1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/bitmap.h> 25 #include <linux/bitops.h> 26 #include <linux/can/dev.h> 27 #include <linux/clk.h> 28 #include <linux/errno.h> 29 #include <linux/ethtool.h> 30 #include <linux/interrupt.h> 31 #include <linux/iopoll.h> 32 #include <linux/kernel.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/netdevice.h> 36 #include <linux/of.h> 37 #include <linux/of_device.h> 38 #include <linux/phy/phy.h> 39 #include <linux/platform_device.h> 40 #include <linux/reset.h> 41 #include <linux/types.h> 42 43 #define RCANFD_DRV_NAME "rcar_canfd" 44 45 /* Global register bits */ 46 47 /* RSCFDnCFDGRMCFG */ 48 #define RCANFD_GRMCFG_RCMC BIT(0) 49 50 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 51 #define RCANFD_GCFG_EEFE BIT(6) 52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 53 #define RCANFD_GCFG_DCS BIT(4) 54 #define RCANFD_GCFG_DCE BIT(1) 55 #define RCANFD_GCFG_TPRI BIT(0) 56 57 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 58 #define RCANFD_GCTR_TSRST BIT(16) 59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 60 #define RCANFD_GCTR_THLEIE BIT(10) 61 #define RCANFD_GCTR_MEIE BIT(9) 62 #define RCANFD_GCTR_DEIE BIT(8) 63 #define RCANFD_GCTR_GSLPR BIT(2) 64 #define RCANFD_GCTR_GMDC_MASK (0x3) 65 #define RCANFD_GCTR_GMDC_GOPM (0x0) 66 #define RCANFD_GCTR_GMDC_GRESET (0x1) 67 #define RCANFD_GCTR_GMDC_GTEST (0x2) 68 69 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 70 #define RCANFD_GSTS_GRAMINIT BIT(3) 71 #define RCANFD_GSTS_GSLPSTS BIT(2) 72 #define RCANFD_GSTS_GHLTSTS BIT(1) 73 #define RCANFD_GSTS_GRSTSTS BIT(0) 74 /* Non-operational status */ 75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 76 77 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 78 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16) 79 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch)) 80 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 81 #define RCANFD_GERFL_THLES BIT(2) 82 #define RCANFD_GERFL_MES BIT(1) 83 #define RCANFD_GERFL_DEF BIT(0) 84 85 #define RCANFD_GERFL_ERR(gpriv, x) \ 86 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \ 87 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \ 88 RCANFD_GERFL_MES | \ 89 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0))) 90 91 /* AFL Rx rules registers */ 92 93 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 94 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \ 95 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \ 96 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) 97 98 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \ 99 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \ 100 reg_gen4(gpriv, 0x1ff, 0xff)) 101 102 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 103 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 104 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f)) 105 106 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 107 #define RCANFD_GAFLID_GAFLLB BIT(29) 108 109 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 110 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 111 112 /* Channel register bits */ 113 114 /* RSCFDnCmCFG - Classical CAN only */ 115 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 116 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 117 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 118 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 119 120 /* RSCFDnCFDCmNCFG - CAN FD only */ 121 #define RCANFD_NCFG_NTSEG2(gpriv, x) \ 122 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24)) 123 124 #define RCANFD_NCFG_NTSEG1(gpriv, x) \ 125 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16)) 126 127 #define RCANFD_NCFG_NSJW(gpriv, x) \ 128 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11)) 129 130 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 131 132 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 133 #define RCANFD_CCTR_CTME BIT(24) 134 #define RCANFD_CCTR_ERRD BIT(23) 135 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 136 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 137 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 138 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 139 #define RCANFD_CCTR_TDCVFIE BIT(19) 140 #define RCANFD_CCTR_SOCOIE BIT(18) 141 #define RCANFD_CCTR_EOCOIE BIT(17) 142 #define RCANFD_CCTR_TAIE BIT(16) 143 #define RCANFD_CCTR_ALIE BIT(15) 144 #define RCANFD_CCTR_BLIE BIT(14) 145 #define RCANFD_CCTR_OLIE BIT(13) 146 #define RCANFD_CCTR_BORIE BIT(12) 147 #define RCANFD_CCTR_BOEIE BIT(11) 148 #define RCANFD_CCTR_EPIE BIT(10) 149 #define RCANFD_CCTR_EWIE BIT(9) 150 #define RCANFD_CCTR_BEIE BIT(8) 151 #define RCANFD_CCTR_CSLPR BIT(2) 152 #define RCANFD_CCTR_CHMDC_MASK (0x3) 153 #define RCANFD_CCTR_CHDMC_COPM (0x0) 154 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 155 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 156 157 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 158 #define RCANFD_CSTS_COMSTS BIT(7) 159 #define RCANFD_CSTS_RECSTS BIT(6) 160 #define RCANFD_CSTS_TRMSTS BIT(5) 161 #define RCANFD_CSTS_BOSTS BIT(4) 162 #define RCANFD_CSTS_EPSTS BIT(3) 163 #define RCANFD_CSTS_SLPSTS BIT(2) 164 #define RCANFD_CSTS_HLTSTS BIT(1) 165 #define RCANFD_CSTS_CRSTSTS BIT(0) 166 167 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 168 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 169 170 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 171 #define RCANFD_CERFL_ADERR BIT(14) 172 #define RCANFD_CERFL_B0ERR BIT(13) 173 #define RCANFD_CERFL_B1ERR BIT(12) 174 #define RCANFD_CERFL_CERR BIT(11) 175 #define RCANFD_CERFL_AERR BIT(10) 176 #define RCANFD_CERFL_FERR BIT(9) 177 #define RCANFD_CERFL_SERR BIT(8) 178 #define RCANFD_CERFL_ALF BIT(7) 179 #define RCANFD_CERFL_BLF BIT(6) 180 #define RCANFD_CERFL_OVLF BIT(5) 181 #define RCANFD_CERFL_BORF BIT(4) 182 #define RCANFD_CERFL_BOEF BIT(3) 183 #define RCANFD_CERFL_EPF BIT(2) 184 #define RCANFD_CERFL_EWF BIT(1) 185 #define RCANFD_CERFL_BEF BIT(0) 186 187 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 188 189 /* RSCFDnCFDCmDCFG */ 190 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24) 191 192 #define RCANFD_DCFG_DTSEG2(gpriv, x) \ 193 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20)) 194 195 #define RCANFD_DCFG_DTSEG1(gpriv, x) \ 196 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16)) 197 198 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 199 200 /* RSCFDnCFDCmFDCFG */ 201 #define RCANFD_GEN4_FDCFG_CLOE BIT(30) 202 #define RCANFD_GEN4_FDCFG_FDOE BIT(28) 203 #define RCANFD_FDCFG_TDCE BIT(9) 204 #define RCANFD_FDCFG_TDCOC BIT(8) 205 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 206 207 /* RSCFDnCFDRFCCx */ 208 #define RCANFD_RFCC_RFIM BIT(12) 209 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 210 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 211 #define RCANFD_RFCC_RFIE BIT(1) 212 #define RCANFD_RFCC_RFE BIT(0) 213 214 /* RSCFDnCFDRFSTSx */ 215 #define RCANFD_RFSTS_RFIF BIT(3) 216 #define RCANFD_RFSTS_RFMLT BIT(2) 217 #define RCANFD_RFSTS_RFFLL BIT(1) 218 #define RCANFD_RFSTS_RFEMP BIT(0) 219 220 /* RSCFDnCFDRFIDx */ 221 #define RCANFD_RFID_RFIDE BIT(31) 222 #define RCANFD_RFID_RFRTR BIT(30) 223 224 /* RSCFDnCFDRFPTRx */ 225 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 226 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 227 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 228 229 /* RSCFDnCFDRFFDSTSx */ 230 #define RCANFD_RFFDSTS_RFFDF BIT(2) 231 #define RCANFD_RFFDSTS_RFBRS BIT(1) 232 #define RCANFD_RFFDSTS_RFESI BIT(0) 233 234 /* Common FIFO bits */ 235 236 /* RSCFDnCFDCFCCk */ 237 #define RCANFD_CFCC_CFTML(gpriv, x) \ 238 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20)) 239 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16)) 240 #define RCANFD_CFCC_CFIM BIT(12) 241 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8)) 242 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 243 #define RCANFD_CFCC_CFTXIE BIT(2) 244 #define RCANFD_CFCC_CFE BIT(0) 245 246 /* RSCFDnCFDCFSTSk */ 247 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 248 #define RCANFD_CFSTS_CFTXIF BIT(4) 249 #define RCANFD_CFSTS_CFMLT BIT(2) 250 #define RCANFD_CFSTS_CFFLL BIT(1) 251 #define RCANFD_CFSTS_CFEMP BIT(0) 252 253 /* RSCFDnCFDCFIDk */ 254 #define RCANFD_CFID_CFIDE BIT(31) 255 #define RCANFD_CFID_CFRTR BIT(30) 256 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 257 258 /* RSCFDnCFDCFPTRk */ 259 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 260 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 261 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 262 263 /* RSCFDnCFDCFFDCSTSk */ 264 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 265 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 266 #define RCANFD_CFFDCSTS_CFESI BIT(0) 267 268 /* This controller supports either Classical CAN only mode or CAN FD only mode. 269 * These modes are supported in two separate set of register maps & names. 270 * However, some of the register offsets are common for both modes. Those 271 * offsets are listed below as Common registers. 272 * 273 * The CAN FD only mode specific registers & Classical CAN only mode specific 274 * registers are listed separately. Their register names starts with 275 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 276 */ 277 278 /* Common registers */ 279 280 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 281 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 282 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 283 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 284 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 285 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 286 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 287 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 288 289 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 290 #define RCANFD_GCFG (0x0084) 291 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 292 #define RCANFD_GCTR (0x0088) 293 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 294 #define RCANFD_GSTS (0x008c) 295 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 296 #define RCANFD_GERFL (0x0090) 297 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 298 #define RCANFD_GTSC (0x0094) 299 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 300 #define RCANFD_GAFLECTR (0x0098) 301 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */ 302 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2))) 303 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 304 #define RCANFD_RMNB (0x00a4) 305 /* RSCFDnCFDRMND / RSCFDnRMND */ 306 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 307 308 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 309 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x))) 310 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 311 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20) 312 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 313 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40) 314 315 /* Common FIFO Control registers */ 316 317 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 318 #define RCANFD_CFCC(gpriv, ch, idx) \ 319 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx))) 320 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 321 #define RCANFD_CFSTS(gpriv, ch, idx) \ 322 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx))) 323 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 324 #define RCANFD_CFPCTR(gpriv, ch, idx) \ 325 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx))) 326 327 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 328 #define RCANFD_FESTS (0x0238) 329 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 330 #define RCANFD_FFSTS (0x023c) 331 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 332 #define RCANFD_FMSTS (0x0240) 333 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 334 #define RCANFD_RFISTS (0x0244) 335 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 336 #define RCANFD_CFRISTS (0x0248) 337 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 338 #define RCANFD_CFTISTS (0x024c) 339 340 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 341 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 342 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 343 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 344 345 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 346 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 347 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 348 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 349 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 350 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 351 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 352 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 353 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 354 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 355 356 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 357 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 358 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 359 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 360 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 361 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 362 363 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 364 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 365 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 366 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 367 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 368 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 369 370 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 371 #define RCANFD_GTINTSTS0 (0x0460) 372 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 373 #define RCANFD_GTINTSTS1 (0x0464) 374 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 375 #define RCANFD_GTSTCFG (0x0468) 376 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 377 #define RCANFD_GTSTCTR (0x046c) 378 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 379 #define RCANFD_GLOCKK (0x047c) 380 /* RSCFDnCFDGRMCFG */ 381 #define RCANFD_GRMCFG (0x04fc) 382 383 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 384 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 385 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 386 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 387 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 388 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 389 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 390 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 391 392 /* Classical CAN only mode register map */ 393 394 /* RSCFDnGAFLXXXj offset */ 395 #define RCANFD_C_GAFL_OFFSET (0x0500) 396 397 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 398 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 399 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 400 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 401 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 402 403 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 404 #define RCANFD_C_RFOFFSET (0x0e00) 405 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 406 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x))) 407 #define RCANFD_C_RFDF(x, df) \ 408 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df))) 409 410 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 411 #define RCANFD_C_CFOFFSET (0x0e80) 412 413 #define RCANFD_C_CFID(ch, idx) \ 414 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx))) 415 416 #define RCANFD_C_CFPTR(ch, idx) \ 417 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx))) 418 419 #define RCANFD_C_CFDF(ch, idx, df) \ 420 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df))) 421 422 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 423 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 424 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 425 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 426 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 427 428 /* RSCFDnTHLACCm */ 429 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 430 /* RSCFDnRPGACCr */ 431 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 432 433 /* R-Car Gen4 Classical and CAN FD mode specific register map */ 434 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m))) 435 436 #define RCANFD_GEN4_GAFL_OFFSET (0x1800) 437 438 /* CAN FD mode specific register map */ 439 440 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 441 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m))) 442 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 443 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 444 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 445 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 446 447 /* RSCFDnCFDGAFLXXXj offset */ 448 #define RCANFD_F_GAFL_OFFSET (0x1000) 449 450 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 451 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 452 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 453 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 454 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 455 456 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 457 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000) 458 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x))) 459 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x))) 460 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x))) 461 #define RCANFD_F_RFDF(gpriv, x, df) \ 462 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df))) 463 464 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 465 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400) 466 467 #define RCANFD_F_CFID(gpriv, ch, idx) \ 468 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx))) 469 470 #define RCANFD_F_CFPTR(gpriv, ch, idx) \ 471 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx))) 472 473 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \ 474 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx))) 475 476 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \ 477 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \ 478 (0x04 * (df))) 479 480 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 481 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 482 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 483 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 484 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 485 486 /* RSCFDnCFDTHLACCm */ 487 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 488 /* RSCFDnCFDRPGACCr */ 489 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 490 491 /* Constants */ 492 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 493 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 494 495 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */ 496 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 497 498 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 499 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 500 501 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 502 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 503 * number is added to RFFIFO index. 504 */ 505 #define RCANFD_RFFIFO_IDX 0 506 507 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 508 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 509 */ 510 #define RCANFD_CFFIFO_IDX 0 511 512 /* fCAN clock select register settings */ 513 enum rcar_canfd_fcanclk { 514 RCANFD_CANFDCLK = 0, /* CANFD clock */ 515 RCANFD_EXTCLK, /* Externally input clock */ 516 }; 517 518 struct rcar_canfd_global; 519 520 struct rcar_canfd_hw_info { 521 u8 max_channels; 522 u8 postdiv; 523 /* hardware features */ 524 unsigned shared_global_irqs:1; /* Has shared global irqs */ 525 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */ 526 }; 527 528 /* Channel priv data */ 529 struct rcar_canfd_channel { 530 struct can_priv can; /* Must be the first member */ 531 struct net_device *ndev; 532 struct rcar_canfd_global *gpriv; /* Controller reference */ 533 void __iomem *base; /* Register base address */ 534 struct phy *transceiver; /* Optional transceiver */ 535 struct napi_struct napi; 536 u32 tx_head; /* Incremented on xmit */ 537 u32 tx_tail; /* Incremented on xmit done */ 538 u32 channel; /* Channel number */ 539 spinlock_t tx_lock; /* To protect tx path */ 540 }; 541 542 /* Global priv data */ 543 struct rcar_canfd_global { 544 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 545 void __iomem *base; /* Register base address */ 546 struct platform_device *pdev; /* Respective platform device */ 547 struct clk *clkp; /* Peripheral clock */ 548 struct clk *can_clk; /* fCAN clock */ 549 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 550 unsigned long channels_mask; /* Enabled channels mask */ 551 bool fdmode; /* CAN FD or Classical CAN only mode */ 552 struct reset_control *rstc1; 553 struct reset_control *rstc2; 554 const struct rcar_canfd_hw_info *info; 555 }; 556 557 /* CAN FD mode nominal rate constants */ 558 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 559 .name = RCANFD_DRV_NAME, 560 .tseg1_min = 2, 561 .tseg1_max = 128, 562 .tseg2_min = 2, 563 .tseg2_max = 32, 564 .sjw_max = 32, 565 .brp_min = 1, 566 .brp_max = 1024, 567 .brp_inc = 1, 568 }; 569 570 /* CAN FD mode data rate constants */ 571 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 572 .name = RCANFD_DRV_NAME, 573 .tseg1_min = 2, 574 .tseg1_max = 16, 575 .tseg2_min = 2, 576 .tseg2_max = 8, 577 .sjw_max = 8, 578 .brp_min = 1, 579 .brp_max = 256, 580 .brp_inc = 1, 581 }; 582 583 /* Classical CAN mode bitrate constants */ 584 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 585 .name = RCANFD_DRV_NAME, 586 .tseg1_min = 4, 587 .tseg1_max = 16, 588 .tseg2_min = 2, 589 .tseg2_max = 8, 590 .sjw_max = 4, 591 .brp_min = 1, 592 .brp_max = 1024, 593 .brp_inc = 1, 594 }; 595 596 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = { 597 .max_channels = 2, 598 .postdiv = 2, 599 .shared_global_irqs = 1, 600 }; 601 602 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = { 603 .max_channels = 8, 604 .postdiv = 2, 605 .shared_global_irqs = 1, 606 }; 607 608 static const struct rcar_canfd_hw_info rzg2l_hw_info = { 609 .max_channels = 2, 610 .postdiv = 1, 611 .multi_channel_irqs = 1, 612 }; 613 614 /* Helper functions */ 615 static inline bool is_gen4(struct rcar_canfd_global *gpriv) 616 { 617 return gpriv->info == &rcar_gen4_hw_info; 618 } 619 620 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv, 621 u32 gen4, u32 not_gen4) 622 { 623 return is_gen4(gpriv) ? gen4 : not_gen4; 624 } 625 626 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 627 { 628 u32 data = readl(reg); 629 630 data &= ~mask; 631 data |= (val & mask); 632 writel(data, reg); 633 } 634 635 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 636 { 637 return readl(base + (offset)); 638 } 639 640 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 641 { 642 writel(val, base + (offset)); 643 } 644 645 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 646 { 647 rcar_canfd_update(val, val, base + (reg)); 648 } 649 650 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 651 { 652 rcar_canfd_update(val, 0, base + (reg)); 653 } 654 655 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 656 u32 mask, u32 val) 657 { 658 rcar_canfd_update(mask, val, base + (reg)); 659 } 660 661 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 662 struct canfd_frame *cf, u32 off) 663 { 664 u32 i, lwords; 665 666 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 667 for (i = 0; i < lwords; i++) 668 *((u32 *)cf->data + i) = 669 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 670 } 671 672 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 673 struct canfd_frame *cf, u32 off) 674 { 675 u32 i, lwords; 676 677 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 678 for (i = 0; i < lwords; i++) 679 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 680 *((u32 *)cf->data + i)); 681 } 682 683 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 684 { 685 u32 i; 686 687 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 688 can_free_echo_skb(ndev, i, NULL); 689 } 690 691 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv) 692 { 693 if (is_gen4(gpriv)) { 694 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE 695 : RCANFD_GEN4_FDCFG_CLOE; 696 697 for_each_set_bit(ch, &gpriv->channels_mask, 698 gpriv->info->max_channels) 699 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch), 700 val); 701 } else { 702 if (gpriv->fdmode) 703 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 704 RCANFD_GRMCFG_RCMC); 705 else 706 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 707 RCANFD_GRMCFG_RCMC); 708 } 709 } 710 711 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 712 { 713 u32 sts, ch; 714 int err; 715 716 /* Check RAMINIT flag as CAN RAM initialization takes place 717 * after the MCU reset 718 */ 719 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 720 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 721 if (err) { 722 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 723 return err; 724 } 725 726 /* Transition to Global Reset mode */ 727 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 728 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 729 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 730 731 /* Ensure Global reset mode */ 732 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 733 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 734 if (err) { 735 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 736 return err; 737 } 738 739 /* Reset Global error flags */ 740 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 741 742 /* Set the controller into appropriate mode */ 743 rcar_canfd_set_mode(gpriv); 744 745 /* Transition all Channels to reset mode */ 746 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 747 rcar_canfd_clear_bit(gpriv->base, 748 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 749 750 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 751 RCANFD_CCTR_CHMDC_MASK, 752 RCANFD_CCTR_CHDMC_CRESET); 753 754 /* Ensure Channel reset mode */ 755 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 756 (sts & RCANFD_CSTS_CRSTSTS), 757 2, 500000); 758 if (err) { 759 dev_dbg(&gpriv->pdev->dev, 760 "channel %u reset failed\n", ch); 761 return err; 762 } 763 } 764 return 0; 765 } 766 767 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 768 { 769 u32 cfg, ch; 770 771 /* Global configuration settings */ 772 773 /* ECC Error flag Enable */ 774 cfg = RCANFD_GCFG_EEFE; 775 776 if (gpriv->fdmode) 777 /* Truncate payload to configured message size RFPLS */ 778 cfg |= RCANFD_GCFG_CMPOC; 779 780 /* Set External Clock if selected */ 781 if (gpriv->fcan != RCANFD_CANFDCLK) 782 cfg |= RCANFD_GCFG_DCS; 783 784 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 785 786 /* Channel configuration settings */ 787 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 788 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 789 RCANFD_CCTR_ERRD); 790 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 791 RCANFD_CCTR_BOM_MASK, 792 RCANFD_CCTR_BOM_BENTRY); 793 } 794 } 795 796 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 797 u32 ch) 798 { 799 u32 cfg; 800 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 801 u32 ridx = ch + RCANFD_RFFIFO_IDX; 802 803 if (ch == 0) { 804 start = 0; /* Channel 0 always starts from 0th rule */ 805 } else { 806 /* Get number of Channel 0 rules and adjust */ 807 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch)); 808 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg); 809 } 810 811 /* Enable write access to entry */ 812 page = RCANFD_GAFL_PAGENUM(start); 813 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 814 (RCANFD_GAFLECTR_AFLPN(gpriv, page) | 815 RCANFD_GAFLECTR_AFLDAE)); 816 817 /* Write number of rules for channel */ 818 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch), 819 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules)); 820 if (is_gen4(gpriv)) 821 offset = RCANFD_GEN4_GAFL_OFFSET; 822 else if (gpriv->fdmode) 823 offset = RCANFD_F_GAFL_OFFSET; 824 else 825 offset = RCANFD_C_GAFL_OFFSET; 826 827 /* Accept all IDs */ 828 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 829 /* IDE or RTR is not considered for matching */ 830 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 831 /* Any data length accepted */ 832 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 833 /* Place the msg in corresponding Rx FIFO entry */ 834 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start), 835 RCANFD_GAFLP1_GAFLFDP(ridx)); 836 837 /* Disable write access to page */ 838 rcar_canfd_clear_bit(gpriv->base, 839 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 840 } 841 842 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 843 { 844 /* Rx FIFO is used for reception */ 845 u32 cfg; 846 u16 rfdc, rfpls; 847 848 /* Select Rx FIFO based on channel */ 849 u32 ridx = ch + RCANFD_RFFIFO_IDX; 850 851 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 852 if (gpriv->fdmode) 853 rfpls = 7; /* b111 - Max 64 bytes payload */ 854 else 855 rfpls = 0; /* b000 - Max 8 bytes payload */ 856 857 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 858 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 859 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg); 860 } 861 862 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 863 { 864 /* Tx/Rx(Common) FIFO configured in Tx mode is 865 * used for transmission 866 * 867 * Each channel has 3 Common FIFO dedicated to them. 868 * Use the 1st (index 0) out of 3 869 */ 870 u32 cfg; 871 u16 cftml, cfm, cfdc, cfpls; 872 873 cftml = 0; /* 0th buffer */ 874 cfm = 1; /* b01 - Transmit mode */ 875 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 876 if (gpriv->fdmode) 877 cfpls = 7; /* b111 - Max 64 bytes payload */ 878 else 879 cfpls = 0; /* b000 - Max 8 bytes payload */ 880 881 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) | 882 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) | 883 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 884 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg); 885 886 if (gpriv->fdmode) 887 /* Clear FD mode specific control/status register */ 888 rcar_canfd_write(gpriv->base, 889 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0); 890 } 891 892 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 893 { 894 u32 ctr; 895 896 /* Clear any stray error interrupt flags */ 897 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 898 899 /* Global interrupts setup */ 900 ctr = RCANFD_GCTR_MEIE; 901 if (gpriv->fdmode) 902 ctr |= RCANFD_GCTR_CFMPOFIE; 903 904 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 905 } 906 907 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 908 *gpriv) 909 { 910 /* Disable all interrupts */ 911 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 912 913 /* Clear any stray error interrupt flags */ 914 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 915 } 916 917 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 918 *priv) 919 { 920 u32 ctr, ch = priv->channel; 921 922 /* Clear any stray error flags */ 923 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 924 925 /* Channel interrupts setup */ 926 ctr = (RCANFD_CCTR_TAIE | 927 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 928 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 929 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 930 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 931 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 932 } 933 934 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 935 *priv) 936 { 937 u32 ctr, ch = priv->channel; 938 939 ctr = (RCANFD_CCTR_TAIE | 940 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 941 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 942 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 943 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 944 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 945 946 /* Clear any stray error flags */ 947 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 948 } 949 950 static void rcar_canfd_global_error(struct net_device *ndev) 951 { 952 struct rcar_canfd_channel *priv = netdev_priv(ndev); 953 struct rcar_canfd_global *gpriv = priv->gpriv; 954 struct net_device_stats *stats = &ndev->stats; 955 u32 ch = priv->channel; 956 u32 gerfl, sts; 957 u32 ridx = ch + RCANFD_RFFIFO_IDX; 958 959 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 960 if (gerfl & RCANFD_GERFL_EEF(ch)) { 961 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch); 962 stats->tx_dropped++; 963 } 964 if (gerfl & RCANFD_GERFL_MES) { 965 sts = rcar_canfd_read(priv->base, 966 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 967 if (sts & RCANFD_CFSTS_CFMLT) { 968 netdev_dbg(ndev, "Tx Message Lost flag\n"); 969 stats->tx_dropped++; 970 rcar_canfd_write(priv->base, 971 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 972 sts & ~RCANFD_CFSTS_CFMLT); 973 } 974 975 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 976 if (sts & RCANFD_RFSTS_RFMLT) { 977 netdev_dbg(ndev, "Rx Message Lost flag\n"); 978 stats->rx_dropped++; 979 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 980 sts & ~RCANFD_RFSTS_RFMLT); 981 } 982 } 983 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 984 /* Message Lost flag will be set for respective channel 985 * when this condition happens with counters and flags 986 * already updated. 987 */ 988 netdev_dbg(ndev, "global payload overflow interrupt\n"); 989 } 990 991 /* Clear all global error interrupts. Only affected channels bits 992 * get cleared 993 */ 994 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 995 } 996 997 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 998 u16 txerr, u16 rxerr) 999 { 1000 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1001 struct net_device_stats *stats = &ndev->stats; 1002 struct can_frame *cf; 1003 struct sk_buff *skb; 1004 u32 ch = priv->channel; 1005 1006 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 1007 1008 /* Propagate the error condition to the CAN stack */ 1009 skb = alloc_can_err_skb(ndev, &cf); 1010 if (!skb) { 1011 stats->rx_dropped++; 1012 return; 1013 } 1014 1015 /* Channel error interrupts */ 1016 if (cerfl & RCANFD_CERFL_BEF) { 1017 netdev_dbg(ndev, "Bus error\n"); 1018 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 1019 cf->data[2] = CAN_ERR_PROT_UNSPEC; 1020 priv->can.can_stats.bus_error++; 1021 } 1022 if (cerfl & RCANFD_CERFL_ADERR) { 1023 netdev_dbg(ndev, "ACK Delimiter Error\n"); 1024 stats->tx_errors++; 1025 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 1026 } 1027 if (cerfl & RCANFD_CERFL_B0ERR) { 1028 netdev_dbg(ndev, "Bit Error (dominant)\n"); 1029 stats->tx_errors++; 1030 cf->data[2] |= CAN_ERR_PROT_BIT0; 1031 } 1032 if (cerfl & RCANFD_CERFL_B1ERR) { 1033 netdev_dbg(ndev, "Bit Error (recessive)\n"); 1034 stats->tx_errors++; 1035 cf->data[2] |= CAN_ERR_PROT_BIT1; 1036 } 1037 if (cerfl & RCANFD_CERFL_CERR) { 1038 netdev_dbg(ndev, "CRC Error\n"); 1039 stats->rx_errors++; 1040 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 1041 } 1042 if (cerfl & RCANFD_CERFL_AERR) { 1043 netdev_dbg(ndev, "ACK Error\n"); 1044 stats->tx_errors++; 1045 cf->can_id |= CAN_ERR_ACK; 1046 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 1047 } 1048 if (cerfl & RCANFD_CERFL_FERR) { 1049 netdev_dbg(ndev, "Form Error\n"); 1050 stats->rx_errors++; 1051 cf->data[2] |= CAN_ERR_PROT_FORM; 1052 } 1053 if (cerfl & RCANFD_CERFL_SERR) { 1054 netdev_dbg(ndev, "Stuff Error\n"); 1055 stats->rx_errors++; 1056 cf->data[2] |= CAN_ERR_PROT_STUFF; 1057 } 1058 if (cerfl & RCANFD_CERFL_ALF) { 1059 netdev_dbg(ndev, "Arbitration lost Error\n"); 1060 priv->can.can_stats.arbitration_lost++; 1061 cf->can_id |= CAN_ERR_LOSTARB; 1062 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 1063 } 1064 if (cerfl & RCANFD_CERFL_BLF) { 1065 netdev_dbg(ndev, "Bus Lock Error\n"); 1066 stats->rx_errors++; 1067 cf->can_id |= CAN_ERR_BUSERROR; 1068 } 1069 if (cerfl & RCANFD_CERFL_EWF) { 1070 netdev_dbg(ndev, "Error warning interrupt\n"); 1071 priv->can.state = CAN_STATE_ERROR_WARNING; 1072 priv->can.can_stats.error_warning++; 1073 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1074 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1075 CAN_ERR_CRTL_RX_WARNING; 1076 cf->data[6] = txerr; 1077 cf->data[7] = rxerr; 1078 } 1079 if (cerfl & RCANFD_CERFL_EPF) { 1080 netdev_dbg(ndev, "Error passive interrupt\n"); 1081 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1082 priv->can.can_stats.error_passive++; 1083 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 1084 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1085 CAN_ERR_CRTL_RX_PASSIVE; 1086 cf->data[6] = txerr; 1087 cf->data[7] = rxerr; 1088 } 1089 if (cerfl & RCANFD_CERFL_BOEF) { 1090 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1091 rcar_canfd_tx_failure_cleanup(ndev); 1092 priv->can.state = CAN_STATE_BUS_OFF; 1093 priv->can.can_stats.bus_off++; 1094 can_bus_off(ndev); 1095 cf->can_id |= CAN_ERR_BUSOFF; 1096 } 1097 if (cerfl & RCANFD_CERFL_OVLF) { 1098 netdev_dbg(ndev, 1099 "Overload Frame Transmission error interrupt\n"); 1100 stats->tx_errors++; 1101 cf->can_id |= CAN_ERR_PROT; 1102 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1103 } 1104 1105 /* Clear channel error interrupts that are handled */ 1106 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1107 RCANFD_CERFL_ERR(~cerfl)); 1108 netif_rx(skb); 1109 } 1110 1111 static void rcar_canfd_tx_done(struct net_device *ndev) 1112 { 1113 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1114 struct rcar_canfd_global *gpriv = priv->gpriv; 1115 struct net_device_stats *stats = &ndev->stats; 1116 u32 sts; 1117 unsigned long flags; 1118 u32 ch = priv->channel; 1119 1120 do { 1121 u8 unsent, sent; 1122 1123 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1124 stats->tx_packets++; 1125 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL); 1126 1127 spin_lock_irqsave(&priv->tx_lock, flags); 1128 priv->tx_tail++; 1129 sts = rcar_canfd_read(priv->base, 1130 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1131 unsent = RCANFD_CFSTS_CFMC(sts); 1132 1133 /* Wake producer only when there is room */ 1134 if (unsent != RCANFD_FIFO_DEPTH) 1135 netif_wake_queue(ndev); 1136 1137 if (priv->tx_head - priv->tx_tail <= unsent) { 1138 spin_unlock_irqrestore(&priv->tx_lock, flags); 1139 break; 1140 } 1141 spin_unlock_irqrestore(&priv->tx_lock, flags); 1142 1143 } while (1); 1144 1145 /* Clear interrupt */ 1146 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 1147 sts & ~RCANFD_CFSTS_CFTXIF); 1148 } 1149 1150 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1151 { 1152 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1153 struct net_device *ndev = priv->ndev; 1154 u32 gerfl; 1155 1156 /* Handle global error interrupts */ 1157 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1158 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1159 rcar_canfd_global_error(ndev); 1160 } 1161 1162 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1163 { 1164 struct rcar_canfd_global *gpriv = dev_id; 1165 u32 ch; 1166 1167 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1168 rcar_canfd_handle_global_err(gpriv, ch); 1169 1170 return IRQ_HANDLED; 1171 } 1172 1173 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1174 { 1175 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1176 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1177 u32 sts, cc; 1178 1179 /* Handle Rx interrupts */ 1180 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1181 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx)); 1182 if (likely(sts & RCANFD_RFSTS_RFIF && 1183 cc & RCANFD_RFCC_RFIE)) { 1184 if (napi_schedule_prep(&priv->napi)) { 1185 /* Disable Rx FIFO interrupts */ 1186 rcar_canfd_clear_bit(priv->base, 1187 RCANFD_RFCC(gpriv, ridx), 1188 RCANFD_RFCC_RFIE); 1189 __napi_schedule(&priv->napi); 1190 } 1191 } 1192 } 1193 1194 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1195 { 1196 struct rcar_canfd_global *gpriv = dev_id; 1197 u32 ch; 1198 1199 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) 1200 rcar_canfd_handle_global_receive(gpriv, ch); 1201 1202 return IRQ_HANDLED; 1203 } 1204 1205 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1206 { 1207 struct rcar_canfd_global *gpriv = dev_id; 1208 u32 ch; 1209 1210 /* Global error interrupts still indicate a condition specific 1211 * to a channel. RxFIFO interrupt is a global interrupt. 1212 */ 1213 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1214 rcar_canfd_handle_global_err(gpriv, ch); 1215 rcar_canfd_handle_global_receive(gpriv, ch); 1216 } 1217 return IRQ_HANDLED; 1218 } 1219 1220 static void rcar_canfd_state_change(struct net_device *ndev, 1221 u16 txerr, u16 rxerr) 1222 { 1223 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1224 struct net_device_stats *stats = &ndev->stats; 1225 enum can_state rx_state, tx_state, state = priv->can.state; 1226 struct can_frame *cf; 1227 struct sk_buff *skb; 1228 1229 /* Handle transition from error to normal states */ 1230 if (txerr < 96 && rxerr < 96) 1231 state = CAN_STATE_ERROR_ACTIVE; 1232 else if (txerr < 128 && rxerr < 128) 1233 state = CAN_STATE_ERROR_WARNING; 1234 1235 if (state != priv->can.state) { 1236 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1237 state, priv->can.state, txerr, rxerr); 1238 skb = alloc_can_err_skb(ndev, &cf); 1239 if (!skb) { 1240 stats->rx_dropped++; 1241 return; 1242 } 1243 tx_state = txerr >= rxerr ? state : 0; 1244 rx_state = txerr <= rxerr ? state : 0; 1245 1246 can_change_state(ndev, cf, tx_state, rx_state); 1247 netif_rx(skb); 1248 } 1249 } 1250 1251 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1252 { 1253 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1254 struct net_device *ndev = priv->ndev; 1255 u32 sts; 1256 1257 /* Handle Tx interrupts */ 1258 sts = rcar_canfd_read(priv->base, 1259 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX)); 1260 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1261 rcar_canfd_tx_done(ndev); 1262 } 1263 1264 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1265 { 1266 struct rcar_canfd_channel *priv = dev_id; 1267 1268 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel); 1269 1270 return IRQ_HANDLED; 1271 } 1272 1273 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1274 { 1275 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1276 struct net_device *ndev = priv->ndev; 1277 u16 txerr, rxerr; 1278 u32 sts, cerfl; 1279 1280 /* Handle channel error interrupts */ 1281 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1282 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1283 txerr = RCANFD_CSTS_TECCNT(sts); 1284 rxerr = RCANFD_CSTS_RECCNT(sts); 1285 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1286 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1287 1288 /* Handle state change to lower states */ 1289 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1290 priv->can.state != CAN_STATE_BUS_OFF)) 1291 rcar_canfd_state_change(ndev, txerr, rxerr); 1292 } 1293 1294 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1295 { 1296 struct rcar_canfd_channel *priv = dev_id; 1297 1298 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel); 1299 1300 return IRQ_HANDLED; 1301 } 1302 1303 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1304 { 1305 struct rcar_canfd_global *gpriv = dev_id; 1306 u32 ch; 1307 1308 /* Common FIFO is a per channel resource */ 1309 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 1310 rcar_canfd_handle_channel_err(gpriv, ch); 1311 rcar_canfd_handle_channel_tx(gpriv, ch); 1312 } 1313 1314 return IRQ_HANDLED; 1315 } 1316 1317 static void rcar_canfd_set_bittiming(struct net_device *dev) 1318 { 1319 struct rcar_canfd_channel *priv = netdev_priv(dev); 1320 struct rcar_canfd_global *gpriv = priv->gpriv; 1321 const struct can_bittiming *bt = &priv->can.bittiming; 1322 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1323 u16 brp, sjw, tseg1, tseg2; 1324 u32 cfg; 1325 u32 ch = priv->channel; 1326 1327 /* Nominal bit timing settings */ 1328 brp = bt->brp - 1; 1329 sjw = bt->sjw - 1; 1330 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1331 tseg2 = bt->phase_seg2 - 1; 1332 1333 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1334 /* CAN FD only mode */ 1335 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) | 1336 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1337 1338 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1339 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1340 brp, sjw, tseg1, tseg2); 1341 1342 /* Data bit timing settings */ 1343 brp = dbt->brp - 1; 1344 sjw = dbt->sjw - 1; 1345 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1346 tseg2 = dbt->phase_seg2 - 1; 1347 1348 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) | 1349 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2)); 1350 1351 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg); 1352 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1353 brp, sjw, tseg1, tseg2); 1354 } else { 1355 /* Classical CAN only mode */ 1356 if (is_gen4(gpriv)) { 1357 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | 1358 RCANFD_NCFG_NBRP(brp) | 1359 RCANFD_NCFG_NSJW(gpriv, sjw) | 1360 RCANFD_NCFG_NTSEG2(gpriv, tseg2)); 1361 } else { 1362 cfg = (RCANFD_CFG_TSEG1(tseg1) | 1363 RCANFD_CFG_BRP(brp) | 1364 RCANFD_CFG_SJW(sjw) | 1365 RCANFD_CFG_TSEG2(tseg2)); 1366 } 1367 1368 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1369 netdev_dbg(priv->ndev, 1370 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1371 brp, sjw, tseg1, tseg2); 1372 } 1373 } 1374 1375 static int rcar_canfd_start(struct net_device *ndev) 1376 { 1377 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1378 struct rcar_canfd_global *gpriv = priv->gpriv; 1379 int err = -EOPNOTSUPP; 1380 u32 sts, ch = priv->channel; 1381 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1382 1383 rcar_canfd_set_bittiming(ndev); 1384 1385 rcar_canfd_enable_channel_interrupts(priv); 1386 1387 /* Set channel to Operational mode */ 1388 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1389 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1390 1391 /* Verify channel mode change */ 1392 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1393 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1394 if (err) { 1395 netdev_err(ndev, "channel %u communication state failed\n", ch); 1396 goto fail_mode_change; 1397 } 1398 1399 /* Enable Common & Rx FIFO */ 1400 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1401 RCANFD_CFCC_CFE); 1402 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1403 1404 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1405 return 0; 1406 1407 fail_mode_change: 1408 rcar_canfd_disable_channel_interrupts(priv); 1409 return err; 1410 } 1411 1412 static int rcar_canfd_open(struct net_device *ndev) 1413 { 1414 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1415 struct rcar_canfd_global *gpriv = priv->gpriv; 1416 int err; 1417 1418 err = phy_power_on(priv->transceiver); 1419 if (err) { 1420 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err)); 1421 return err; 1422 } 1423 1424 /* Peripheral clock is already enabled in probe */ 1425 err = clk_prepare_enable(gpriv->can_clk); 1426 if (err) { 1427 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err)); 1428 goto out_phy; 1429 } 1430 1431 err = open_candev(ndev); 1432 if (err) { 1433 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err)); 1434 goto out_can_clock; 1435 } 1436 1437 napi_enable(&priv->napi); 1438 err = rcar_canfd_start(ndev); 1439 if (err) 1440 goto out_close; 1441 netif_start_queue(ndev); 1442 return 0; 1443 out_close: 1444 napi_disable(&priv->napi); 1445 close_candev(ndev); 1446 out_can_clock: 1447 clk_disable_unprepare(gpriv->can_clk); 1448 out_phy: 1449 phy_power_off(priv->transceiver); 1450 return err; 1451 } 1452 1453 static void rcar_canfd_stop(struct net_device *ndev) 1454 { 1455 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1456 struct rcar_canfd_global *gpriv = priv->gpriv; 1457 int err; 1458 u32 sts, ch = priv->channel; 1459 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1460 1461 /* Transition to channel reset mode */ 1462 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1463 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1464 1465 /* Check Channel reset mode */ 1466 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1467 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1468 if (err) 1469 netdev_err(ndev, "channel %u reset failed\n", ch); 1470 1471 rcar_canfd_disable_channel_interrupts(priv); 1472 1473 /* Disable Common & Rx FIFO */ 1474 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), 1475 RCANFD_CFCC_CFE); 1476 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE); 1477 1478 /* Set the state as STOPPED */ 1479 priv->can.state = CAN_STATE_STOPPED; 1480 } 1481 1482 static int rcar_canfd_close(struct net_device *ndev) 1483 { 1484 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1485 struct rcar_canfd_global *gpriv = priv->gpriv; 1486 1487 netif_stop_queue(ndev); 1488 rcar_canfd_stop(ndev); 1489 napi_disable(&priv->napi); 1490 clk_disable_unprepare(gpriv->can_clk); 1491 close_candev(ndev); 1492 phy_power_off(priv->transceiver); 1493 return 0; 1494 } 1495 1496 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1497 struct net_device *ndev) 1498 { 1499 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1500 struct rcar_canfd_global *gpriv = priv->gpriv; 1501 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1502 u32 sts = 0, id, dlc; 1503 unsigned long flags; 1504 u32 ch = priv->channel; 1505 1506 if (can_dev_dropped_skb(ndev, skb)) 1507 return NETDEV_TX_OK; 1508 1509 if (cf->can_id & CAN_EFF_FLAG) { 1510 id = cf->can_id & CAN_EFF_MASK; 1511 id |= RCANFD_CFID_CFIDE; 1512 } else { 1513 id = cf->can_id & CAN_SFF_MASK; 1514 } 1515 1516 if (cf->can_id & CAN_RTR_FLAG) 1517 id |= RCANFD_CFID_CFRTR; 1518 1519 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1520 1521 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1522 rcar_canfd_write(priv->base, 1523 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id); 1524 rcar_canfd_write(priv->base, 1525 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc); 1526 1527 if (can_is_canfd_skb(skb)) { 1528 /* CAN FD frame format */ 1529 sts |= RCANFD_CFFDCSTS_CFFDF; 1530 if (cf->flags & CANFD_BRS) 1531 sts |= RCANFD_CFFDCSTS_CFBRS; 1532 1533 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1534 sts |= RCANFD_CFFDCSTS_CFESI; 1535 } 1536 1537 rcar_canfd_write(priv->base, 1538 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts); 1539 1540 rcar_canfd_put_data(priv, cf, 1541 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0)); 1542 } else { 1543 rcar_canfd_write(priv->base, 1544 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1545 rcar_canfd_write(priv->base, 1546 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1547 rcar_canfd_put_data(priv, cf, 1548 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1549 } 1550 1551 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1552 1553 spin_lock_irqsave(&priv->tx_lock, flags); 1554 priv->tx_head++; 1555 1556 /* Stop the queue if we've filled all FIFO entries */ 1557 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1558 netif_stop_queue(ndev); 1559 1560 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1561 * pointer for the Common FIFO 1562 */ 1563 rcar_canfd_write(priv->base, 1564 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff); 1565 1566 spin_unlock_irqrestore(&priv->tx_lock, flags); 1567 return NETDEV_TX_OK; 1568 } 1569 1570 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1571 { 1572 struct net_device_stats *stats = &priv->ndev->stats; 1573 struct rcar_canfd_global *gpriv = priv->gpriv; 1574 struct canfd_frame *cf; 1575 struct sk_buff *skb; 1576 u32 sts = 0, id, dlc; 1577 u32 ch = priv->channel; 1578 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1579 1580 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) { 1581 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx)); 1582 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx)); 1583 1584 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx)); 1585 1586 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) && 1587 sts & RCANFD_RFFDSTS_RFFDF) 1588 skb = alloc_canfd_skb(priv->ndev, &cf); 1589 else 1590 skb = alloc_can_skb(priv->ndev, 1591 (struct can_frame **)&cf); 1592 } else { 1593 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1594 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1595 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1596 } 1597 1598 if (!skb) { 1599 stats->rx_dropped++; 1600 return; 1601 } 1602 1603 if (id & RCANFD_RFID_RFIDE) 1604 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1605 else 1606 cf->can_id = id & CAN_SFF_MASK; 1607 1608 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1609 if (sts & RCANFD_RFFDSTS_RFFDF) 1610 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1611 else 1612 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1613 1614 if (sts & RCANFD_RFFDSTS_RFESI) { 1615 cf->flags |= CANFD_ESI; 1616 netdev_dbg(priv->ndev, "ESI Error\n"); 1617 } 1618 1619 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1620 cf->can_id |= CAN_RTR_FLAG; 1621 } else { 1622 if (sts & RCANFD_RFFDSTS_RFBRS) 1623 cf->flags |= CANFD_BRS; 1624 1625 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1626 } 1627 } else { 1628 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1629 if (id & RCANFD_RFID_RFRTR) 1630 cf->can_id |= CAN_RTR_FLAG; 1631 else if (is_gen4(gpriv)) 1632 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0)); 1633 else 1634 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1635 } 1636 1637 /* Write 0xff to RFPC to increment the CPU-side 1638 * pointer of the Rx FIFO 1639 */ 1640 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff); 1641 1642 if (!(cf->can_id & CAN_RTR_FLAG)) 1643 stats->rx_bytes += cf->len; 1644 stats->rx_packets++; 1645 netif_receive_skb(skb); 1646 } 1647 1648 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1649 { 1650 struct rcar_canfd_channel *priv = 1651 container_of(napi, struct rcar_canfd_channel, napi); 1652 struct rcar_canfd_global *gpriv = priv->gpriv; 1653 int num_pkts; 1654 u32 sts; 1655 u32 ch = priv->channel; 1656 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1657 1658 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1659 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx)); 1660 /* Check FIFO empty condition */ 1661 if (sts & RCANFD_RFSTS_RFEMP) 1662 break; 1663 1664 rcar_canfd_rx_pkt(priv); 1665 1666 /* Clear interrupt bit */ 1667 if (sts & RCANFD_RFSTS_RFIF) 1668 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx), 1669 sts & ~RCANFD_RFSTS_RFIF); 1670 } 1671 1672 /* All packets processed */ 1673 if (num_pkts < quota) { 1674 if (napi_complete_done(napi, num_pkts)) { 1675 /* Enable Rx FIFO interrupts */ 1676 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), 1677 RCANFD_RFCC_RFIE); 1678 } 1679 } 1680 return num_pkts; 1681 } 1682 1683 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1684 { 1685 int err; 1686 1687 switch (mode) { 1688 case CAN_MODE_START: 1689 err = rcar_canfd_start(ndev); 1690 if (err) 1691 return err; 1692 netif_wake_queue(ndev); 1693 return 0; 1694 default: 1695 return -EOPNOTSUPP; 1696 } 1697 } 1698 1699 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1700 struct can_berr_counter *bec) 1701 { 1702 struct rcar_canfd_channel *priv = netdev_priv(dev); 1703 u32 val, ch = priv->channel; 1704 1705 /* Peripheral clock is already enabled in probe */ 1706 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1707 bec->txerr = RCANFD_CSTS_TECCNT(val); 1708 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1709 return 0; 1710 } 1711 1712 static const struct net_device_ops rcar_canfd_netdev_ops = { 1713 .ndo_open = rcar_canfd_open, 1714 .ndo_stop = rcar_canfd_close, 1715 .ndo_start_xmit = rcar_canfd_start_xmit, 1716 .ndo_change_mtu = can_change_mtu, 1717 }; 1718 1719 static const struct ethtool_ops rcar_canfd_ethtool_ops = { 1720 .get_ts_info = ethtool_op_get_ts_info, 1721 }; 1722 1723 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1724 u32 fcan_freq, struct phy *transceiver) 1725 { 1726 const struct rcar_canfd_hw_info *info = gpriv->info; 1727 struct platform_device *pdev = gpriv->pdev; 1728 struct device *dev = &pdev->dev; 1729 struct rcar_canfd_channel *priv; 1730 struct net_device *ndev; 1731 int err = -ENODEV; 1732 1733 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1734 if (!ndev) 1735 return -ENOMEM; 1736 1737 priv = netdev_priv(ndev); 1738 1739 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1740 ndev->ethtool_ops = &rcar_canfd_ethtool_ops; 1741 ndev->flags |= IFF_ECHO; 1742 priv->ndev = ndev; 1743 priv->base = gpriv->base; 1744 priv->transceiver = transceiver; 1745 priv->channel = ch; 1746 priv->gpriv = gpriv; 1747 if (transceiver) 1748 priv->can.bitrate_max = transceiver->attrs.max_link_rate; 1749 priv->can.clock.freq = fcan_freq; 1750 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq); 1751 1752 if (info->multi_channel_irqs) { 1753 char *irq_name; 1754 int err_irq; 1755 int tx_irq; 1756 1757 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1758 if (err_irq < 0) { 1759 err = err_irq; 1760 goto fail; 1761 } 1762 1763 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1764 if (tx_irq < 0) { 1765 err = tx_irq; 1766 goto fail; 1767 } 1768 1769 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err", 1770 ch); 1771 if (!irq_name) { 1772 err = -ENOMEM; 1773 goto fail; 1774 } 1775 err = devm_request_irq(dev, err_irq, 1776 rcar_canfd_channel_err_interrupt, 0, 1777 irq_name, priv); 1778 if (err) { 1779 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n", 1780 err_irq, ERR_PTR(err)); 1781 goto fail; 1782 } 1783 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx", 1784 ch); 1785 if (!irq_name) { 1786 err = -ENOMEM; 1787 goto fail; 1788 } 1789 err = devm_request_irq(dev, tx_irq, 1790 rcar_canfd_channel_tx_interrupt, 0, 1791 irq_name, priv); 1792 if (err) { 1793 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n", 1794 tx_irq, ERR_PTR(err)); 1795 goto fail; 1796 } 1797 } 1798 1799 if (gpriv->fdmode) { 1800 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1801 priv->can.data_bittiming_const = 1802 &rcar_canfd_data_bittiming_const; 1803 1804 /* Controller starts in CAN FD only mode */ 1805 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1806 if (err) 1807 goto fail; 1808 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1809 } else { 1810 /* Controller starts in Classical CAN only mode */ 1811 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1812 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1813 } 1814 1815 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1816 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1817 SET_NETDEV_DEV(ndev, dev); 1818 1819 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll, 1820 RCANFD_NAPI_WEIGHT); 1821 spin_lock_init(&priv->tx_lock); 1822 gpriv->ch[priv->channel] = priv; 1823 err = register_candev(ndev); 1824 if (err) { 1825 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err)); 1826 goto fail_candev; 1827 } 1828 dev_info(dev, "device registered (channel %u)\n", priv->channel); 1829 return 0; 1830 1831 fail_candev: 1832 netif_napi_del(&priv->napi); 1833 fail: 1834 free_candev(ndev); 1835 return err; 1836 } 1837 1838 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1839 { 1840 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1841 1842 if (priv) { 1843 unregister_candev(priv->ndev); 1844 netif_napi_del(&priv->napi); 1845 free_candev(priv->ndev); 1846 } 1847 } 1848 1849 static int rcar_canfd_probe(struct platform_device *pdev) 1850 { 1851 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, }; 1852 const struct rcar_canfd_hw_info *info; 1853 struct device *dev = &pdev->dev; 1854 void __iomem *addr; 1855 u32 sts, ch, fcan_freq; 1856 struct rcar_canfd_global *gpriv; 1857 struct device_node *of_child; 1858 unsigned long channels_mask = 0; 1859 int err, ch_irq, g_irq; 1860 int g_err_irq, g_recc_irq; 1861 bool fdmode = true; /* CAN FD only mode - default */ 1862 char name[9] = "channelX"; 1863 int i; 1864 1865 info = of_device_get_match_data(dev); 1866 1867 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd")) 1868 fdmode = false; /* Classical CAN only mode */ 1869 1870 for (i = 0; i < info->max_channels; ++i) { 1871 name[7] = '0' + i; 1872 of_child = of_get_child_by_name(dev->of_node, name); 1873 if (of_child && of_device_is_available(of_child)) { 1874 channels_mask |= BIT(i); 1875 transceivers[i] = devm_of_phy_optional_get(dev, 1876 of_child, NULL); 1877 } 1878 of_node_put(of_child); 1879 if (IS_ERR(transceivers[i])) 1880 return PTR_ERR(transceivers[i]); 1881 } 1882 1883 if (info->shared_global_irqs) { 1884 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1885 if (ch_irq < 0) { 1886 /* For backward compatibility get irq by index */ 1887 ch_irq = platform_get_irq(pdev, 0); 1888 if (ch_irq < 0) 1889 return ch_irq; 1890 } 1891 1892 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1893 if (g_irq < 0) { 1894 /* For backward compatibility get irq by index */ 1895 g_irq = platform_get_irq(pdev, 1); 1896 if (g_irq < 0) 1897 return g_irq; 1898 } 1899 } else { 1900 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1901 if (g_err_irq < 0) 1902 return g_err_irq; 1903 1904 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1905 if (g_recc_irq < 0) 1906 return g_recc_irq; 1907 } 1908 1909 /* Global controller context */ 1910 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL); 1911 if (!gpriv) 1912 return -ENOMEM; 1913 1914 gpriv->pdev = pdev; 1915 gpriv->channels_mask = channels_mask; 1916 gpriv->fdmode = fdmode; 1917 gpriv->info = info; 1918 1919 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n"); 1920 if (IS_ERR(gpriv->rstc1)) 1921 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1), 1922 "failed to get rstp_n\n"); 1923 1924 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n"); 1925 if (IS_ERR(gpriv->rstc2)) 1926 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2), 1927 "failed to get rstc_n\n"); 1928 1929 /* Peripheral clock */ 1930 gpriv->clkp = devm_clk_get(dev, "fck"); 1931 if (IS_ERR(gpriv->clkp)) 1932 return dev_err_probe(dev, PTR_ERR(gpriv->clkp), 1933 "cannot get peripheral clock\n"); 1934 1935 /* fCAN clock: Pick External clock. If not available fallback to 1936 * CANFD clock 1937 */ 1938 gpriv->can_clk = devm_clk_get(dev, "can_clk"); 1939 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1940 gpriv->can_clk = devm_clk_get(dev, "canfd"); 1941 if (IS_ERR(gpriv->can_clk)) 1942 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk), 1943 "cannot get canfd clock\n"); 1944 1945 gpriv->fcan = RCANFD_CANFDCLK; 1946 1947 } else { 1948 gpriv->fcan = RCANFD_EXTCLK; 1949 } 1950 fcan_freq = clk_get_rate(gpriv->can_clk); 1951 1952 if (gpriv->fcan == RCANFD_CANFDCLK) 1953 /* CANFD clock is further divided by (1/2) within the IP */ 1954 fcan_freq /= info->postdiv; 1955 1956 addr = devm_platform_ioremap_resource(pdev, 0); 1957 if (IS_ERR(addr)) { 1958 err = PTR_ERR(addr); 1959 goto fail_dev; 1960 } 1961 gpriv->base = addr; 1962 1963 /* Request IRQ that's common for both channels */ 1964 if (info->shared_global_irqs) { 1965 err = devm_request_irq(dev, ch_irq, 1966 rcar_canfd_channel_interrupt, 0, 1967 "canfd.ch_int", gpriv); 1968 if (err) { 1969 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1970 ch_irq, ERR_PTR(err)); 1971 goto fail_dev; 1972 } 1973 1974 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt, 1975 0, "canfd.g_int", gpriv); 1976 if (err) { 1977 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1978 g_irq, ERR_PTR(err)); 1979 goto fail_dev; 1980 } 1981 } else { 1982 err = devm_request_irq(dev, g_recc_irq, 1983 rcar_canfd_global_receive_fifo_interrupt, 0, 1984 "canfd.g_recc", gpriv); 1985 1986 if (err) { 1987 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1988 g_recc_irq, ERR_PTR(err)); 1989 goto fail_dev; 1990 } 1991 1992 err = devm_request_irq(dev, g_err_irq, 1993 rcar_canfd_global_err_interrupt, 0, 1994 "canfd.g_err", gpriv); 1995 if (err) { 1996 dev_err(dev, "devm_request_irq %d failed: %pe\n", 1997 g_err_irq, ERR_PTR(err)); 1998 goto fail_dev; 1999 } 2000 } 2001 2002 err = reset_control_reset(gpriv->rstc1); 2003 if (err) 2004 goto fail_dev; 2005 err = reset_control_reset(gpriv->rstc2); 2006 if (err) { 2007 reset_control_assert(gpriv->rstc1); 2008 goto fail_dev; 2009 } 2010 2011 /* Enable peripheral clock for register access */ 2012 err = clk_prepare_enable(gpriv->clkp); 2013 if (err) { 2014 dev_err(dev, "failed to enable peripheral clock: %pe\n", 2015 ERR_PTR(err)); 2016 goto fail_reset; 2017 } 2018 2019 err = rcar_canfd_reset_controller(gpriv); 2020 if (err) { 2021 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err)); 2022 goto fail_clk; 2023 } 2024 2025 /* Controller in Global reset & Channel reset mode */ 2026 rcar_canfd_configure_controller(gpriv); 2027 2028 /* Configure per channel attributes */ 2029 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2030 /* Configure Channel's Rx fifo */ 2031 rcar_canfd_configure_rx(gpriv, ch); 2032 2033 /* Configure Channel's Tx (Common) fifo */ 2034 rcar_canfd_configure_tx(gpriv, ch); 2035 2036 /* Configure receive rules */ 2037 rcar_canfd_configure_afl_rules(gpriv, ch); 2038 } 2039 2040 /* Configure common interrupts */ 2041 rcar_canfd_enable_global_interrupts(gpriv); 2042 2043 /* Start Global operation mode */ 2044 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 2045 RCANFD_GCTR_GMDC_GOPM); 2046 2047 /* Verify mode change */ 2048 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 2049 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 2050 if (err) { 2051 dev_err(dev, "global operational mode failed\n"); 2052 goto fail_mode; 2053 } 2054 2055 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) { 2056 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq, 2057 transceivers[ch]); 2058 if (err) 2059 goto fail_channel; 2060 } 2061 2062 platform_set_drvdata(pdev, gpriv); 2063 dev_info(dev, "global operational state (clk %d, fdmode %d)\n", 2064 gpriv->fcan, gpriv->fdmode); 2065 return 0; 2066 2067 fail_channel: 2068 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) 2069 rcar_canfd_channel_remove(gpriv, ch); 2070 fail_mode: 2071 rcar_canfd_disable_global_interrupts(gpriv); 2072 fail_clk: 2073 clk_disable_unprepare(gpriv->clkp); 2074 fail_reset: 2075 reset_control_assert(gpriv->rstc1); 2076 reset_control_assert(gpriv->rstc2); 2077 fail_dev: 2078 return err; 2079 } 2080 2081 static int rcar_canfd_remove(struct platform_device *pdev) 2082 { 2083 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 2084 u32 ch; 2085 2086 rcar_canfd_reset_controller(gpriv); 2087 rcar_canfd_disable_global_interrupts(gpriv); 2088 2089 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) { 2090 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 2091 rcar_canfd_channel_remove(gpriv, ch); 2092 } 2093 2094 /* Enter global sleep mode */ 2095 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2096 clk_disable_unprepare(gpriv->clkp); 2097 reset_control_assert(gpriv->rstc1); 2098 reset_control_assert(gpriv->rstc2); 2099 2100 return 0; 2101 } 2102 2103 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2104 { 2105 return 0; 2106 } 2107 2108 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2109 { 2110 return 0; 2111 } 2112 2113 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2114 rcar_canfd_resume); 2115 2116 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2117 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info }, 2118 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info }, 2119 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info }, 2120 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info }, 2121 { } 2122 }; 2123 2124 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2125 2126 static struct platform_driver rcar_canfd_driver = { 2127 .driver = { 2128 .name = RCANFD_DRV_NAME, 2129 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2130 .pm = &rcar_canfd_pm_ops, 2131 }, 2132 .probe = rcar_canfd_probe, 2133 .remove = rcar_canfd_remove, 2134 }; 2135 2136 module_platform_driver(rcar_canfd_driver); 2137 2138 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2139 MODULE_LICENSE("GPL"); 2140 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2141 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2142