCFDnGCFG */
56 #define RCANFD_GCFG_EEFE		BIT(6)
57 #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
58 #define RCANFD_GCFG_DCS			BIT(4)
59 #define RCANFD_GCFG_DCE			BIT(1)
60 #define RCANFD_GCFG_TPRI		BIT(0)
61 
62 /* RSCFDnCFDGCTR / RSCFDnGCTR */
63 #define RCANFD_GCTR_TSRST		BIT(16)
64 #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
65 #define RCANFD_GCTR_THLEIE		BIT(10)
66 #define RCANFD_GCTR_MEIE		BIT(9)
67 #define RCANFD_GCTR_DEIE		BIT(8)
68 #define RCANFD_GCTR_GSLPR		BIT(2)
69 #define RCANFD_GCTR_GMDC_MASK		(0x3)
70 #define RCANFD_GCTR_GMDC_GOPM		(0x0)
71 #define RCANFD_GCTR_GMDC_GRESET		(0x1)
72 #define RCANFD_GCTR_GMDC_GTEST		(0x2)
73 
74 /* RSCFDnCFDGSTS / RSCFDnGSTS */
75 #define RCANFD_GSTS_GRAMINIT		BIT(3)
76 #define RCANFD_GSTS_GSLPSTS		BIT(2)
77 #define RCANFD_GSTS_GHLTSTS		BIT(1)
78 #define RCANFD_GSTS_GRSTSTS		BIT(0)
79 /* Non-operational status */
80 #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
81 
82 /* RSCFDnCFDGERFL / RSCFDnGERFL */
83 #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
84 #define RCANFD_GERFL_EEF(ch)		BIT(16 + (ch))
85 #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
86 #define RCANFD_GERFL_THLES		BIT(2)
87 #define RCANFD_GERFL_MES		BIT(1)
88 #define RCANFD_GERFL_DEF		BIT(0)
89 
90 #define RCANFD_GERFL_ERR(gpriv, x) \
91 	((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
92 			RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
93 		RCANFD_GERFL_MES | \
94 		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
95 
96 /* AFL Rx rules registers */
97 
98 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
99 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
100 	(((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
101 	 (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
102 
103 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
104 	(((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
105 	 reg_v3u(gpriv, 0x1ff, 0xff))
106 
107 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
108 #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
109 #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_v3u(gpriv, 0x7f, 0x1f))
110 
111 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
112 #define RCANFD_GAFLID_GAFLLB		BIT(29)
113 
114 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
115 #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
116 
117 /* Channel register bits */
118 
119 /* RSCFDnCmCFG - Classical CAN only */
120 #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
121 #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
122 #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
123 #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
124 
125 /* RSCFDnCFDCmNCFG - CAN FD only */
126 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
127 	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
128 
129 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
130 	(((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
131 
132 #define RCANFD_NCFG_NSJW(gpriv, x) \
133 	(((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
134 
135 #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
136 
137 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
138 #define RCANFD_CCTR_CTME		BIT(24)
139 #define RCANFD_CCTR_ERRD		BIT(23)
140 #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
141 #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
142 #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
143 #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
144 #define RCANFD_CCTR_TDCVFIE		BIT(19)
145 #define RCANFD_CCTR_SOCOIE		BIT(18)
146 #define RCANFD_CCTR_EOCOIE		BIT(17)
147 #define RCANFD_CCTR_TAIE		BIT(16)
148 #define RCANFD_CCTR_ALIE		BIT(15)
149 #define RCANFD_CCTR_BLIE		BIT(14)
150 #define RCANFD_CCTR_OLIE		BIT(13)
151 #define RCANFD_CCTR_BORIE		BIT(12)
152 #define RCANFD_CCTR_BOEIE		BIT(11)
153 #define RCANFD_CCTR_EPIE		BIT(10)
154 #define RCANFD_CCTR_EWIE		BIT(9)
155 #define RCANFD_CCTR_BEIE		BIT(8)
156 #define RCANFD_CCTR_CSLPR		BIT(2)
157 #define RCANFD_CCTR_CHMDC_MASK		(0x3)
158 #define RCANFD_CCTR_CHDMC_COPM		(0x0)
159 #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
160 #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
161 
162 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
163 #define RCANFD_CSTS_COMSTS		BIT(7)
164 #define RCANFD_CSTS_RECSTS		BIT(6)
165 #define RCANFD_CSTS_TRMSTS		BIT(5)
166 #define RCANFD_CSTS_BOSTS		BIT(4)
167 #define RCANFD_CSTS_EPSTS		BIT(3)
168 #define RCANFD_CSTS_SLPSTS		BIT(2)
169 #define RCANFD_CSTS_HLTSTS		BIT(1)
170 #define RCANFD_CSTS_CRSTSTS		BIT(0)
171 
172 #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
173 #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
174 
175 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
176 #define RCANFD_CERFL_ADERR		BIT(14)
177 #define RCANFD_CERFL_B0ERR		BIT(13)
178 #define RCANFD_CERFL_B1ERR		BIT(12)
179 #define RCANFD_CERFL_CERR		BIT(11)
180 #define RCANFD_CERFL_AERR		BIT(10)
181 #define RCANFD_CERFL_FERR		BIT(9)
182 #define RCANFD_CERFL_SERR		BIT(8)
183 #define RCANFD_CERFL_ALF		BIT(7)
184 #define RCANFD_CERFL_BLF		BIT(6)
185 #define RCANFD_CERFL_OVLF		BIT(5)
186 #define RCANFD_CERFL_BORF		BIT(4)
187 #define RCANFD_CERFL_BOEF		BIT(3)
188 #define RCANFD_CERFL_EPF		BIT(2)
189 #define RCANFD_CERFL_EWF		BIT(1)
190 #define RCANFD_CERFL_BEF		BIT(0)
191 
192 #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
193 
194 /* RSCFDnCFDCmDCFG */
195 #define RCANFD_DCFG_DSJW(x)		(((x) & 0x7) << 24)
196 
197 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
198 	(((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
199 
200 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
201 	(((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
202 
203 #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
204 
205 /* RSCFDnCFDCmFDCFG */
206 #define RCANFD_FDCFG_CLOE		BIT(30)
207 #define RCANFD_FDCFG_FDOE		BIT(28)
208 #define RCANFD_FDCFG_TDCE		BIT(9)
209 #define RCANFD_FDCFG_TDCOC		BIT(8)
210 #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
211 
212 /* RSCFDnCFDRFCCx */
213 #define RCANFD_RFCC_RFIM		BIT(12)
214 #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
215 #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
216 #define RCANFD_RFCC_RFIE		BIT(1)
217 #define RCANFD_RFCC_RFE			BIT(0)
218 
219 /* RSCFDnCFDRFSTSx */
220 #define RCANFD_RFSTS_RFIF		BIT(3)
221 #define RCANFD_RFSTS_RFMLT		BIT(2)
222 #define RCANFD_RFSTS_RFFLL		BIT(1)
223 #define RCANFD_RFSTS_RFEMP		BIT(0)
224 
225 /* RSCFDnCFDRFIDx */
226 #define RCANFD_RFID_RFIDE		BIT(31)
227 #define RCANFD_RFID_RFRTR		BIT(30)
228 
229 /* RSCFDnCFDRFPTRx */
230 #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
231 #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
232 #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
233 
234 /* RSCFDnCFDRFFDSTSx */
235 #define RCANFD_RFFDSTS_RFFDF		BIT(2)
236 #define RCANFD_RFFDSTS_RFBRS		BIT(1)
237 #define RCANFD_RFFDSTS_RFESI		BIT(0)
238 
239 /* Common FIFO bits */
240 
241 /* RSCFDnCFDCFCCk */
242 #define RCANFD_CFCC_CFTML(gpriv, x)	(((x) & 0xf) << reg_v3u(gpriv, 16, 20))
243 #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_v3u(gpriv,  8, 16))
244 #define RCANFD_CFCC_CFIM		BIT(12)
245 #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_v3u(gpriv, 21,  8))
246 #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
247 #define RCANFD_CFCC_CFTXIE		BIT(2)
248 #define RCANFD_CFCC_CFE			BIT(0)
249 
250 /* RSCFDnCFDCFSTSk */
251 #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
252 #define RCANFD_CFSTS_CFTXIF		BIT(4)
253 #define RCANFD_CFSTS_CFMLT		BIT(2)
254 #define RCANFD_CFSTS_CFFLL		BIT(1)
255 #define RCANFD_CFSTS_CFEMP		BIT(0)
256 
257 /* RSCFDnCFDCFIDk */
258 #define RCANFD_CFID_CFIDE		BIT(31)
259 #define RCANFD_CFID_CFRTR		BIT(30)
260 #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
261 
262 /* RSCFDnCFDCFPTRk */
263 #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
264 #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
265 #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
266 
267 /* RSCFDnCFDCFFDCSTSk */
268 #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
269 #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
270 #define RCANFD_CFFDCSTS_CFESI		BIT(0)
271 
272 /* This controller supports either Classical CAN only mode or CAN FD only mode.
273  * These modes are supported in two separate set of register maps & names.
274  * However, some of the register offsets are common for both modes. Those
275  * offsets are listed below as Common registers.
276  *
277  * The CAN FD only mode specific registers & Classical CAN only mode specific
278  * registers are listed separately. Their register names starts with
279  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
280  */
281 
282 /* Common registers */
283 
284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
285 #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
287 #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
289 #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
291 #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
292 
293 /* RSCFDnCFDGCFG / RSCFDnGCFG */
294 #define RCANFD_GCFG			(0x0084)
295 /* RSCFDnCFDGCTR / RSCFDnGCTR */
296 #define RCANFD_GCTR			(0x0088)
297 /* RSCFDnCFDGCTS / RSCFDnGCTS */
298 #define RCANFD_GSTS			(0x008c)
299 /* RSCFDnCFDGERFL / RSCFDnGERFL */
300 #define RCANFD_GERFL			(0x0090)
301 /* RSCFDnCFDGTSC / RSCFDnGTSC */
302 #define RCANFD_GTSC			(0x0094)
303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
304 #define RCANFD_GAFLECTR			(0x0098)
305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
306 #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
307 /* RSCFDnCFDRMNB / RSCFDnRMNB */
308 #define RCANFD_RMNB			(0x00a4)
309 /* RSCFDnCFDRMND / RSCFDnRMND */
310 #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
311 
312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
313 #define RCANFD_RFCC(gpriv, x)		(reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
315 #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
317 #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
318 
319 /* Common FIFO Control registers */
320 
321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
322 #define RCANFD_CFCC(gpriv, ch, idx) \
323 	(reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
325 #define RCANFD_CFSTS(gpriv, ch, idx) \
326 	(reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
328 #define RCANFD_CFPCTR(gpriv, ch, idx) \
329 	(reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
330 
331 /* RSCFDnCFDFESTS / RSCFDnFESTS */
332 #define RCANFD_FESTS			(0x0238)
333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
334 #define RCANFD_FFSTS			(0x023c)
335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
336 #define RCANFD_FMSTS			(0x0240)
337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
338 #define RCANFD_RFISTS			(0x0244)
339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
340 #define RCANFD_CFRISTS			(0x0248)
341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
342 #define RCANFD_CFTISTS			(0x024c)
343 
344 /* RSCFDnCFDTMCp / RSCFDnTMCp */
345 #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
347 #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
348 
349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
350 #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
352 #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
354 #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
356 #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
358 #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
359 
360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
361 #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
363 #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
365 #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
366 
367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
368 #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
370 #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
372 #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
373 
374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
375 #define RCANFD_GTINTSTS0		(0x0460)
376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
377 #define RCANFD_GTINTSTS1		(0x0464)
378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
379 #define RCANFD_GTSTCFG			(0x0468)
380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
381 #define RCANFD_GTSTCTR			(0x046c)
382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
383 #define RCANFD_GLOCKK			(0x047c)
384 /* RSCFDnCFDGRMCFG */
385 #define RCANFD_GRMCFG			(0x04fc)
386 
387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
388 #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
390 #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
392 #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
394 #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
395 
396 /* Classical CAN only mode register map */
397 
398 /* RSCFDnGAFLXXXj offset */
399 #define RCANFD_C_GAFL_OFFSET		(0x0500)
400 
401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
402 #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
403 #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
404 #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
405 #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
406 
407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
408 #define RCANFD_C_RFOFFSET	(0x0e00)
409 #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
410 #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
411 #define RCANFD_C_RFDF(x, df) \
412 		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
413 
414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
415 #define RCANFD_C_CFOFFSET		(0x0e80)
416 
417 #define RCANFD_C_CFID(ch, idx) \
418 	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
419 
420 #define RCANFD_C_CFPTR(ch, idx)	\
421 	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
422 
423 #define RCANFD_C_CFDF(ch, idx, df) \
424 	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
425 
426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
427 #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
428 #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
429 #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
430 #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
431 
432 /* RSCFDnTHLACCm */
433 #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
434 /* RSCFDnRPGACCr */
435 #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
436 
437 /* R-Car V3U Classical and CAN FD mode specific register map */
438 #define RCANFD_V3U_CFDCFG		(0x1314)
439 #define RCANFD_V3U_DCFG(m)		(0x1400 + (0x20 * (m)))
440 
441 #define RCANFD_V3U_GAFL_OFFSET		(0x1800)
442 
443 /* CAN FD mode specific register map */
444 
445 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
446 #define RCANFD_F_DCFG(m)		(0x0500 + (0x20 * (m)))
447 #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
448 #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
449 #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
450 #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
451 
452 /* RSCFDnCFDGAFLXXXj offset */
453 #define RCANFD_F_GAFL_OFFSET		(0x1000)
454 
455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
456 #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
457 #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
458 #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
459 #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
460 
461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
462 #define RCANFD_F_RFOFFSET(gpriv)	reg_v3u(gpriv, 0x6000, 0x3000)
463 #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
464 #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
465 #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
466 #define RCANFD_F_RFDF(gpriv, x, df) \
467 	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
468 
469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
470 #define RCANFD_F_CFOFFSET(gpriv)	reg_v3u(gpriv, 0x6400, 0x3400)
471 
472 #define RCANFD_F_CFID(gpriv, ch, idx) \
473 	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
474 
475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
476 	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
477 
478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
479 	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
480 
481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
482 	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
483 	 (0x04 * (df)))
484 
485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
486 #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
487 #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
488 #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
489 #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
490 
491 /* RSCFDnCFDTHLACCm */
492 #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
493 /* RSCFDnCFDRPGACCr */
494 #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
495 
496 /* Constants */
497 #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
498 #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
499 
500 #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
501 #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
502 
503 #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
504 #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
505 
506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
507  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
508  * number is added to RFFIFO index.
509  */
510 #define RCANFD_RFFIFO_IDX		0
511 
512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
513  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
514  */
515 #define RCANFD_CFFIFO_IDX		0
516 
517 /* fCAN clock select register settings */
518 enum rcar_canfd_fcanclk {
519 	RCANFD_CANFDCLK = 0,		/* CANFD clock */
520 	RCANFD_EXTCLK,			/* Externally input clock */
521 };
522 
523 struct rcar_canfd_global;
524 
525 /* Channel priv data */
526 struct rcar_canfd_channel {
527 	struct can_priv can;			/* Must be the first member */
528 	struct net_device *ndev;
529 	struct rcar_canfd_global *gpriv;	/* Controller reference */
530 	void __iomem *base;			/* Register base address */
531 	struct napi_struct napi;
532 	u32 tx_head;				/* Incremented on xmit */
533 	u32 tx_tail;				/* Incremented on xmit done */
534 	u32 channel;				/* Channel number */
535 	spinlock_t tx_lock;			/* To protect tx path */
536 };
537 
538 /* Global priv data */
539 struct rcar_canfd_global {
540 	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
541 	void __iomem *base;		/* Register base address */
542 	struct platform_device *pdev;	/* Respective platform device */
543 	struct clk *clkp;		/* Peripheral clock */
544 	struct clk *can_clk;		/* fCAN clock */
545 	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
546 	unsigned long channels_mask;	/* Enabled channels mask */
547 	bool fdmode;			/* CAN FD or Classical CAN only mode */
548 	struct reset_control *rstc1;
549 	struct reset_control *rstc2;
550 	enum rcanfd_chip_id chip_id;
551 	u32 max_channels;
552 };
553 
554 /* CAN FD mode nominal rate constants */
555 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
556 	.name = RCANFD_DRV_NAME,
557 	.tseg1_min = 2,
558 	.tseg1_max = 128,
559 	.tseg2_min = 2,
560 	.tseg2_max = 32,
561 	.sjw_max = 32,
562 	.brp_min = 1,
563 	.brp_max = 1024,
564 	.brp_inc = 1,
565 };
566 
567 /* CAN FD mode data rate constants */
568 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
569 	.name = RCANFD_DRV_NAME,
570 	.tseg1_min = 2,
571 	.tseg1_max = 16,
572 	.tseg2_min = 2,
573 	.tseg2_max = 8,
574 	.sjw_max = 8,
575 	.brp_min = 1,
576 	.brp_max = 256,
577 	.brp_inc = 1,
578 };
579 
580 /* Classical CAN mode bitrate constants */
581 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
582 	.name = RCANFD_DRV_NAME,
583 	.tseg1_min = 4,
584 	.tseg1_max = 16,
585 	.tseg2_min = 2,
586 	.tseg2_max = 8,
587 	.sjw_max = 4,
588 	.brp_min = 1,
589 	.brp_max = 1024,
590 	.brp_inc = 1,
591 };
592 
593 /* Helper functions */
594 static inline bool is_v3u(struct rcar_canfd_global *gpriv)
595 {
596 	return gpriv->chip_id == RENESAS_R8A779A0;
597 }
598 
599 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
600 			  u32 v3u, u32 not_v3u)
601 {
602 	return is_v3u(gpriv) ? v3u : not_v3u;
603 }
604 
605 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
606 {
607 	u32 data = readl(reg);
608 
609 	data &= ~mask;
610 	data |= (val & mask);
611 	writel(data, reg);
612 }
613 
614 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
615 {
616 	return readl(base + (offset));
617 }
618 
619 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
620 {
621 	writel(val, base + (offset));
622 }
623 
624 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
625 {
626 	rcar_canfd_update(val, val, base + (reg));
627 }
628 
629 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
630 {
631 	rcar_canfd_update(val, 0, base + (reg));
632 }
633 
634 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
635 				  u32 mask, u32 val)
636 {
637 	rcar_canfd_update(mask, val, base + (reg));
638 }
639 
640 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
641 				struct canfd_frame *cf, u32 off)
642 {
643 	u32 i, lwords;
644 
645 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
646 	for (i = 0; i < lwords; i++)
647 		*((u32 *)cf->data + i) =
648 			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
649 }
650 
651 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
652 				struct canfd_frame *cf, u32 off)
653 {
654 	u32 i, lwords;
655 
656 	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
657 	for (i = 0; i < lwords; i++)
658 		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
659 				 *((u32 *)cf->data + i));
660 }
661 
662 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
663 {
664 	u32 i;
665 
666 	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
667 		can_free_echo_skb(ndev, i, NULL);
668 }
669 
670 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
671 {
672 	if (is_v3u(gpriv)) {
673 		if (gpriv->fdmode)
674 			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
675 					   RCANFD_FDCFG_FDOE);
676 		else
677 			rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
678 					   RCANFD_FDCFG_CLOE);
679 	} else {
680 		if (gpriv->fdmode)
681 			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
682 					   RCANFD_GRMCFG_RCMC);
683 		else
684 			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
685 					     RCANFD_GRMCFG_RCMC);
686 	}
687 }
688 
689 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
690 {
691 	u32 sts, ch;
692 	int err;
693 
694 	/* Check RAMINIT flag as CAN RAM initialization takes place
695 	 * after the MCU reset
696 	 */
697 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
698 				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
699 	if (err) {
700 		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
701 		return err;
702 	}
703 
704 	/* Transition to Global Reset mode */
705 	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
706 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
707 			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
708 
709 	/* Ensure Global reset mode */
710 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
711 				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
712 	if (err) {
713 		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
714 		return err;
715 	}
716 
717 	/* Reset Global error flags */
718 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
719 
720 	/* Set the controller into appropriate mode */
721 	rcar_canfd_set_mode(gpriv);
722 
723 	/* Transition all Channels to reset mode */
724 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
725 		rcar_canfd_clear_bit(gpriv->base,
726 				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
727 
728 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
729 				      RCANFD_CCTR_CHMDC_MASK,
730 				      RCANFD_CCTR_CHDMC_CRESET);
731 
732 		/* Ensure Channel reset mode */
733 		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
734 					 (sts & RCANFD_CSTS_CRSTSTS),
735 					 2, 500000);
736 		if (err) {
737 			dev_dbg(&gpriv->pdev->dev,
738 				"channel %u reset failed\n", ch);
739 			return err;
740 		}
741 	}
742 	return 0;
743 }
744 
745 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
746 {
747 	u32 cfg, ch;
748 
749 	/* Global configuration settings */
750 
751 	/* ECC Error flag Enable */
752 	cfg = RCANFD_GCFG_EEFE;
753 
754 	if (gpriv->fdmode)
755 		/* Truncate payload to configured message size RFPLS */
756 		cfg |= RCANFD_GCFG_CMPOC;
757 
758 	/* Set External Clock if selected */
759 	if (gpriv->fcan != RCANFD_CANFDCLK)
760 		cfg |= RCANFD_GCFG_DCS;
761 
762 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
763 
764 	/* Channel configuration settings */
765 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
766 		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
767 				   RCANFD_CCTR_ERRD);
768 		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
769 				      RCANFD_CCTR_BOM_MASK,
770 				      RCANFD_CCTR_BOM_BENTRY);
771 	}
772 }
773 
774 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
775 					   u32 ch)
776 {
777 	u32 cfg;
778 	int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
779 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
780 
781 	if (ch == 0) {
782 		start = 0; /* Channel 0 always starts from 0th rule */
783 	} else {
784 		/* Get number of Channel 0 rules and adjust */
785 		cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
786 		start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
787 	}
788 
789 	/* Enable write access to entry */
790 	page = RCANFD_GAFL_PAGENUM(start);
791 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
792 			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
793 			    RCANFD_GAFLECTR_AFLDAE));
794 
795 	/* Write number of rules for channel */
796 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
797 			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
798 	if (is_v3u(gpriv))
799 		offset = RCANFD_V3U_GAFL_OFFSET;
800 	else if (gpriv->fdmode)
801 		offset = RCANFD_F_GAFL_OFFSET;
802 	else
803 		offset = RCANFD_C_GAFL_OFFSET;
804 
805 	/* Accept all IDs */
806 	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
807 	/* IDE or RTR is not considered for matching */
808 	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
809 	/* Any data length accepted */
810 	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
811 	/* Place the msg in corresponding Rx FIFO entry */
812 	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
813 			   RCANFD_GAFLP1_GAFLFDP(ridx));
814 
815 	/* Disable write access to page */
816 	rcar_canfd_clear_bit(gpriv->base,
817 			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
818 }
819 
820 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
821 {
822 	/* Rx FIFO is used for reception */
823 	u32 cfg;
824 	u16 rfdc, rfpls;
825 
826 	/* Select Rx FIFO based on channel */
827 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
828 
829 	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
830 	if (gpriv->fdmode)
831 		rfpls = 7;	/* b111 - Max 64 bytes payload */
832 	else
833 		rfpls = 0;	/* b000 - Max 8 bytes payload */
834 
835 	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
836 		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
837 	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
838 }
839 
840 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
841 {
842 	/* Tx/Rx(Common) FIFO configured in Tx mode is
843 	 * used for transmission
844 	 *
845 	 * Each channel has 3 Common FIFO dedicated to them.
846 	 * Use the 1st (index 0) out of 3
847 	 */
848 	u32 cfg;
849 	u16 cftml, cfm, cfdc, cfpls;
850 
851 	cftml = 0;		/* 0th buffer */
852 	cfm = 1;		/* b01 - Transmit mode */
853 	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
854 	if (gpriv->fdmode)
855 		cfpls = 7;	/* b111 - Max 64 bytes payload */
856 	else
857 		cfpls = 0;	/* b000 - Max 8 bytes payload */
858 
859 	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
860 		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
861 		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
862 	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
863 
864 	if (gpriv->fdmode)
865 		/* Clear FD mode specific control/status register */
866 		rcar_canfd_write(gpriv->base,
867 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
868 }
869 
870 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
871 {
872 	u32 ctr;
873 
874 	/* Clear any stray error interrupt flags */
875 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
876 
877 	/* Global interrupts setup */
878 	ctr = RCANFD_GCTR_MEIE;
879 	if (gpriv->fdmode)
880 		ctr |= RCANFD_GCTR_CFMPOFIE;
881 
882 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
883 }
884 
885 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
886 						 *gpriv)
887 {
888 	/* Disable all interrupts */
889 	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
890 
891 	/* Clear any stray error interrupt flags */
892 	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
893 }
894 
895 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
896 						 *priv)
897 {
898 	u32 ctr, ch = priv->channel;
899 
900 	/* Clear any stray error flags */
901 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
902 
903 	/* Channel interrupts setup */
904 	ctr = (RCANFD_CCTR_TAIE |
905 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
906 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
907 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
908 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
909 	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
910 }
911 
912 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
913 						  *priv)
914 {
915 	u32 ctr, ch = priv->channel;
916 
917 	ctr = (RCANFD_CCTR_TAIE |
918 	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
919 	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
920 	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
921 	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
922 	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
923 
924 	/* Clear any stray error flags */
925 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
926 }
927 
928 static void rcar_canfd_global_error(struct net_device *ndev)
929 {
930 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
931 	struct rcar_canfd_global *gpriv = priv->gpriv;
932 	struct net_device_stats *stats = &ndev->stats;
933 	u32 ch = priv->channel;
934 	u32 gerfl, sts;
935 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
936 
937 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
938 	if (gerfl & RCANFD_GERFL_EEF(ch)) {
939 		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
940 		stats->tx_dropped++;
941 	}
942 	if (gerfl & RCANFD_GERFL_MES) {
943 		sts = rcar_canfd_read(priv->base,
944 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
945 		if (sts & RCANFD_CFSTS_CFMLT) {
946 			netdev_dbg(ndev, "Tx Message Lost flag\n");
947 			stats->tx_dropped++;
948 			rcar_canfd_write(priv->base,
949 					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
950 					 sts & ~RCANFD_CFSTS_CFMLT);
951 		}
952 
953 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
954 		if (sts & RCANFD_RFSTS_RFMLT) {
955 			netdev_dbg(ndev, "Rx Message Lost flag\n");
956 			stats->rx_dropped++;
957 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
958 					 sts & ~RCANFD_RFSTS_RFMLT);
959 		}
960 	}
961 	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
962 		/* Message Lost flag will be set for respective channel
963 		 * when this condition happens with counters and flags
964 		 * already updated.
965 		 */
966 		netdev_dbg(ndev, "global payload overflow interrupt\n");
967 	}
968 
969 	/* Clear all global error interrupts. Only affected channels bits
970 	 * get cleared
971 	 */
972 	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
973 }
974 
975 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
976 			     u16 txerr, u16 rxerr)
977 {
978 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
979 	struct net_device_stats *stats = &ndev->stats;
980 	struct can_frame *cf;
981 	struct sk_buff *skb;
982 	u32 ch = priv->channel;
983 
984 	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
985 
986 	/* Propagate the error condition to the CAN stack */
987 	skb = alloc_can_err_skb(ndev, &cf);
988 	if (!skb) {
989 		stats->rx_dropped++;
990 		return;
991 	}
992 
993 	/* Channel error interrupts */
994 	if (cerfl & RCANFD_CERFL_BEF) {
995 		netdev_dbg(ndev, "Bus error\n");
996 		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
997 		cf->data[2] = CAN_ERR_PROT_UNSPEC;
998 		priv->can.can_stats.bus_error++;
999 	}
1000 	if (cerfl & RCANFD_CERFL_ADERR) {
1001 		netdev_dbg(ndev, "ACK Delimiter Error\n");
1002 		stats->tx_errors++;
1003 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1004 	}
1005 	if (cerfl & RCANFD_CERFL_B0ERR) {
1006 		netdev_dbg(ndev, "Bit Error (dominant)\n");
1007 		stats->tx_errors++;
1008 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1009 	}
1010 	if (cerfl & RCANFD_CERFL_B1ERR) {
1011 		netdev_dbg(ndev, "Bit Error (recessive)\n");
1012 		stats->tx_errors++;
1013 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1014 	}
1015 	if (cerfl & RCANFD_CERFL_CERR) {
1016 		netdev_dbg(ndev, "CRC Error\n");
1017 		stats->rx_errors++;
1018 		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1019 	}
1020 	if (cerfl & RCANFD_CERFL_AERR) {
1021 		netdev_dbg(ndev, "ACK Error\n");
1022 		stats->tx_errors++;
1023 		cf->can_id |= CAN_ERR_ACK;
1024 		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1025 	}
1026 	if (cerfl & RCANFD_CERFL_FERR) {
1027 		netdev_dbg(ndev, "Form Error\n");
1028 		stats->rx_errors++;
1029 		cf->data[2] |= CAN_ERR_PROT_FORM;
1030 	}
1031 	if (cerfl & RCANFD_CERFL_SERR) {
1032 		netdev_dbg(ndev, "Stuff Error\n");
1033 		stats->rx_errors++;
1034 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1035 	}
1036 	if (cerfl & RCANFD_CERFL_ALF) {
1037 		netdev_dbg(ndev, "Arbitration lost Error\n");
1038 		priv->can.can_stats.arbitration_lost++;
1039 		cf->can_id |= CAN_ERR_LOSTARB;
1040 		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1041 	}
1042 	if (cerfl & RCANFD_CERFL_BLF) {
1043 		netdev_dbg(ndev, "Bus Lock Error\n");
1044 		stats->rx_errors++;
1045 		cf->can_id |= CAN_ERR_BUSERROR;
1046 	}
1047 	if (cerfl & RCANFD_CERFL_EWF) {
1048 		netdev_dbg(ndev, "Error warning interrupt\n");
1049 		priv->can.state = CAN_STATE_ERROR_WARNING;
1050 		priv->can.can_stats.error_warning++;
1051 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1052 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1053 			CAN_ERR_CRTL_RX_WARNING;
1054 		cf->data[6] = txerr;
1055 		cf->data[7] = rxerr;
1056 	}
1057 	if (cerfl & RCANFD_CERFL_EPF) {
1058 		netdev_dbg(ndev, "Error passive interrupt\n");
1059 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1060 		priv->can.can_stats.error_passive++;
1061 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1062 		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1063 			CAN_ERR_CRTL_RX_PASSIVE;
1064 		cf->data[6] = txerr;
1065 		cf->data[7] = rxerr;
1066 	}
1067 	if (cerfl & RCANFD_CERFL_BOEF) {
1068 		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1069 		rcar_canfd_tx_failure_cleanup(ndev);
1070 		priv->can.state = CAN_STATE_BUS_OFF;
1071 		priv->can.can_stats.bus_off++;
1072 		can_bus_off(ndev);
1073 		cf->can_id |= CAN_ERR_BUSOFF;
1074 	}
1075 	if (cerfl & RCANFD_CERFL_OVLF) {
1076 		netdev_dbg(ndev,
1077 			   "Overload Frame Transmission error interrupt\n");
1078 		stats->tx_errors++;
1079 		cf->can_id |= CAN_ERR_PROT;
1080 		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1081 	}
1082 
1083 	/* Clear channel error interrupts that are handled */
1084 	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1085 			 RCANFD_CERFL_ERR(~cerfl));
1086 	netif_rx(skb);
1087 }
1088 
1089 static void rcar_canfd_tx_done(struct net_device *ndev)
1090 {
1091 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1092 	struct rcar_canfd_global *gpriv = priv->gpriv;
1093 	struct net_device_stats *stats = &ndev->stats;
1094 	u32 sts;
1095 	unsigned long flags;
1096 	u32 ch = priv->channel;
1097 
1098 	do {
1099 		u8 unsent, sent;
1100 
1101 		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1102 		stats->tx_packets++;
1103 		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1104 
1105 		spin_lock_irqsave(&priv->tx_lock, flags);
1106 		priv->tx_tail++;
1107 		sts = rcar_canfd_read(priv->base,
1108 				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1109 		unsent = RCANFD_CFSTS_CFMC(sts);
1110 
1111 		/* Wake producer only when there is room */
1112 		if (unsent != RCANFD_FIFO_DEPTH)
1113 			netif_wake_queue(ndev);
1114 
1115 		if (priv->tx_head - priv->tx_tail <= unsent) {
1116 			spin_unlock_irqrestore(&priv->tx_lock, flags);
1117 			break;
1118 		}
1119 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1120 
1121 	} while (1);
1122 
1123 	/* Clear interrupt */
1124 	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1125 			 sts & ~RCANFD_CFSTS_CFTXIF);
1126 }
1127 
1128 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1129 {
1130 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1131 	struct net_device *ndev = priv->ndev;
1132 	u32 gerfl;
1133 
1134 	/* Handle global error interrupts */
1135 	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1136 	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1137 		rcar_canfd_global_error(ndev);
1138 }
1139 
1140 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1141 {
1142 	struct rcar_canfd_global *gpriv = dev_id;
1143 	u32 ch;
1144 
1145 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1146 		rcar_canfd_handle_global_err(gpriv, ch);
1147 
1148 	return IRQ_HANDLED;
1149 }
1150 
1151 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1152 {
1153 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1154 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1155 	u32 sts, cc;
1156 
1157 	/* Handle Rx interrupts */
1158 	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1159 	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1160 	if (likely(sts & RCANFD_RFSTS_RFIF &&
1161 		   cc & RCANFD_RFCC_RFIE)) {
1162 		if (napi_schedule_prep(&priv->napi)) {
1163 			/* Disable Rx FIFO interrupts */
1164 			rcar_canfd_clear_bit(priv->base,
1165 					     RCANFD_RFCC(gpriv, ridx),
1166 					     RCANFD_RFCC_RFIE);
1167 			__napi_schedule(&priv->napi);
1168 		}
1169 	}
1170 }
1171 
1172 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1173 {
1174 	struct rcar_canfd_global *gpriv = dev_id;
1175 	u32 ch;
1176 
1177 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1178 		rcar_canfd_handle_global_receive(gpriv, ch);
1179 
1180 	return IRQ_HANDLED;
1181 }
1182 
1183 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1184 {
1185 	struct rcar_canfd_global *gpriv = dev_id;
1186 	u32 ch;
1187 
1188 	/* Global error interrupts still indicate a condition specific
1189 	 * to a channel. RxFIFO interrupt is a global interrupt.
1190 	 */
1191 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1192 		rcar_canfd_handle_global_err(gpriv, ch);
1193 		rcar_canfd_handle_global_receive(gpriv, ch);
1194 	}
1195 	return IRQ_HANDLED;
1196 }
1197 
1198 static void rcar_canfd_state_change(struct net_device *ndev,
1199 				    u16 txerr, u16 rxerr)
1200 {
1201 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1202 	struct net_device_stats *stats = &ndev->stats;
1203 	enum can_state rx_state, tx_state, state = priv->can.state;
1204 	struct can_frame *cf;
1205 	struct sk_buff *skb;
1206 
1207 	/* Handle transition from error to normal states */
1208 	if (txerr < 96 && rxerr < 96)
1209 		state = CAN_STATE_ERROR_ACTIVE;
1210 	else if (txerr < 128 && rxerr < 128)
1211 		state = CAN_STATE_ERROR_WARNING;
1212 
1213 	if (state != priv->can.state) {
1214 		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1215 			   state, priv->can.state, txerr, rxerr);
1216 		skb = alloc_can_err_skb(ndev, &cf);
1217 		if (!skb) {
1218 			stats->rx_dropped++;
1219 			return;
1220 		}
1221 		tx_state = txerr >= rxerr ? state : 0;
1222 		rx_state = txerr <= rxerr ? state : 0;
1223 
1224 		can_change_state(ndev, cf, tx_state, rx_state);
1225 		netif_rx(skb);
1226 	}
1227 }
1228 
1229 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1230 {
1231 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1232 	struct net_device *ndev = priv->ndev;
1233 	u32 sts;
1234 
1235 	/* Handle Tx interrupts */
1236 	sts = rcar_canfd_read(priv->base,
1237 			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1238 	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1239 		rcar_canfd_tx_done(ndev);
1240 }
1241 
1242 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1243 {
1244 	struct rcar_canfd_channel *priv = dev_id;
1245 
1246 	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1247 
1248 	return IRQ_HANDLED;
1249 }
1250 
1251 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1252 {
1253 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1254 	struct net_device *ndev = priv->ndev;
1255 	u16 txerr, rxerr;
1256 	u32 sts, cerfl;
1257 
1258 	/* Handle channel error interrupts */
1259 	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1260 	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1261 	txerr = RCANFD_CSTS_TECCNT(sts);
1262 	rxerr = RCANFD_CSTS_RECCNT(sts);
1263 	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1264 		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1265 
1266 	/* Handle state change to lower states */
1267 	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1268 		     priv->can.state != CAN_STATE_BUS_OFF))
1269 		rcar_canfd_state_change(ndev, txerr, rxerr);
1270 }
1271 
1272 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1273 {
1274 	struct rcar_canfd_channel *priv = dev_id;
1275 
1276 	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1277 
1278 	return IRQ_HANDLED;
1279 }
1280 
1281 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1282 {
1283 	struct rcar_canfd_global *gpriv = dev_id;
1284 	u32 ch;
1285 
1286 	/* Common FIFO is a per channel resource */
1287 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1288 		rcar_canfd_handle_channel_err(gpriv, ch);
1289 		rcar_canfd_handle_channel_tx(gpriv, ch);
1290 	}
1291 
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static void rcar_canfd_set_bittiming(struct net_device *dev)
1296 {
1297 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1298 	struct rcar_canfd_global *gpriv = priv->gpriv;
1299 	const struct can_bittiming *bt = &priv->can.bittiming;
1300 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1301 	u16 brp, sjw, tseg1, tseg2;
1302 	u32 cfg;
1303 	u32 ch = priv->channel;
1304 
1305 	/* Nominal bit timing settings */
1306 	brp = bt->brp - 1;
1307 	sjw = bt->sjw - 1;
1308 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1309 	tseg2 = bt->phase_seg2 - 1;
1310 
1311 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1312 		/* CAN FD only mode */
1313 		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1314 		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1315 
1316 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1317 		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1318 			   brp, sjw, tseg1, tseg2);
1319 
1320 		/* Data bit timing settings */
1321 		brp = dbt->brp - 1;
1322 		sjw = dbt->sjw - 1;
1323 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1324 		tseg2 = dbt->phase_seg2 - 1;
1325 
1326 		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1327 		       RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1328 
1329 		if (is_v3u(gpriv))
1330 			rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg);
1331 		else
1332 			rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1333 		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1334 			   brp, sjw, tseg1, tseg2);
1335 	} else {
1336 		/* Classical CAN only mode */
1337 		if (is_v3u(gpriv)) {
1338 			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1339 			       RCANFD_NCFG_NBRP(brp) |
1340 			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1341 			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1342 		} else {
1343 			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1344 			       RCANFD_CFG_BRP(brp) |
1345 			       RCANFD_CFG_SJW(sjw) |
1346 			       RCANFD_CFG_TSEG2(tseg2));
1347 		}
1348 
1349 		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1350 		netdev_dbg(priv->ndev,
1351 			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1352 			   brp, sjw, tseg1, tseg2);
1353 	}
1354 }
1355 
1356 static int rcar_canfd_start(struct net_device *ndev)
1357 {
1358 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1359 	struct rcar_canfd_global *gpriv = priv->gpriv;
1360 	int err = -EOPNOTSUPP;
1361 	u32 sts, ch = priv->channel;
1362 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1363 
1364 	rcar_canfd_set_bittiming(ndev);
1365 
1366 	rcar_canfd_enable_channel_interrupts(priv);
1367 
1368 	/* Set channel to Operational mode */
1369 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1370 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1371 
1372 	/* Verify channel mode change */
1373 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1374 				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1375 	if (err) {
1376 		netdev_err(ndev, "channel %u communication state failed\n", ch);
1377 		goto fail_mode_change;
1378 	}
1379 
1380 	/* Enable Common & Rx FIFO */
1381 	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1382 			   RCANFD_CFCC_CFE);
1383 	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1384 
1385 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1386 	return 0;
1387 
1388 fail_mode_change:
1389 	rcar_canfd_disable_channel_interrupts(priv);
1390 	return err;
1391 }
1392 
1393 static int rcar_canfd_open(struct net_device *ndev)
1394 {
1395 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1396 	struct rcar_canfd_global *gpriv = priv->gpriv;
1397 	int err;
1398 
1399 	/* Peripheral clock is already enabled in probe */
1400 	err = clk_prepare_enable(gpriv->can_clk);
1401 	if (err) {
1402 		netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1403 		goto out_clock;
1404 	}
1405 
1406 	err = open_candev(ndev);
1407 	if (err) {
1408 		netdev_err(ndev, "open_candev() failed, error %d\n", err);
1409 		goto out_can_clock;
1410 	}
1411 
1412 	napi_enable(&priv->napi);
1413 	err = rcar_canfd_start(ndev);
1414 	if (err)
1415 		goto out_close;
1416 	netif_start_queue(ndev);
1417 	return 0;
1418 out_close:
1419 	napi_disable(&priv->napi);
1420 	close_candev(ndev);
1421 out_can_clock:
1422 	clk_disable_unprepare(gpriv->can_clk);
1423 out_clock:
1424 	return err;
1425 }
1426 
1427 static void rcar_canfd_stop(struct net_device *ndev)
1428 {
1429 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1430 	struct rcar_canfd_global *gpriv = priv->gpriv;
1431 	int err;
1432 	u32 sts, ch = priv->channel;
1433 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1434 
1435 	/* Transition to channel reset mode  */
1436 	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1437 			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1438 
1439 	/* Check Channel reset mode */
1440 	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1441 				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1442 	if (err)
1443 		netdev_err(ndev, "channel %u reset failed\n", ch);
1444 
1445 	rcar_canfd_disable_channel_interrupts(priv);
1446 
1447 	/* Disable Common & Rx FIFO */
1448 	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1449 			     RCANFD_CFCC_CFE);
1450 	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1451 
1452 	/* Set the state as STOPPED */
1453 	priv->can.state = CAN_STATE_STOPPED;
1454 }
1455 
1456 static int rcar_canfd_close(struct net_device *ndev)
1457 {
1458 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1459 	struct rcar_canfd_global *gpriv = priv->gpriv;
1460 
1461 	netif_stop_queue(ndev);
1462 	rcar_canfd_stop(ndev);
1463 	napi_disable(&priv->napi);
1464 	clk_disable_unprepare(gpriv->can_clk);
1465 	close_candev(ndev);
1466 	return 0;
1467 }
1468 
1469 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1470 					 struct net_device *ndev)
1471 {
1472 	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1473 	struct rcar_canfd_global *gpriv = priv->gpriv;
1474 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1475 	u32 sts = 0, id, dlc;
1476 	unsigned long flags;
1477 	u32 ch = priv->channel;
1478 
1479 	if (can_dev_dropped_skb(ndev, skb))
1480 		return NETDEV_TX_OK;
1481 
1482 	if (cf->can_id & CAN_EFF_FLAG) {
1483 		id = cf->can_id & CAN_EFF_MASK;
1484 		id |= RCANFD_CFID_CFIDE;
1485 	} else {
1486 		id = cf->can_id & CAN_SFF_MASK;
1487 	}
1488 
1489 	if (cf->can_id & CAN_RTR_FLAG)
1490 		id |= RCANFD_CFID_CFRTR;
1491 
1492 	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1493 
1494 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1495 		rcar_canfd_write(priv->base,
1496 				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1497 		rcar_canfd_write(priv->base,
1498 				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1499 
1500 		if (can_is_canfd_skb(skb)) {
1501 			/* CAN FD frame format */
1502 			sts |= RCANFD_CFFDCSTS_CFFDF;
1503 			if (cf->flags & CANFD_BRS)
1504 				sts |= RCANFD_CFFDCSTS_CFBRS;
1505 
1506 			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1507 				sts |= RCANFD_CFFDCSTS_CFESI;
1508 		}
1509 
1510 		rcar_canfd_write(priv->base,
1511 				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1512 
1513 		rcar_canfd_put_data(priv, cf,
1514 				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1515 	} else {
1516 		rcar_canfd_write(priv->base,
1517 				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1518 		rcar_canfd_write(priv->base,
1519 				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1520 		rcar_canfd_put_data(priv, cf,
1521 				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1522 	}
1523 
1524 	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1525 
1526 	spin_lock_irqsave(&priv->tx_lock, flags);
1527 	priv->tx_head++;
1528 
1529 	/* Stop the queue if we've filled all FIFO entries */
1530 	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1531 		netif_stop_queue(ndev);
1532 
1533 	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1534 	 * pointer for the Common FIFO
1535 	 */
1536 	rcar_canfd_write(priv->base,
1537 			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1538 
1539 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1540 	return NETDEV_TX_OK;
1541 }
1542 
1543 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1544 {
1545 	struct net_device_stats *stats = &priv->ndev->stats;
1546 	struct rcar_canfd_global *gpriv = priv->gpriv;
1547 	struct canfd_frame *cf;
1548 	struct sk_buff *skb;
1549 	u32 sts = 0, id, dlc;
1550 	u32 ch = priv->channel;
1551 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1552 
1553 	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1554 		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1555 		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1556 
1557 		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1558 
1559 		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1560 		    sts & RCANFD_RFFDSTS_RFFDF)
1561 			skb = alloc_canfd_skb(priv->ndev, &cf);
1562 		else
1563 			skb = alloc_can_skb(priv->ndev,
1564 					    (struct can_frame **)&cf);
1565 	} else {
1566 		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1567 		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1568 		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1569 	}
1570 
1571 	if (!skb) {
1572 		stats->rx_dropped++;
1573 		return;
1574 	}
1575 
1576 	if (id & RCANFD_RFID_RFIDE)
1577 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1578 	else
1579 		cf->can_id = id & CAN_SFF_MASK;
1580 
1581 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1582 		if (sts & RCANFD_RFFDSTS_RFFDF)
1583 			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1584 		else
1585 			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1586 
1587 		if (sts & RCANFD_RFFDSTS_RFESI) {
1588 			cf->flags |= CANFD_ESI;
1589 			netdev_dbg(priv->ndev, "ESI Error\n");
1590 		}
1591 
1592 		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1593 			cf->can_id |= CAN_RTR_FLAG;
1594 		} else {
1595 			if (sts & RCANFD_RFFDSTS_RFBRS)
1596 				cf->flags |= CANFD_BRS;
1597 
1598 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1599 		}
1600 	} else {
1601 		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1602 		if (id & RCANFD_RFID_RFRTR)
1603 			cf->can_id |= CAN_RTR_FLAG;
1604 		else if (is_v3u(gpriv))
1605 			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1606 		else
1607 			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1608 	}
1609 
1610 	/* Write 0xff to RFPC to increment the CPU-side
1611 	 * pointer of the Rx FIFO
1612 	 */
1613 	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1614 
1615 	if (!(cf->can_id & CAN_RTR_FLAG))
1616 		stats->rx_bytes += cf->len;
1617 	stats->rx_packets++;
1618 	netif_receive_skb(skb);
1619 }
1620 
1621 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1622 {
1623 	struct rcar_canfd_channel *priv =
1624 		container_of(napi, struct rcar_canfd_channel, napi);
1625 	struct rcar_canfd_global *gpriv = priv->gpriv;
1626 	int num_pkts;
1627 	u32 sts;
1628 	u32 ch = priv->channel;
1629 	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1630 
1631 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1632 		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1633 		/* Check FIFO empty condition */
1634 		if (sts & RCANFD_RFSTS_RFEMP)
1635 			break;
1636 
1637 		rcar_canfd_rx_pkt(priv);
1638 
1639 		/* Clear interrupt bit */
1640 		if (sts & RCANFD_RFSTS_RFIF)
1641 			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1642 					 sts & ~RCANFD_RFSTS_RFIF);
1643 	}
1644 
1645 	/* All packets processed */
1646 	if (num_pkts < quota) {
1647 		if (napi_complete_done(napi, num_pkts)) {
1648 			/* Enable Rx FIFO interrupts */
1649 			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1650 					   RCANFD_RFCC_RFIE);
1651 		}
1652 	}
1653 	return num_pkts;
1654 }
1655 
1656 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1657 {
1658 	int err;
1659 
1660 	switch (mode) {
1661 	case CAN_MODE_START:
1662 		err = rcar_canfd_start(ndev);
1663 		if (err)
1664 			return err;
1665 		netif_wake_queue(ndev);
1666 		return 0;
1667 	default:
1668 		return -EOPNOTSUPP;
1669 	}
1670 }
1671 
1672 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1673 				       struct can_berr_counter *bec)
1674 {
1675 	struct rcar_canfd_channel *priv = netdev_priv(dev);
1676 	u32 val, ch = priv->channel;
1677 
1678 	/* Peripheral clock is already enabled in probe */
1679 	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1680 	bec->txerr = RCANFD_CSTS_TECCNT(val);
1681 	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1682 	return 0;
1683 }
1684 
1685 static const struct net_device_ops rcar_canfd_netdev_ops = {
1686 	.ndo_open = rcar_canfd_open,
1687 	.ndo_stop = rcar_canfd_close,
1688 	.ndo_start_xmit = rcar_canfd_start_xmit,
1689 	.ndo_change_mtu = can_change_mtu,
1690 };
1691 
1692 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1693 	.get_ts_info = ethtool_op_get_ts_info,
1694 };
1695 
1696 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1697 				    u32 fcan_freq)
1698 {
1699 	struct platform_device *pdev = gpriv->pdev;
1700 	struct rcar_canfd_channel *priv;
1701 	struct net_device *ndev;
1702 	int err = -ENODEV;
1703 
1704 	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1705 	if (!ndev) {
1706 		dev_err(&pdev->dev, "alloc_candev() failed\n");
1707 		return -ENOMEM;
1708 	}
1709 	priv = netdev_priv(ndev);
1710 
1711 	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1712 	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1713 	ndev->flags |= IFF_ECHO;
1714 	priv->ndev = ndev;
1715 	priv->base = gpriv->base;
1716 	priv->channel = ch;
1717 	priv->gpriv = gpriv;
1718 	priv->can.clock.freq = fcan_freq;
1719 	dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1720 
1721 	if (gpriv->chip_id == RENESAS_RZG2L) {
1722 		char *irq_name;
1723 		int err_irq;
1724 		int tx_irq;
1725 
1726 		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1727 		if (err_irq < 0) {
1728 			err = err_irq;
1729 			goto fail;
1730 		}
1731 
1732 		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1733 		if (tx_irq < 0) {
1734 			err = tx_irq;
1735 			goto fail;
1736 		}
1737 
1738 		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1739 					  "canfd.ch%d_err", ch);
1740 		if (!irq_name) {
1741 			err = -ENOMEM;
1742 			goto fail;
1743 		}
1744 		err = devm_request_irq(&pdev->dev, err_irq,
1745 				       rcar_canfd_channel_err_interrupt, 0,
1746 				       irq_name, priv);
1747 		if (err) {
1748 			dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1749 				err_irq, err);
1750 			goto fail;
1751 		}
1752 		irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1753 					  "canfd.ch%d_trx", ch);
1754 		if (!irq_name) {
1755 			err = -ENOMEM;
1756 			goto fail;
1757 		}
1758 		err = devm_request_irq(&pdev->dev, tx_irq,
1759 				       rcar_canfd_channel_tx_interrupt, 0,
1760 				       irq_name, priv);
1761 		if (err) {
1762 			dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1763 				tx_irq, err);
1764 			goto fail;
1765 		}
1766 	}
1767 
1768 	if (gpriv->fdmode) {
1769 		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1770 		priv->can.data_bittiming_const =
1771 			&rcar_canfd_data_bittiming_const;
1772 
1773 		/* Controller starts in CAN FD only mode */
1774 		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1775 		if (err)
1776 			goto fail;
1777 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1778 	} else {
1779 		/* Controller starts in Classical CAN only mode */
1780 		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1781 		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1782 	}
1783 
1784 	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1785 	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1786 	SET_NETDEV_DEV(ndev, &pdev->dev);
1787 
1788 	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1789 			      RCANFD_NAPI_WEIGHT);
1790 	spin_lock_init(&priv->tx_lock);
1791 	gpriv->ch[priv->channel] = priv;
1792 	err = register_candev(ndev);
1793 	if (err) {
1794 		dev_err(&pdev->dev,
1795 			"register_candev() failed, error %d\n", err);
1796 		goto fail_candev;
1797 	}
1798 	dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1799 	return 0;
1800 
1801 fail_candev:
1802 	netif_napi_del(&priv->napi);
1803 fail:
1804 	free_candev(ndev);
1805 	return err;
1806 }
1807 
1808 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1809 {
1810 	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1811 
1812 	if (priv) {
1813 		unregister_candev(priv->ndev);
1814 		netif_napi_del(&priv->napi);
1815 		free_candev(priv->ndev);
1816 	}
1817 }
1818 
1819 static int rcar_canfd_probe(struct platform_device *pdev)
1820 {
1821 	void __iomem *addr;
1822 	u32 sts, ch, fcan_freq;
1823 	struct rcar_canfd_global *gpriv;
1824 	struct device_node *of_child;
1825 	unsigned long channels_mask = 0;
1826 	int err, ch_irq, g_irq;
1827 	int g_err_irq, g_recc_irq;
1828 	bool fdmode = true;			/* CAN FD only mode - default */
1829 	enum rcanfd_chip_id chip_id;
1830 	int max_channels;
1831 	char name[9] = "channelX";
1832 	int i;
1833 
1834 	chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
1835 	max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
1836 
1837 	if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1838 		fdmode = false;			/* Classical CAN only mode */
1839 
1840 	for (i = 0; i < max_channels; ++i) {
1841 		name[7] = '0' + i;
1842 		of_child = of_get_child_by_name(pdev->dev.of_node, name);
1843 		if (of_child && of_device_is_available(of_child))
1844 			channels_mask |= BIT(i);
1845 		of_node_put(of_child);
1846 	}
1847 
1848 	if (chip_id != RENESAS_RZG2L) {
1849 		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1850 		if (ch_irq < 0) {
1851 			/* For backward compatibility get irq by index */
1852 			ch_irq = platform_get_irq(pdev, 0);
1853 			if (ch_irq < 0)
1854 				return ch_irq;
1855 		}
1856 
1857 		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1858 		if (g_irq < 0) {
1859 			/* For backward compatibility get irq by index */
1860 			g_irq = platform_get_irq(pdev, 1);
1861 			if (g_irq < 0)
1862 				return g_irq;
1863 		}
1864 	} else {
1865 		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1866 		if (g_err_irq < 0)
1867 			return g_err_irq;
1868 
1869 		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1870 		if (g_recc_irq < 0)
1871 			return g_recc_irq;
1872 	}
1873 
1874 	/* Global controller context */
1875 	gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1876 	if (!gpriv)
1877 		return -ENOMEM;
1878 
1879 	gpriv->pdev = pdev;
1880 	gpriv->channels_mask = channels_mask;
1881 	gpriv->fdmode = fdmode;
1882 	gpriv->chip_id = chip_id;
1883 	gpriv->max_channels = max_channels;
1884 
1885 	if (gpriv->chip_id == RENESAS_RZG2L) {
1886 		gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
1887 		if (IS_ERR(gpriv->rstc1))
1888 			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1889 					     "failed to get rstp_n\n");
1890 
1891 		gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
1892 		if (IS_ERR(gpriv->rstc2))
1893 			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1894 					     "failed to get rstc_n\n");
1895 	}
1896 
1897 	/* Peripheral clock */
1898 	gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1899 	if (IS_ERR(gpriv->clkp))
1900 		return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->clkp),
1901 				     "cannot get peripheral clock\n");
1902 
1903 	/* fCAN clock: Pick External clock. If not available fallback to
1904 	 * CANFD clock
1905 	 */
1906 	gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1907 	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1908 		gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1909 		if (IS_ERR(gpriv->can_clk))
1910 			return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->can_clk),
1911 					     "cannot get canfd clock\n");
1912 
1913 		gpriv->fcan = RCANFD_CANFDCLK;
1914 
1915 	} else {
1916 		gpriv->fcan = RCANFD_EXTCLK;
1917 	}
1918 	fcan_freq = clk_get_rate(gpriv->can_clk);
1919 
1920 	if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
1921 		/* CANFD clock is further divided by (1/2) within the IP */
1922 		fcan_freq /= 2;
1923 
1924 	addr = devm_platform_ioremap_resource(pdev, 0);
1925 	if (IS_ERR(addr)) {
1926 		err = PTR_ERR(addr);
1927 		goto fail_dev;
1928 	}
1929 	gpriv->base = addr;
1930 
1931 	/* Request IRQ that's common for both channels */
1932 	if (gpriv->chip_id != RENESAS_RZG2L) {
1933 		err = devm_request_irq(&pdev->dev, ch_irq,
1934 				       rcar_canfd_channel_interrupt, 0,
1935 				       "canfd.ch_int", gpriv);
1936 		if (err) {
1937 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1938 				ch_irq, err);
1939 			goto fail_dev;
1940 		}
1941 
1942 		err = devm_request_irq(&pdev->dev, g_irq,
1943 				       rcar_canfd_global_interrupt, 0,
1944 				       "canfd.g_int", gpriv);
1945 		if (err) {
1946 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1947 				g_irq, err);
1948 			goto fail_dev;
1949 		}
1950 	} else {
1951 		err = devm_request_irq(&pdev->dev, g_recc_irq,
1952 				       rcar_canfd_global_receive_fifo_interrupt, 0,
1953 				       "canfd.g_recc", gpriv);
1954 
1955 		if (err) {
1956 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1957 				g_recc_irq, err);
1958 			goto fail_dev;
1959 		}
1960 
1961 		err = devm_request_irq(&pdev->dev, g_err_irq,
1962 				       rcar_canfd_global_err_interrupt, 0,
1963 				       "canfd.g_err", gpriv);
1964 		if (err) {
1965 			dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1966 				g_err_irq, err);
1967 			goto fail_dev;
1968 		}
1969 	}
1970 
1971 	err = reset_control_reset(gpriv->rstc1);
1972 	if (err)
1973 		goto fail_dev;
1974 	err = reset_control_reset(gpriv->rstc2);
1975 	if (err) {
1976 		reset_control_assert(gpriv->rstc1);
1977 		goto fail_dev;
1978 	}
1979 
1980 	/* Enable peripheral clock for register access */
1981 	err = clk_prepare_enable(gpriv->clkp);
1982 	if (err) {
1983 		dev_err(&pdev->dev,
1984 			"failed to enable peripheral clock, error %d\n", err);
1985 		goto fail_reset;
1986 	}
1987 
1988 	err = rcar_canfd_reset_controller(gpriv);
1989 	if (err) {
1990 		dev_err(&pdev->dev, "reset controller failed\n");
1991 		goto fail_clk;
1992 	}
1993 
1994 	/* Controller in Global reset & Channel reset mode */
1995 	rcar_canfd_configure_controller(gpriv);
1996 
1997 	/* Configure per channel attributes */
1998 	for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
1999 		/* Configure Channel's Rx fifo */
2000 		rcar_canfd_configure_rx(gpriv, ch);
2001 
2002 		/* Configure Channel's Tx (Common) fifo */
2003 		rcar_canfd_configure_tx(gpriv, ch);
2004 
2005 		/* Configure receive rules */
2006 		rcar_canfd_configure_afl_rules(gpriv, ch);
2007 	}
2008 
2009 	/* Configure common interrupts */
2010 	rcar_canfd_enable_global_interrupts(gpriv);
2011 
2012 	/* Start Global operation mode */
2013 	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2014 			      RCANFD_GCTR_GMDC_GOPM);
2015 
2016 	/* Verify mode change */
2017 	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2018 				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2019 	if (err) {
2020 		dev_err(&pdev->dev, "global operational mode failed\n");
2021 		goto fail_mode;
2022 	}
2023 
2024 	for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2025 		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
2026 		if (err)
2027 			goto fail_channel;
2028 	}
2029 
2030 	platform_set_drvdata(pdev, gpriv);
2031 	dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
2032 		 gpriv->fcan, gpriv->fdmode);
2033 	return 0;
2034 
2035 fail_channel:
2036 	for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
2037 		rcar_canfd_channel_remove(gpriv, ch);
2038 fail_mode:
2039 	rcar_canfd_disable_global_interrupts(gpriv);
2040 fail_clk:
2041 	clk_disable_unprepare(gpriv->clkp);
2042 fail_reset:
2043 	reset_control_assert(gpriv->rstc1);
2044 	reset_control_assert(gpriv->rstc2);
2045 fail_dev:
2046 	return err;
2047 }
2048 
2049 static int rcar_canfd_remove(struct platform_device *pdev)
2050 {
2051 	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2052 	u32 ch;
2053 
2054 	rcar_canfd_reset_controller(gpriv);
2055 	rcar_canfd_disable_global_interrupts(gpriv);
2056 
2057 	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
2058 		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2059 		rcar_canfd_channel_remove(gpriv, ch);
2060 	}
2061 
2062 	/* Enter global sleep mode */
2063 	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2064 	clk_disable_unprepare(gpriv->clkp);
2065 	reset_control_assert(gpriv->rstc1);
2066 	reset_control_assert(gpriv->rstc2);
2067 
2068 	return 0;
2069 }
2070 
2071 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2072 {
2073 	return 0;
2074 }
2075 
2076 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2077 {
2078 	return 0;
2079 }
2080 
2081 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2082 			 rcar_canfd_resume);
2083 
2084 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2085 	{ .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
2086 	{ .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
2087 	{ .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
2088 	{ }
2089 };
2090 
2091 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2092 
2093 static struct platform_driver rcar_canfd_driver = {
2094 	.driver = {
2095 		.name = RCANFD_DRV_NAME,
2096 		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2097 		.pm = &rcar_canfd_pm_ops,
2098 	},
2099 	.probe = rcar_canfd_probe,
2100 	.remove = rcar_canfd_remove,
2101 };
2102 
2103 module_platform_driver(rcar_canfd_driver);
2104 
2105 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2106 MODULE_LICENSE("GPL");
2107 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2108 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2109