1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Renesas R-Car CAN FD device driver 3 * 4 * Copyright (C) 2015 Renesas Electronics Corp. 5 */ 6 7 /* The R-Car CAN FD controller can operate in either one of the below two modes 8 * - CAN FD only mode 9 * - Classical CAN (CAN 2.0) only mode 10 * 11 * This driver puts the controller in CAN FD only mode by default. In this 12 * mode, the controller acts as a CAN FD node that can also interoperate with 13 * CAN 2.0 nodes. 14 * 15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add 16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is 17 * also required to switch modes. 18 * 19 * Note: The h/w manual register naming convention is clumsy and not acceptable 20 * to use as it is in the driver. However, those names are added as comments 21 * wherever it is modified to a readable name. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/interrupt.h> 29 #include <linux/errno.h> 30 #include <linux/netdevice.h> 31 #include <linux/platform_device.h> 32 #include <linux/can/led.h> 33 #include <linux/can/dev.h> 34 #include <linux/clk.h> 35 #include <linux/of.h> 36 #include <linux/of_device.h> 37 #include <linux/bitmap.h> 38 #include <linux/bitops.h> 39 #include <linux/iopoll.h> 40 #include <linux/reset.h> 41 42 #define RCANFD_DRV_NAME "rcar_canfd" 43 44 enum rcanfd_chip_id { 45 RENESAS_RCAR_GEN3 = 0, 46 RENESAS_RZG2L, 47 }; 48 49 /* Global register bits */ 50 51 /* RSCFDnCFDGRMCFG */ 52 #define RCANFD_GRMCFG_RCMC BIT(0) 53 54 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 55 #define RCANFD_GCFG_EEFE BIT(6) 56 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ 57 #define RCANFD_GCFG_DCS BIT(4) 58 #define RCANFD_GCFG_DCE BIT(1) 59 #define RCANFD_GCFG_TPRI BIT(0) 60 61 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 62 #define RCANFD_GCTR_TSRST BIT(16) 63 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ 64 #define RCANFD_GCTR_THLEIE BIT(10) 65 #define RCANFD_GCTR_MEIE BIT(9) 66 #define RCANFD_GCTR_DEIE BIT(8) 67 #define RCANFD_GCTR_GSLPR BIT(2) 68 #define RCANFD_GCTR_GMDC_MASK (0x3) 69 #define RCANFD_GCTR_GMDC_GOPM (0x0) 70 #define RCANFD_GCTR_GMDC_GRESET (0x1) 71 #define RCANFD_GCTR_GMDC_GTEST (0x2) 72 73 /* RSCFDnCFDGSTS / RSCFDnGSTS */ 74 #define RCANFD_GSTS_GRAMINIT BIT(3) 75 #define RCANFD_GSTS_GSLPSTS BIT(2) 76 #define RCANFD_GSTS_GHLTSTS BIT(1) 77 #define RCANFD_GSTS_GRSTSTS BIT(0) 78 /* Non-operational status */ 79 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) 80 81 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 82 #define RCANFD_GERFL_EEF1 BIT(17) 83 #define RCANFD_GERFL_EEF0 BIT(16) 84 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ 85 #define RCANFD_GERFL_THLES BIT(2) 86 #define RCANFD_GERFL_MES BIT(1) 87 #define RCANFD_GERFL_DEF BIT(0) 88 89 #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\ 90 RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\ 91 (gpriv->fdmode ?\ 92 RCANFD_GERFL_CMPOF : 0))) 93 94 /* AFL Rx rules registers */ 95 96 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 97 #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8)) 98 #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff) 99 100 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 101 #define RCANFD_GAFLECTR_AFLDAE BIT(8) 102 #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f) 103 104 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 105 #define RCANFD_GAFLID_GAFLLB BIT(29) 106 107 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ 108 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) 109 110 /* Channel register bits */ 111 112 /* RSCFDnCmCFG - Classical CAN only */ 113 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) 114 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) 115 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) 116 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) 117 118 /* RSCFDnCFDCmNCFG - CAN FD only */ 119 #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24) 120 #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16) 121 #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11) 122 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) 123 124 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 125 #define RCANFD_CCTR_CTME BIT(24) 126 #define RCANFD_CCTR_ERRD BIT(23) 127 #define RCANFD_CCTR_BOM_MASK (0x3 << 21) 128 #define RCANFD_CCTR_BOM_ISO (0x0 << 21) 129 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) 130 #define RCANFD_CCTR_BOM_BEND (0x2 << 21) 131 #define RCANFD_CCTR_TDCVFIE BIT(19) 132 #define RCANFD_CCTR_SOCOIE BIT(18) 133 #define RCANFD_CCTR_EOCOIE BIT(17) 134 #define RCANFD_CCTR_TAIE BIT(16) 135 #define RCANFD_CCTR_ALIE BIT(15) 136 #define RCANFD_CCTR_BLIE BIT(14) 137 #define RCANFD_CCTR_OLIE BIT(13) 138 #define RCANFD_CCTR_BORIE BIT(12) 139 #define RCANFD_CCTR_BOEIE BIT(11) 140 #define RCANFD_CCTR_EPIE BIT(10) 141 #define RCANFD_CCTR_EWIE BIT(9) 142 #define RCANFD_CCTR_BEIE BIT(8) 143 #define RCANFD_CCTR_CSLPR BIT(2) 144 #define RCANFD_CCTR_CHMDC_MASK (0x3) 145 #define RCANFD_CCTR_CHDMC_COPM (0x0) 146 #define RCANFD_CCTR_CHDMC_CRESET (0x1) 147 #define RCANFD_CCTR_CHDMC_CHLT (0x2) 148 149 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 150 #define RCANFD_CSTS_COMSTS BIT(7) 151 #define RCANFD_CSTS_RECSTS BIT(6) 152 #define RCANFD_CSTS_TRMSTS BIT(5) 153 #define RCANFD_CSTS_BOSTS BIT(4) 154 #define RCANFD_CSTS_EPSTS BIT(3) 155 #define RCANFD_CSTS_SLPSTS BIT(2) 156 #define RCANFD_CSTS_HLTSTS BIT(1) 157 #define RCANFD_CSTS_CRSTSTS BIT(0) 158 159 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) 160 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) 161 162 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 163 #define RCANFD_CERFL_ADERR BIT(14) 164 #define RCANFD_CERFL_B0ERR BIT(13) 165 #define RCANFD_CERFL_B1ERR BIT(12) 166 #define RCANFD_CERFL_CERR BIT(11) 167 #define RCANFD_CERFL_AERR BIT(10) 168 #define RCANFD_CERFL_FERR BIT(9) 169 #define RCANFD_CERFL_SERR BIT(8) 170 #define RCANFD_CERFL_ALF BIT(7) 171 #define RCANFD_CERFL_BLF BIT(6) 172 #define RCANFD_CERFL_OVLF BIT(5) 173 #define RCANFD_CERFL_BORF BIT(4) 174 #define RCANFD_CERFL_BOEF BIT(3) 175 #define RCANFD_CERFL_EPF BIT(2) 176 #define RCANFD_CERFL_EWF BIT(1) 177 #define RCANFD_CERFL_BEF BIT(0) 178 179 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ 180 181 /* RSCFDnCFDCmDCFG */ 182 #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24) 183 #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20) 184 #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16) 185 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) 186 187 /* RSCFDnCFDCmFDCFG */ 188 #define RCANFD_FDCFG_TDCE BIT(9) 189 #define RCANFD_FDCFG_TDCOC BIT(8) 190 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) 191 192 /* RSCFDnCFDRFCCx */ 193 #define RCANFD_RFCC_RFIM BIT(12) 194 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) 195 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) 196 #define RCANFD_RFCC_RFIE BIT(1) 197 #define RCANFD_RFCC_RFE BIT(0) 198 199 /* RSCFDnCFDRFSTSx */ 200 #define RCANFD_RFSTS_RFIF BIT(3) 201 #define RCANFD_RFSTS_RFMLT BIT(2) 202 #define RCANFD_RFSTS_RFFLL BIT(1) 203 #define RCANFD_RFSTS_RFEMP BIT(0) 204 205 /* RSCFDnCFDRFIDx */ 206 #define RCANFD_RFID_RFIDE BIT(31) 207 #define RCANFD_RFID_RFRTR BIT(30) 208 209 /* RSCFDnCFDRFPTRx */ 210 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) 211 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) 212 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) 213 214 /* RSCFDnCFDRFFDSTSx */ 215 #define RCANFD_RFFDSTS_RFFDF BIT(2) 216 #define RCANFD_RFFDSTS_RFBRS BIT(1) 217 #define RCANFD_RFFDSTS_RFESI BIT(0) 218 219 /* Common FIFO bits */ 220 221 /* RSCFDnCFDCFCCk */ 222 #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20) 223 #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16) 224 #define RCANFD_CFCC_CFIM BIT(12) 225 #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8) 226 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) 227 #define RCANFD_CFCC_CFTXIE BIT(2) 228 #define RCANFD_CFCC_CFE BIT(0) 229 230 /* RSCFDnCFDCFSTSk */ 231 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) 232 #define RCANFD_CFSTS_CFTXIF BIT(4) 233 #define RCANFD_CFSTS_CFMLT BIT(2) 234 #define RCANFD_CFSTS_CFFLL BIT(1) 235 #define RCANFD_CFSTS_CFEMP BIT(0) 236 237 /* RSCFDnCFDCFIDk */ 238 #define RCANFD_CFID_CFIDE BIT(31) 239 #define RCANFD_CFID_CFRTR BIT(30) 240 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) 241 242 /* RSCFDnCFDCFPTRk */ 243 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) 244 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) 245 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) 246 247 /* RSCFDnCFDCFFDCSTSk */ 248 #define RCANFD_CFFDCSTS_CFFDF BIT(2) 249 #define RCANFD_CFFDCSTS_CFBRS BIT(1) 250 #define RCANFD_CFFDCSTS_CFESI BIT(0) 251 252 /* This controller supports either Classical CAN only mode or CAN FD only mode. 253 * These modes are supported in two separate set of register maps & names. 254 * However, some of the register offsets are common for both modes. Those 255 * offsets are listed below as Common registers. 256 * 257 * The CAN FD only mode specific registers & Classical CAN only mode specific 258 * registers are listed separately. Their register names starts with 259 * RCANFD_F_xxx & RCANFD_C_xxx respectively. 260 */ 261 262 /* Common registers */ 263 264 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ 265 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) 266 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ 267 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) 268 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ 269 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) 270 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ 271 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) 272 273 /* RSCFDnCFDGCFG / RSCFDnGCFG */ 274 #define RCANFD_GCFG (0x0084) 275 /* RSCFDnCFDGCTR / RSCFDnGCTR */ 276 #define RCANFD_GCTR (0x0088) 277 /* RSCFDnCFDGCTS / RSCFDnGCTS */ 278 #define RCANFD_GSTS (0x008c) 279 /* RSCFDnCFDGERFL / RSCFDnGERFL */ 280 #define RCANFD_GERFL (0x0090) 281 /* RSCFDnCFDGTSC / RSCFDnGTSC */ 282 #define RCANFD_GTSC (0x0094) 283 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ 284 #define RCANFD_GAFLECTR (0x0098) 285 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ 286 #define RCANFD_GAFLCFG0 (0x009c) 287 /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */ 288 #define RCANFD_GAFLCFG1 (0x00a0) 289 /* RSCFDnCFDRMNB / RSCFDnRMNB */ 290 #define RCANFD_RMNB (0x00a4) 291 /* RSCFDnCFDRMND / RSCFDnRMND */ 292 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) 293 294 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ 295 #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x))) 296 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ 297 #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x))) 298 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ 299 #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x))) 300 301 /* Common FIFO Control registers */ 302 303 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ 304 #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \ 305 (0x04 * (idx))) 306 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ 307 #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \ 308 (0x04 * (idx))) 309 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ 310 #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \ 311 (0x04 * (idx))) 312 313 /* RSCFDnCFDFESTS / RSCFDnFESTS */ 314 #define RCANFD_FESTS (0x0238) 315 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ 316 #define RCANFD_FFSTS (0x023c) 317 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ 318 #define RCANFD_FMSTS (0x0240) 319 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ 320 #define RCANFD_RFISTS (0x0244) 321 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ 322 #define RCANFD_CFRISTS (0x0248) 323 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ 324 #define RCANFD_CFTISTS (0x024c) 325 326 /* RSCFDnCFDTMCp / RSCFDnTMCp */ 327 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) 328 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ 329 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) 330 331 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ 332 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) 333 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ 334 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) 335 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ 336 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) 337 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ 338 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) 339 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ 340 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) 341 342 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ 343 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) 344 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ 345 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) 346 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ 347 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) 348 349 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ 350 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) 351 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ 352 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) 353 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ 354 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) 355 356 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ 357 #define RCANFD_GTINTSTS0 (0x0460) 358 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ 359 #define RCANFD_GTINTSTS1 (0x0464) 360 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ 361 #define RCANFD_GTSTCFG (0x0468) 362 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ 363 #define RCANFD_GTSTCTR (0x046c) 364 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ 365 #define RCANFD_GLOCKK (0x047c) 366 /* RSCFDnCFDGRMCFG */ 367 #define RCANFD_GRMCFG (0x04fc) 368 369 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ 370 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) 371 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ 372 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) 373 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ 374 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) 375 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ 376 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) 377 378 /* Classical CAN only mode register map */ 379 380 /* RSCFDnGAFLXXXj offset */ 381 #define RCANFD_C_GAFL_OFFSET (0x0500) 382 383 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ 384 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) 385 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) 386 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) 387 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) 388 389 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ 390 #define RCANFD_C_RFOFFSET (0x0e00) 391 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) 392 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \ 393 (0x10 * (x))) 394 #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \ 395 (0x10 * (x)) + (0x04 * (df))) 396 397 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ 398 #define RCANFD_C_CFOFFSET (0x0e80) 399 #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \ 400 (0x10 * (idx))) 401 #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \ 402 (0x30 * (ch)) + (0x10 * (idx))) 403 #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \ 404 (0x30 * (ch)) + (0x10 * (idx)) + \ 405 (0x04 * (df))) 406 407 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ 408 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) 409 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) 410 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) 411 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) 412 413 /* RSCFDnTHLACCm */ 414 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) 415 /* RSCFDnRPGACCr */ 416 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) 417 418 /* CAN FD mode specific register map */ 419 420 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ 421 #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m))) 422 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) 423 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) 424 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) 425 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) 426 427 /* RSCFDnCFDGAFLXXXj offset */ 428 #define RCANFD_F_GAFL_OFFSET (0x1000) 429 430 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ 431 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) 432 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) 433 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) 434 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) 435 436 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ 437 #define RCANFD_F_RFOFFSET (0x3000) 438 #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x))) 439 #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \ 440 (0x80 * (x))) 441 #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \ 442 (0x80 * (x))) 443 #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \ 444 (0x80 * (x)) + (0x04 * (df))) 445 446 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ 447 #define RCANFD_F_CFOFFSET (0x3400) 448 #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \ 449 (0x80 * (idx))) 450 #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \ 451 (0x180 * (ch)) + (0x80 * (idx))) 452 #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \ 453 (0x180 * (ch)) + (0x80 * (idx))) 454 #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \ 455 (0x180 * (ch)) + (0x80 * (idx)) + \ 456 (0x04 * (df))) 457 458 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ 459 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) 460 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) 461 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) 462 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) 463 464 /* RSCFDnCFDTHLACCm */ 465 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) 466 /* RSCFDnCFDRPGACCr */ 467 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) 468 469 /* Constants */ 470 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ 471 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ 472 473 #define RCANFD_NUM_CHANNELS 2 /* Two channels max */ 474 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) 475 476 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) 477 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ 478 479 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs 480 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel 481 * number is added to RFFIFO index. 482 */ 483 #define RCANFD_RFFIFO_IDX 0 484 485 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common 486 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. 487 */ 488 #define RCANFD_CFFIFO_IDX 0 489 490 /* fCAN clock select register settings */ 491 enum rcar_canfd_fcanclk { 492 RCANFD_CANFDCLK = 0, /* CANFD clock */ 493 RCANFD_EXTCLK, /* Externally input clock */ 494 }; 495 496 struct rcar_canfd_global; 497 498 /* Channel priv data */ 499 struct rcar_canfd_channel { 500 struct can_priv can; /* Must be the first member */ 501 struct net_device *ndev; 502 struct rcar_canfd_global *gpriv; /* Controller reference */ 503 void __iomem *base; /* Register base address */ 504 struct napi_struct napi; 505 u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */ 506 u32 tx_head; /* Incremented on xmit */ 507 u32 tx_tail; /* Incremented on xmit done */ 508 u32 channel; /* Channel number */ 509 spinlock_t tx_lock; /* To protect tx path */ 510 }; 511 512 /* Global priv data */ 513 struct rcar_canfd_global { 514 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; 515 void __iomem *base; /* Register base address */ 516 struct platform_device *pdev; /* Respective platform device */ 517 struct clk *clkp; /* Peripheral clock */ 518 struct clk *can_clk; /* fCAN clock */ 519 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ 520 unsigned long channels_mask; /* Enabled channels mask */ 521 bool fdmode; /* CAN FD or Classical CAN only mode */ 522 struct reset_control *rstc1; 523 struct reset_control *rstc2; 524 enum rcanfd_chip_id chip_id; 525 }; 526 527 /* CAN FD mode nominal rate constants */ 528 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { 529 .name = RCANFD_DRV_NAME, 530 .tseg1_min = 2, 531 .tseg1_max = 128, 532 .tseg2_min = 2, 533 .tseg2_max = 32, 534 .sjw_max = 32, 535 .brp_min = 1, 536 .brp_max = 1024, 537 .brp_inc = 1, 538 }; 539 540 /* CAN FD mode data rate constants */ 541 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { 542 .name = RCANFD_DRV_NAME, 543 .tseg1_min = 2, 544 .tseg1_max = 16, 545 .tseg2_min = 2, 546 .tseg2_max = 8, 547 .sjw_max = 8, 548 .brp_min = 1, 549 .brp_max = 256, 550 .brp_inc = 1, 551 }; 552 553 /* Classical CAN mode bitrate constants */ 554 static const struct can_bittiming_const rcar_canfd_bittiming_const = { 555 .name = RCANFD_DRV_NAME, 556 .tseg1_min = 4, 557 .tseg1_max = 16, 558 .tseg2_min = 2, 559 .tseg2_max = 8, 560 .sjw_max = 4, 561 .brp_min = 1, 562 .brp_max = 1024, 563 .brp_inc = 1, 564 }; 565 566 /* Helper functions */ 567 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) 568 { 569 u32 data = readl(reg); 570 571 data &= ~mask; 572 data |= (val & mask); 573 writel(data, reg); 574 } 575 576 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) 577 { 578 return readl(base + (offset)); 579 } 580 581 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) 582 { 583 writel(val, base + (offset)); 584 } 585 586 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) 587 { 588 rcar_canfd_update(val, val, base + (reg)); 589 } 590 591 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) 592 { 593 rcar_canfd_update(val, 0, base + (reg)); 594 } 595 596 static void rcar_canfd_update_bit(void __iomem *base, u32 reg, 597 u32 mask, u32 val) 598 { 599 rcar_canfd_update(mask, val, base + (reg)); 600 } 601 602 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, 603 struct canfd_frame *cf, u32 off) 604 { 605 u32 i, lwords; 606 607 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 608 for (i = 0; i < lwords; i++) 609 *((u32 *)cf->data + i) = 610 rcar_canfd_read(priv->base, off + (i * sizeof(u32))); 611 } 612 613 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, 614 struct canfd_frame *cf, u32 off) 615 { 616 u32 i, lwords; 617 618 lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); 619 for (i = 0; i < lwords; i++) 620 rcar_canfd_write(priv->base, off + (i * sizeof(u32)), 621 *((u32 *)cf->data + i)); 622 } 623 624 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) 625 { 626 u32 i; 627 628 for (i = 0; i < RCANFD_FIFO_DEPTH; i++) 629 can_free_echo_skb(ndev, i, NULL); 630 } 631 632 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) 633 { 634 u32 sts, ch; 635 int err; 636 637 /* Check RAMINIT flag as CAN RAM initialization takes place 638 * after the MCU reset 639 */ 640 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 641 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); 642 if (err) { 643 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); 644 return err; 645 } 646 647 /* Transition to Global Reset mode */ 648 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 649 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, 650 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); 651 652 /* Ensure Global reset mode */ 653 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 654 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); 655 if (err) { 656 dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); 657 return err; 658 } 659 660 /* Reset Global error flags */ 661 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); 662 663 /* Set the controller into appropriate mode */ 664 if (gpriv->fdmode) 665 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, 666 RCANFD_GRMCFG_RCMC); 667 else 668 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, 669 RCANFD_GRMCFG_RCMC); 670 671 /* Transition all Channels to reset mode */ 672 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 673 rcar_canfd_clear_bit(gpriv->base, 674 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); 675 676 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 677 RCANFD_CCTR_CHMDC_MASK, 678 RCANFD_CCTR_CHDMC_CRESET); 679 680 /* Ensure Channel reset mode */ 681 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, 682 (sts & RCANFD_CSTS_CRSTSTS), 683 2, 500000); 684 if (err) { 685 dev_dbg(&gpriv->pdev->dev, 686 "channel %u reset failed\n", ch); 687 return err; 688 } 689 } 690 return 0; 691 } 692 693 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) 694 { 695 u32 cfg, ch; 696 697 /* Global configuration settings */ 698 699 /* ECC Error flag Enable */ 700 cfg = RCANFD_GCFG_EEFE; 701 702 if (gpriv->fdmode) 703 /* Truncate payload to configured message size RFPLS */ 704 cfg |= RCANFD_GCFG_CMPOC; 705 706 /* Set External Clock if selected */ 707 if (gpriv->fcan != RCANFD_CANFDCLK) 708 cfg |= RCANFD_GCFG_DCS; 709 710 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); 711 712 /* Channel configuration settings */ 713 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 714 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), 715 RCANFD_CCTR_ERRD); 716 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), 717 RCANFD_CCTR_BOM_MASK, 718 RCANFD_CCTR_BOM_BENTRY); 719 } 720 } 721 722 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, 723 u32 ch) 724 { 725 u32 cfg; 726 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; 727 u32 ridx = ch + RCANFD_RFFIFO_IDX; 728 729 if (ch == 0) { 730 start = 0; /* Channel 0 always starts from 0th rule */ 731 } else { 732 /* Get number of Channel 0 rules and adjust */ 733 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0); 734 start = RCANFD_GAFLCFG_GETRNC(0, cfg); 735 } 736 737 /* Enable write access to entry */ 738 page = RCANFD_GAFL_PAGENUM(start); 739 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, 740 (RCANFD_GAFLECTR_AFLPN(page) | 741 RCANFD_GAFLECTR_AFLDAE)); 742 743 /* Write number of rules for channel */ 744 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0, 745 RCANFD_GAFLCFG_SETRNC(ch, num_rules)); 746 if (gpriv->fdmode) 747 offset = RCANFD_F_GAFL_OFFSET; 748 else 749 offset = RCANFD_C_GAFL_OFFSET; 750 751 /* Accept all IDs */ 752 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); 753 /* IDE or RTR is not considered for matching */ 754 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); 755 /* Any data length accepted */ 756 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); 757 /* Place the msg in corresponding Rx FIFO entry */ 758 rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start), 759 RCANFD_GAFLP1_GAFLFDP(ridx)); 760 761 /* Disable write access to page */ 762 rcar_canfd_clear_bit(gpriv->base, 763 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); 764 } 765 766 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) 767 { 768 /* Rx FIFO is used for reception */ 769 u32 cfg; 770 u16 rfdc, rfpls; 771 772 /* Select Rx FIFO based on channel */ 773 u32 ridx = ch + RCANFD_RFFIFO_IDX; 774 775 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ 776 if (gpriv->fdmode) 777 rfpls = 7; /* b111 - Max 64 bytes payload */ 778 else 779 rfpls = 0; /* b000 - Max 8 bytes payload */ 780 781 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | 782 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); 783 rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg); 784 } 785 786 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) 787 { 788 /* Tx/Rx(Common) FIFO configured in Tx mode is 789 * used for transmission 790 * 791 * Each channel has 3 Common FIFO dedicated to them. 792 * Use the 1st (index 0) out of 3 793 */ 794 u32 cfg; 795 u16 cftml, cfm, cfdc, cfpls; 796 797 cftml = 0; /* 0th buffer */ 798 cfm = 1; /* b01 - Transmit mode */ 799 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ 800 if (gpriv->fdmode) 801 cfpls = 7; /* b111 - Max 64 bytes payload */ 802 else 803 cfpls = 0; /* b000 - Max 8 bytes payload */ 804 805 cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) | 806 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) | 807 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); 808 rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg); 809 810 if (gpriv->fdmode) 811 /* Clear FD mode specific control/status register */ 812 rcar_canfd_write(gpriv->base, 813 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0); 814 } 815 816 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) 817 { 818 u32 ctr; 819 820 /* Clear any stray error interrupt flags */ 821 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 822 823 /* Global interrupts setup */ 824 ctr = RCANFD_GCTR_MEIE; 825 if (gpriv->fdmode) 826 ctr |= RCANFD_GCTR_CFMPOFIE; 827 828 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); 829 } 830 831 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global 832 *gpriv) 833 { 834 /* Disable all interrupts */ 835 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); 836 837 /* Clear any stray error interrupt flags */ 838 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); 839 } 840 841 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel 842 *priv) 843 { 844 u32 ctr, ch = priv->channel; 845 846 /* Clear any stray error flags */ 847 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 848 849 /* Channel interrupts setup */ 850 ctr = (RCANFD_CCTR_TAIE | 851 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 852 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 853 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 854 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 855 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); 856 } 857 858 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel 859 *priv) 860 { 861 u32 ctr, ch = priv->channel; 862 863 ctr = (RCANFD_CCTR_TAIE | 864 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | 865 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | 866 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | 867 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); 868 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); 869 870 /* Clear any stray error flags */ 871 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); 872 } 873 874 static void rcar_canfd_global_error(struct net_device *ndev) 875 { 876 struct rcar_canfd_channel *priv = netdev_priv(ndev); 877 struct rcar_canfd_global *gpriv = priv->gpriv; 878 struct net_device_stats *stats = &ndev->stats; 879 u32 ch = priv->channel; 880 u32 gerfl, sts; 881 u32 ridx = ch + RCANFD_RFFIFO_IDX; 882 883 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 884 if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) { 885 netdev_dbg(ndev, "Ch0: ECC Error flag\n"); 886 stats->tx_dropped++; 887 } 888 if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) { 889 netdev_dbg(ndev, "Ch1: ECC Error flag\n"); 890 stats->tx_dropped++; 891 } 892 if (gerfl & RCANFD_GERFL_MES) { 893 sts = rcar_canfd_read(priv->base, 894 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 895 if (sts & RCANFD_CFSTS_CFMLT) { 896 netdev_dbg(ndev, "Tx Message Lost flag\n"); 897 stats->tx_dropped++; 898 rcar_canfd_write(priv->base, 899 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 900 sts & ~RCANFD_CFSTS_CFMLT); 901 } 902 903 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 904 if (sts & RCANFD_RFSTS_RFMLT) { 905 netdev_dbg(ndev, "Rx Message Lost flag\n"); 906 stats->rx_dropped++; 907 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 908 sts & ~RCANFD_RFSTS_RFMLT); 909 } 910 } 911 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { 912 /* Message Lost flag will be set for respective channel 913 * when this condition happens with counters and flags 914 * already updated. 915 */ 916 netdev_dbg(ndev, "global payload overflow interrupt\n"); 917 } 918 919 /* Clear all global error interrupts. Only affected channels bits 920 * get cleared 921 */ 922 rcar_canfd_write(priv->base, RCANFD_GERFL, 0); 923 } 924 925 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, 926 u16 txerr, u16 rxerr) 927 { 928 struct rcar_canfd_channel *priv = netdev_priv(ndev); 929 struct net_device_stats *stats = &ndev->stats; 930 struct can_frame *cf; 931 struct sk_buff *skb; 932 u32 ch = priv->channel; 933 934 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); 935 936 /* Propagate the error condition to the CAN stack */ 937 skb = alloc_can_err_skb(ndev, &cf); 938 if (!skb) { 939 stats->rx_dropped++; 940 return; 941 } 942 943 /* Channel error interrupts */ 944 if (cerfl & RCANFD_CERFL_BEF) { 945 netdev_dbg(ndev, "Bus error\n"); 946 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; 947 cf->data[2] = CAN_ERR_PROT_UNSPEC; 948 priv->can.can_stats.bus_error++; 949 } 950 if (cerfl & RCANFD_CERFL_ADERR) { 951 netdev_dbg(ndev, "ACK Delimiter Error\n"); 952 stats->tx_errors++; 953 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; 954 } 955 if (cerfl & RCANFD_CERFL_B0ERR) { 956 netdev_dbg(ndev, "Bit Error (dominant)\n"); 957 stats->tx_errors++; 958 cf->data[2] |= CAN_ERR_PROT_BIT0; 959 } 960 if (cerfl & RCANFD_CERFL_B1ERR) { 961 netdev_dbg(ndev, "Bit Error (recessive)\n"); 962 stats->tx_errors++; 963 cf->data[2] |= CAN_ERR_PROT_BIT1; 964 } 965 if (cerfl & RCANFD_CERFL_CERR) { 966 netdev_dbg(ndev, "CRC Error\n"); 967 stats->rx_errors++; 968 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; 969 } 970 if (cerfl & RCANFD_CERFL_AERR) { 971 netdev_dbg(ndev, "ACK Error\n"); 972 stats->tx_errors++; 973 cf->can_id |= CAN_ERR_ACK; 974 cf->data[3] |= CAN_ERR_PROT_LOC_ACK; 975 } 976 if (cerfl & RCANFD_CERFL_FERR) { 977 netdev_dbg(ndev, "Form Error\n"); 978 stats->rx_errors++; 979 cf->data[2] |= CAN_ERR_PROT_FORM; 980 } 981 if (cerfl & RCANFD_CERFL_SERR) { 982 netdev_dbg(ndev, "Stuff Error\n"); 983 stats->rx_errors++; 984 cf->data[2] |= CAN_ERR_PROT_STUFF; 985 } 986 if (cerfl & RCANFD_CERFL_ALF) { 987 netdev_dbg(ndev, "Arbitration lost Error\n"); 988 priv->can.can_stats.arbitration_lost++; 989 cf->can_id |= CAN_ERR_LOSTARB; 990 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 991 } 992 if (cerfl & RCANFD_CERFL_BLF) { 993 netdev_dbg(ndev, "Bus Lock Error\n"); 994 stats->rx_errors++; 995 cf->can_id |= CAN_ERR_BUSERROR; 996 } 997 if (cerfl & RCANFD_CERFL_EWF) { 998 netdev_dbg(ndev, "Error warning interrupt\n"); 999 priv->can.state = CAN_STATE_ERROR_WARNING; 1000 priv->can.can_stats.error_warning++; 1001 cf->can_id |= CAN_ERR_CRTL; 1002 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : 1003 CAN_ERR_CRTL_RX_WARNING; 1004 cf->data[6] = txerr; 1005 cf->data[7] = rxerr; 1006 } 1007 if (cerfl & RCANFD_CERFL_EPF) { 1008 netdev_dbg(ndev, "Error passive interrupt\n"); 1009 priv->can.state = CAN_STATE_ERROR_PASSIVE; 1010 priv->can.can_stats.error_passive++; 1011 cf->can_id |= CAN_ERR_CRTL; 1012 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : 1013 CAN_ERR_CRTL_RX_PASSIVE; 1014 cf->data[6] = txerr; 1015 cf->data[7] = rxerr; 1016 } 1017 if (cerfl & RCANFD_CERFL_BOEF) { 1018 netdev_dbg(ndev, "Bus-off entry interrupt\n"); 1019 rcar_canfd_tx_failure_cleanup(ndev); 1020 priv->can.state = CAN_STATE_BUS_OFF; 1021 priv->can.can_stats.bus_off++; 1022 can_bus_off(ndev); 1023 cf->can_id |= CAN_ERR_BUSOFF; 1024 } 1025 if (cerfl & RCANFD_CERFL_OVLF) { 1026 netdev_dbg(ndev, 1027 "Overload Frame Transmission error interrupt\n"); 1028 stats->tx_errors++; 1029 cf->can_id |= CAN_ERR_PROT; 1030 cf->data[2] |= CAN_ERR_PROT_OVERLOAD; 1031 } 1032 1033 /* Clear channel error interrupts that are handled */ 1034 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 1035 RCANFD_CERFL_ERR(~cerfl)); 1036 stats->rx_packets++; 1037 stats->rx_bytes += cf->len; 1038 netif_rx(skb); 1039 } 1040 1041 static void rcar_canfd_tx_done(struct net_device *ndev) 1042 { 1043 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1044 struct net_device_stats *stats = &ndev->stats; 1045 u32 sts; 1046 unsigned long flags; 1047 u32 ch = priv->channel; 1048 1049 do { 1050 u8 unsent, sent; 1051 1052 sent = priv->tx_tail % RCANFD_FIFO_DEPTH; 1053 stats->tx_packets++; 1054 stats->tx_bytes += priv->tx_len[sent]; 1055 priv->tx_len[sent] = 0; 1056 can_get_echo_skb(ndev, sent, NULL); 1057 1058 spin_lock_irqsave(&priv->tx_lock, flags); 1059 priv->tx_tail++; 1060 sts = rcar_canfd_read(priv->base, 1061 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1062 unsent = RCANFD_CFSTS_CFMC(sts); 1063 1064 /* Wake producer only when there is room */ 1065 if (unsent != RCANFD_FIFO_DEPTH) 1066 netif_wake_queue(ndev); 1067 1068 if (priv->tx_head - priv->tx_tail <= unsent) { 1069 spin_unlock_irqrestore(&priv->tx_lock, flags); 1070 break; 1071 } 1072 spin_unlock_irqrestore(&priv->tx_lock, flags); 1073 1074 } while (1); 1075 1076 /* Clear interrupt */ 1077 rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), 1078 sts & ~RCANFD_CFSTS_CFTXIF); 1079 can_led_event(ndev, CAN_LED_EVENT_TX); 1080 } 1081 1082 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) 1083 { 1084 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1085 struct net_device *ndev = priv->ndev; 1086 u32 gerfl; 1087 1088 /* Handle global error interrupts */ 1089 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); 1090 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) 1091 rcar_canfd_global_error(ndev); 1092 } 1093 1094 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) 1095 { 1096 struct rcar_canfd_global *gpriv = dev_id; 1097 u32 ch; 1098 1099 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1100 rcar_canfd_handle_global_err(gpriv, ch); 1101 1102 return IRQ_HANDLED; 1103 } 1104 1105 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) 1106 { 1107 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1108 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1109 u32 sts; 1110 1111 /* Handle Rx interrupts */ 1112 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1113 if (likely(sts & RCANFD_RFSTS_RFIF)) { 1114 if (napi_schedule_prep(&priv->napi)) { 1115 /* Disable Rx FIFO interrupts */ 1116 rcar_canfd_clear_bit(priv->base, 1117 RCANFD_RFCC(ridx), 1118 RCANFD_RFCC_RFIE); 1119 __napi_schedule(&priv->napi); 1120 } 1121 } 1122 } 1123 1124 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) 1125 { 1126 struct rcar_canfd_global *gpriv = dev_id; 1127 u32 ch; 1128 1129 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1130 rcar_canfd_handle_global_receive(gpriv, ch); 1131 1132 return IRQ_HANDLED; 1133 } 1134 1135 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) 1136 { 1137 struct rcar_canfd_global *gpriv = dev_id; 1138 u32 ch; 1139 1140 /* Global error interrupts still indicate a condition specific 1141 * to a channel. RxFIFO interrupt is a global interrupt. 1142 */ 1143 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1144 rcar_canfd_handle_global_err(gpriv, ch); 1145 rcar_canfd_handle_global_receive(gpriv, ch); 1146 } 1147 return IRQ_HANDLED; 1148 } 1149 1150 static void rcar_canfd_state_change(struct net_device *ndev, 1151 u16 txerr, u16 rxerr) 1152 { 1153 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1154 struct net_device_stats *stats = &ndev->stats; 1155 enum can_state rx_state, tx_state, state = priv->can.state; 1156 struct can_frame *cf; 1157 struct sk_buff *skb; 1158 1159 /* Handle transition from error to normal states */ 1160 if (txerr < 96 && rxerr < 96) 1161 state = CAN_STATE_ERROR_ACTIVE; 1162 else if (txerr < 128 && rxerr < 128) 1163 state = CAN_STATE_ERROR_WARNING; 1164 1165 if (state != priv->can.state) { 1166 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", 1167 state, priv->can.state, txerr, rxerr); 1168 skb = alloc_can_err_skb(ndev, &cf); 1169 if (!skb) { 1170 stats->rx_dropped++; 1171 return; 1172 } 1173 tx_state = txerr >= rxerr ? state : 0; 1174 rx_state = txerr <= rxerr ? state : 0; 1175 1176 can_change_state(ndev, cf, tx_state, rx_state); 1177 stats->rx_packets++; 1178 stats->rx_bytes += cf->len; 1179 netif_rx(skb); 1180 } 1181 } 1182 1183 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) 1184 { 1185 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1186 struct net_device *ndev = priv->ndev; 1187 u32 sts; 1188 1189 /* Handle Tx interrupts */ 1190 sts = rcar_canfd_read(priv->base, 1191 RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); 1192 if (likely(sts & RCANFD_CFSTS_CFTXIF)) 1193 rcar_canfd_tx_done(ndev); 1194 } 1195 1196 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) 1197 { 1198 struct rcar_canfd_global *gpriv = dev_id; 1199 u32 ch; 1200 1201 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1202 rcar_canfd_handle_channel_tx(gpriv, ch); 1203 1204 return IRQ_HANDLED; 1205 } 1206 1207 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) 1208 { 1209 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1210 struct net_device *ndev = priv->ndev; 1211 u16 txerr, rxerr; 1212 u32 sts, cerfl; 1213 1214 /* Handle channel error interrupts */ 1215 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); 1216 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1217 txerr = RCANFD_CSTS_TECCNT(sts); 1218 rxerr = RCANFD_CSTS_RECCNT(sts); 1219 if (unlikely(RCANFD_CERFL_ERR(cerfl))) 1220 rcar_canfd_error(ndev, cerfl, txerr, rxerr); 1221 1222 /* Handle state change to lower states */ 1223 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && 1224 priv->can.state != CAN_STATE_BUS_OFF)) 1225 rcar_canfd_state_change(ndev, txerr, rxerr); 1226 } 1227 1228 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) 1229 { 1230 struct rcar_canfd_global *gpriv = dev_id; 1231 u32 ch; 1232 1233 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1234 rcar_canfd_handle_channel_err(gpriv, ch); 1235 1236 return IRQ_HANDLED; 1237 } 1238 1239 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) 1240 { 1241 struct rcar_canfd_global *gpriv = dev_id; 1242 u32 ch; 1243 1244 /* Common FIFO is a per channel resource */ 1245 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1246 rcar_canfd_handle_channel_err(gpriv, ch); 1247 rcar_canfd_handle_channel_tx(gpriv, ch); 1248 } 1249 1250 return IRQ_HANDLED; 1251 } 1252 1253 static void rcar_canfd_set_bittiming(struct net_device *dev) 1254 { 1255 struct rcar_canfd_channel *priv = netdev_priv(dev); 1256 const struct can_bittiming *bt = &priv->can.bittiming; 1257 const struct can_bittiming *dbt = &priv->can.data_bittiming; 1258 u16 brp, sjw, tseg1, tseg2; 1259 u32 cfg; 1260 u32 ch = priv->channel; 1261 1262 /* Nominal bit timing settings */ 1263 brp = bt->brp - 1; 1264 sjw = bt->sjw - 1; 1265 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1266 tseg2 = bt->phase_seg2 - 1; 1267 1268 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1269 /* CAN FD only mode */ 1270 cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) | 1271 RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2)); 1272 1273 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1274 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1275 brp, sjw, tseg1, tseg2); 1276 1277 /* Data bit timing settings */ 1278 brp = dbt->brp - 1; 1279 sjw = dbt->sjw - 1; 1280 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1281 tseg2 = dbt->phase_seg2 - 1; 1282 1283 cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) | 1284 RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2)); 1285 1286 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg); 1287 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1288 brp, sjw, tseg1, tseg2); 1289 } else { 1290 /* Classical CAN only mode */ 1291 cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | 1292 RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); 1293 1294 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); 1295 netdev_dbg(priv->ndev, 1296 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", 1297 brp, sjw, tseg1, tseg2); 1298 } 1299 } 1300 1301 static int rcar_canfd_start(struct net_device *ndev) 1302 { 1303 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1304 int err = -EOPNOTSUPP; 1305 u32 sts, ch = priv->channel; 1306 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1307 1308 rcar_canfd_set_bittiming(ndev); 1309 1310 rcar_canfd_enable_channel_interrupts(priv); 1311 1312 /* Set channel to Operational mode */ 1313 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1314 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); 1315 1316 /* Verify channel mode change */ 1317 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1318 (sts & RCANFD_CSTS_COMSTS), 2, 500000); 1319 if (err) { 1320 netdev_err(ndev, "channel %u communication state failed\n", ch); 1321 goto fail_mode_change; 1322 } 1323 1324 /* Enable Common & Rx FIFO */ 1325 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1326 RCANFD_CFCC_CFE); 1327 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1328 1329 priv->can.state = CAN_STATE_ERROR_ACTIVE; 1330 return 0; 1331 1332 fail_mode_change: 1333 rcar_canfd_disable_channel_interrupts(priv); 1334 return err; 1335 } 1336 1337 static int rcar_canfd_open(struct net_device *ndev) 1338 { 1339 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1340 struct rcar_canfd_global *gpriv = priv->gpriv; 1341 int err; 1342 1343 /* Peripheral clock is already enabled in probe */ 1344 err = clk_prepare_enable(gpriv->can_clk); 1345 if (err) { 1346 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); 1347 goto out_clock; 1348 } 1349 1350 err = open_candev(ndev); 1351 if (err) { 1352 netdev_err(ndev, "open_candev() failed, error %d\n", err); 1353 goto out_can_clock; 1354 } 1355 1356 napi_enable(&priv->napi); 1357 err = rcar_canfd_start(ndev); 1358 if (err) 1359 goto out_close; 1360 netif_start_queue(ndev); 1361 can_led_event(ndev, CAN_LED_EVENT_OPEN); 1362 return 0; 1363 out_close: 1364 napi_disable(&priv->napi); 1365 close_candev(ndev); 1366 out_can_clock: 1367 clk_disable_unprepare(gpriv->can_clk); 1368 out_clock: 1369 return err; 1370 } 1371 1372 static void rcar_canfd_stop(struct net_device *ndev) 1373 { 1374 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1375 int err; 1376 u32 sts, ch = priv->channel; 1377 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1378 1379 /* Transition to channel reset mode */ 1380 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), 1381 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); 1382 1383 /* Check Channel reset mode */ 1384 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, 1385 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); 1386 if (err) 1387 netdev_err(ndev, "channel %u reset failed\n", ch); 1388 1389 rcar_canfd_disable_channel_interrupts(priv); 1390 1391 /* Disable Common & Rx FIFO */ 1392 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), 1393 RCANFD_CFCC_CFE); 1394 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); 1395 1396 /* Set the state as STOPPED */ 1397 priv->can.state = CAN_STATE_STOPPED; 1398 } 1399 1400 static int rcar_canfd_close(struct net_device *ndev) 1401 { 1402 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1403 struct rcar_canfd_global *gpriv = priv->gpriv; 1404 1405 netif_stop_queue(ndev); 1406 rcar_canfd_stop(ndev); 1407 napi_disable(&priv->napi); 1408 clk_disable_unprepare(gpriv->can_clk); 1409 close_candev(ndev); 1410 can_led_event(ndev, CAN_LED_EVENT_STOP); 1411 return 0; 1412 } 1413 1414 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, 1415 struct net_device *ndev) 1416 { 1417 struct rcar_canfd_channel *priv = netdev_priv(ndev); 1418 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 1419 u32 sts = 0, id, dlc; 1420 unsigned long flags; 1421 u32 ch = priv->channel; 1422 1423 if (can_dropped_invalid_skb(ndev, skb)) 1424 return NETDEV_TX_OK; 1425 1426 if (cf->can_id & CAN_EFF_FLAG) { 1427 id = cf->can_id & CAN_EFF_MASK; 1428 id |= RCANFD_CFID_CFIDE; 1429 } else { 1430 id = cf->can_id & CAN_SFF_MASK; 1431 } 1432 1433 if (cf->can_id & CAN_RTR_FLAG) 1434 id |= RCANFD_CFID_CFRTR; 1435 1436 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); 1437 1438 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1439 rcar_canfd_write(priv->base, 1440 RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id); 1441 rcar_canfd_write(priv->base, 1442 RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1443 1444 if (can_is_canfd_skb(skb)) { 1445 /* CAN FD frame format */ 1446 sts |= RCANFD_CFFDCSTS_CFFDF; 1447 if (cf->flags & CANFD_BRS) 1448 sts |= RCANFD_CFFDCSTS_CFBRS; 1449 1450 if (priv->can.state == CAN_STATE_ERROR_PASSIVE) 1451 sts |= RCANFD_CFFDCSTS_CFESI; 1452 } 1453 1454 rcar_canfd_write(priv->base, 1455 RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts); 1456 1457 rcar_canfd_put_data(priv, cf, 1458 RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1459 } else { 1460 rcar_canfd_write(priv->base, 1461 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); 1462 rcar_canfd_write(priv->base, 1463 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); 1464 rcar_canfd_put_data(priv, cf, 1465 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); 1466 } 1467 1468 priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len; 1469 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); 1470 1471 spin_lock_irqsave(&priv->tx_lock, flags); 1472 priv->tx_head++; 1473 1474 /* Stop the queue if we've filled all FIFO entries */ 1475 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) 1476 netif_stop_queue(ndev); 1477 1478 /* Start Tx: Write 0xff to CFPC to increment the CPU-side 1479 * pointer for the Common FIFO 1480 */ 1481 rcar_canfd_write(priv->base, 1482 RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff); 1483 1484 spin_unlock_irqrestore(&priv->tx_lock, flags); 1485 return NETDEV_TX_OK; 1486 } 1487 1488 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) 1489 { 1490 struct net_device_stats *stats = &priv->ndev->stats; 1491 struct canfd_frame *cf; 1492 struct sk_buff *skb; 1493 u32 sts = 0, id, dlc; 1494 u32 ch = priv->channel; 1495 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1496 1497 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1498 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx)); 1499 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx)); 1500 1501 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx)); 1502 if (sts & RCANFD_RFFDSTS_RFFDF) 1503 skb = alloc_canfd_skb(priv->ndev, &cf); 1504 else 1505 skb = alloc_can_skb(priv->ndev, 1506 (struct can_frame **)&cf); 1507 } else { 1508 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); 1509 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); 1510 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); 1511 } 1512 1513 if (!skb) { 1514 stats->rx_dropped++; 1515 return; 1516 } 1517 1518 if (id & RCANFD_RFID_RFIDE) 1519 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 1520 else 1521 cf->can_id = id & CAN_SFF_MASK; 1522 1523 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { 1524 if (sts & RCANFD_RFFDSTS_RFFDF) 1525 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1526 else 1527 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1528 1529 if (sts & RCANFD_RFFDSTS_RFESI) { 1530 cf->flags |= CANFD_ESI; 1531 netdev_dbg(priv->ndev, "ESI Error\n"); 1532 } 1533 1534 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { 1535 cf->can_id |= CAN_RTR_FLAG; 1536 } else { 1537 if (sts & RCANFD_RFFDSTS_RFBRS) 1538 cf->flags |= CANFD_BRS; 1539 1540 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0)); 1541 } 1542 } else { 1543 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); 1544 if (id & RCANFD_RFID_RFRTR) 1545 cf->can_id |= CAN_RTR_FLAG; 1546 else 1547 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); 1548 } 1549 1550 /* Write 0xff to RFPC to increment the CPU-side 1551 * pointer of the Rx FIFO 1552 */ 1553 rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff); 1554 1555 can_led_event(priv->ndev, CAN_LED_EVENT_RX); 1556 1557 stats->rx_bytes += cf->len; 1558 stats->rx_packets++; 1559 netif_receive_skb(skb); 1560 } 1561 1562 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) 1563 { 1564 struct rcar_canfd_channel *priv = 1565 container_of(napi, struct rcar_canfd_channel, napi); 1566 int num_pkts; 1567 u32 sts; 1568 u32 ch = priv->channel; 1569 u32 ridx = ch + RCANFD_RFFIFO_IDX; 1570 1571 for (num_pkts = 0; num_pkts < quota; num_pkts++) { 1572 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); 1573 /* Check FIFO empty condition */ 1574 if (sts & RCANFD_RFSTS_RFEMP) 1575 break; 1576 1577 rcar_canfd_rx_pkt(priv); 1578 1579 /* Clear interrupt bit */ 1580 if (sts & RCANFD_RFSTS_RFIF) 1581 rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), 1582 sts & ~RCANFD_RFSTS_RFIF); 1583 } 1584 1585 /* All packets processed */ 1586 if (num_pkts < quota) { 1587 if (napi_complete_done(napi, num_pkts)) { 1588 /* Enable Rx FIFO interrupts */ 1589 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), 1590 RCANFD_RFCC_RFIE); 1591 } 1592 } 1593 return num_pkts; 1594 } 1595 1596 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) 1597 { 1598 int err; 1599 1600 switch (mode) { 1601 case CAN_MODE_START: 1602 err = rcar_canfd_start(ndev); 1603 if (err) 1604 return err; 1605 netif_wake_queue(ndev); 1606 return 0; 1607 default: 1608 return -EOPNOTSUPP; 1609 } 1610 } 1611 1612 static int rcar_canfd_get_berr_counter(const struct net_device *dev, 1613 struct can_berr_counter *bec) 1614 { 1615 struct rcar_canfd_channel *priv = netdev_priv(dev); 1616 u32 val, ch = priv->channel; 1617 1618 /* Peripheral clock is already enabled in probe */ 1619 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); 1620 bec->txerr = RCANFD_CSTS_TECCNT(val); 1621 bec->rxerr = RCANFD_CSTS_RECCNT(val); 1622 return 0; 1623 } 1624 1625 static const struct net_device_ops rcar_canfd_netdev_ops = { 1626 .ndo_open = rcar_canfd_open, 1627 .ndo_stop = rcar_canfd_close, 1628 .ndo_start_xmit = rcar_canfd_start_xmit, 1629 .ndo_change_mtu = can_change_mtu, 1630 }; 1631 1632 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, 1633 u32 fcan_freq) 1634 { 1635 struct platform_device *pdev = gpriv->pdev; 1636 struct rcar_canfd_channel *priv; 1637 struct net_device *ndev; 1638 int err = -ENODEV; 1639 1640 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); 1641 if (!ndev) { 1642 dev_err(&pdev->dev, "alloc_candev() failed\n"); 1643 err = -ENOMEM; 1644 goto fail; 1645 } 1646 priv = netdev_priv(ndev); 1647 1648 ndev->netdev_ops = &rcar_canfd_netdev_ops; 1649 ndev->flags |= IFF_ECHO; 1650 priv->ndev = ndev; 1651 priv->base = gpriv->base; 1652 priv->channel = ch; 1653 priv->can.clock.freq = fcan_freq; 1654 dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq); 1655 1656 if (gpriv->chip_id == RENESAS_RZG2L) { 1657 char *irq_name; 1658 int err_irq; 1659 int tx_irq; 1660 1661 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); 1662 if (err_irq < 0) { 1663 err = err_irq; 1664 goto fail; 1665 } 1666 1667 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); 1668 if (tx_irq < 0) { 1669 err = tx_irq; 1670 goto fail; 1671 } 1672 1673 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 1674 "canfd.ch%d_err", ch); 1675 if (!irq_name) { 1676 err = -ENOMEM; 1677 goto fail; 1678 } 1679 err = devm_request_irq(&pdev->dev, err_irq, 1680 rcar_canfd_channel_err_interrupt, 0, 1681 irq_name, gpriv); 1682 if (err) { 1683 dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n", 1684 err_irq, err); 1685 goto fail; 1686 } 1687 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, 1688 "canfd.ch%d_trx", ch); 1689 if (!irq_name) { 1690 err = -ENOMEM; 1691 goto fail; 1692 } 1693 err = devm_request_irq(&pdev->dev, tx_irq, 1694 rcar_canfd_channel_tx_interrupt, 0, 1695 irq_name, gpriv); 1696 if (err) { 1697 dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n", 1698 tx_irq, err); 1699 goto fail; 1700 } 1701 } 1702 1703 if (gpriv->fdmode) { 1704 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; 1705 priv->can.data_bittiming_const = 1706 &rcar_canfd_data_bittiming_const; 1707 1708 /* Controller starts in CAN FD only mode */ 1709 can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); 1710 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1711 } else { 1712 /* Controller starts in Classical CAN only mode */ 1713 priv->can.bittiming_const = &rcar_canfd_bittiming_const; 1714 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; 1715 } 1716 1717 priv->can.do_set_mode = rcar_canfd_do_set_mode; 1718 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; 1719 priv->gpriv = gpriv; 1720 SET_NETDEV_DEV(ndev, &pdev->dev); 1721 1722 netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll, 1723 RCANFD_NAPI_WEIGHT); 1724 err = register_candev(ndev); 1725 if (err) { 1726 dev_err(&pdev->dev, 1727 "register_candev() failed, error %d\n", err); 1728 goto fail_candev; 1729 } 1730 spin_lock_init(&priv->tx_lock); 1731 devm_can_led_init(ndev); 1732 gpriv->ch[priv->channel] = priv; 1733 dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel); 1734 return 0; 1735 1736 fail_candev: 1737 netif_napi_del(&priv->napi); 1738 free_candev(ndev); 1739 fail: 1740 return err; 1741 } 1742 1743 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) 1744 { 1745 struct rcar_canfd_channel *priv = gpriv->ch[ch]; 1746 1747 if (priv) { 1748 unregister_candev(priv->ndev); 1749 netif_napi_del(&priv->napi); 1750 free_candev(priv->ndev); 1751 } 1752 } 1753 1754 static int rcar_canfd_probe(struct platform_device *pdev) 1755 { 1756 void __iomem *addr; 1757 u32 sts, ch, fcan_freq; 1758 struct rcar_canfd_global *gpriv; 1759 struct device_node *of_child; 1760 unsigned long channels_mask = 0; 1761 int err, ch_irq, g_irq; 1762 int g_err_irq, g_recc_irq; 1763 bool fdmode = true; /* CAN FD only mode - default */ 1764 enum rcanfd_chip_id chip_id; 1765 1766 chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev); 1767 1768 if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd")) 1769 fdmode = false; /* Classical CAN only mode */ 1770 1771 of_child = of_get_child_by_name(pdev->dev.of_node, "channel0"); 1772 if (of_child && of_device_is_available(of_child)) 1773 channels_mask |= BIT(0); /* Channel 0 */ 1774 1775 of_child = of_get_child_by_name(pdev->dev.of_node, "channel1"); 1776 if (of_child && of_device_is_available(of_child)) 1777 channels_mask |= BIT(1); /* Channel 1 */ 1778 1779 if (chip_id == RENESAS_RCAR_GEN3) { 1780 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); 1781 if (ch_irq < 0) { 1782 /* For backward compatibility get irq by index */ 1783 ch_irq = platform_get_irq(pdev, 0); 1784 if (ch_irq < 0) 1785 return ch_irq; 1786 } 1787 1788 g_irq = platform_get_irq_byname_optional(pdev, "g_int"); 1789 if (g_irq < 0) { 1790 /* For backward compatibility get irq by index */ 1791 g_irq = platform_get_irq(pdev, 1); 1792 if (g_irq < 0) 1793 return g_irq; 1794 } 1795 } else { 1796 g_err_irq = platform_get_irq_byname(pdev, "g_err"); 1797 if (g_err_irq < 0) 1798 return g_err_irq; 1799 1800 g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); 1801 if (g_recc_irq < 0) 1802 return g_recc_irq; 1803 } 1804 1805 /* Global controller context */ 1806 gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL); 1807 if (!gpriv) { 1808 err = -ENOMEM; 1809 goto fail_dev; 1810 } 1811 gpriv->pdev = pdev; 1812 gpriv->channels_mask = channels_mask; 1813 gpriv->fdmode = fdmode; 1814 gpriv->chip_id = chip_id; 1815 1816 if (gpriv->chip_id == RENESAS_RZG2L) { 1817 gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n"); 1818 if (IS_ERR(gpriv->rstc1)) 1819 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1), 1820 "failed to get rstp_n\n"); 1821 1822 gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n"); 1823 if (IS_ERR(gpriv->rstc2)) 1824 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2), 1825 "failed to get rstc_n\n"); 1826 } 1827 1828 /* Peripheral clock */ 1829 gpriv->clkp = devm_clk_get(&pdev->dev, "fck"); 1830 if (IS_ERR(gpriv->clkp)) { 1831 err = PTR_ERR(gpriv->clkp); 1832 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n", 1833 err); 1834 goto fail_dev; 1835 } 1836 1837 /* fCAN clock: Pick External clock. If not available fallback to 1838 * CANFD clock 1839 */ 1840 gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); 1841 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { 1842 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd"); 1843 if (IS_ERR(gpriv->can_clk)) { 1844 err = PTR_ERR(gpriv->can_clk); 1845 dev_err(&pdev->dev, 1846 "cannot get canfd clock, error %d\n", err); 1847 goto fail_dev; 1848 } 1849 gpriv->fcan = RCANFD_CANFDCLK; 1850 1851 } else { 1852 gpriv->fcan = RCANFD_EXTCLK; 1853 } 1854 fcan_freq = clk_get_rate(gpriv->can_clk); 1855 1856 if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id == RENESAS_RCAR_GEN3) 1857 /* CANFD clock is further divided by (1/2) within the IP */ 1858 fcan_freq /= 2; 1859 1860 addr = devm_platform_ioremap_resource(pdev, 0); 1861 if (IS_ERR(addr)) { 1862 err = PTR_ERR(addr); 1863 goto fail_dev; 1864 } 1865 gpriv->base = addr; 1866 1867 /* Request IRQ that's common for both channels */ 1868 if (gpriv->chip_id == RENESAS_RCAR_GEN3) { 1869 err = devm_request_irq(&pdev->dev, ch_irq, 1870 rcar_canfd_channel_interrupt, 0, 1871 "canfd.ch_int", gpriv); 1872 if (err) { 1873 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1874 ch_irq, err); 1875 goto fail_dev; 1876 } 1877 1878 err = devm_request_irq(&pdev->dev, g_irq, 1879 rcar_canfd_global_interrupt, 0, 1880 "canfd.g_int", gpriv); 1881 if (err) { 1882 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1883 g_irq, err); 1884 goto fail_dev; 1885 } 1886 } else { 1887 err = devm_request_irq(&pdev->dev, g_recc_irq, 1888 rcar_canfd_global_receive_fifo_interrupt, 0, 1889 "canfd.g_recc", gpriv); 1890 1891 if (err) { 1892 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1893 g_recc_irq, err); 1894 goto fail_dev; 1895 } 1896 1897 err = devm_request_irq(&pdev->dev, g_err_irq, 1898 rcar_canfd_global_err_interrupt, 0, 1899 "canfd.g_err", gpriv); 1900 if (err) { 1901 dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", 1902 g_err_irq, err); 1903 goto fail_dev; 1904 } 1905 } 1906 1907 err = reset_control_reset(gpriv->rstc1); 1908 if (err) 1909 goto fail_dev; 1910 err = reset_control_reset(gpriv->rstc2); 1911 if (err) { 1912 reset_control_assert(gpriv->rstc1); 1913 goto fail_dev; 1914 } 1915 1916 /* Enable peripheral clock for register access */ 1917 err = clk_prepare_enable(gpriv->clkp); 1918 if (err) { 1919 dev_err(&pdev->dev, 1920 "failed to enable peripheral clock, error %d\n", err); 1921 goto fail_reset; 1922 } 1923 1924 err = rcar_canfd_reset_controller(gpriv); 1925 if (err) { 1926 dev_err(&pdev->dev, "reset controller failed\n"); 1927 goto fail_clk; 1928 } 1929 1930 /* Controller in Global reset & Channel reset mode */ 1931 rcar_canfd_configure_controller(gpriv); 1932 1933 /* Configure per channel attributes */ 1934 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1935 /* Configure Channel's Rx fifo */ 1936 rcar_canfd_configure_rx(gpriv, ch); 1937 1938 /* Configure Channel's Tx (Common) fifo */ 1939 rcar_canfd_configure_tx(gpriv, ch); 1940 1941 /* Configure receive rules */ 1942 rcar_canfd_configure_afl_rules(gpriv, ch); 1943 } 1944 1945 /* Configure common interrupts */ 1946 rcar_canfd_enable_global_interrupts(gpriv); 1947 1948 /* Start Global operation mode */ 1949 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, 1950 RCANFD_GCTR_GMDC_GOPM); 1951 1952 /* Verify mode change */ 1953 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, 1954 !(sts & RCANFD_GSTS_GNOPM), 2, 500000); 1955 if (err) { 1956 dev_err(&pdev->dev, "global operational mode failed\n"); 1957 goto fail_mode; 1958 } 1959 1960 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1961 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); 1962 if (err) 1963 goto fail_channel; 1964 } 1965 1966 platform_set_drvdata(pdev, gpriv); 1967 dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n", 1968 gpriv->fcan, gpriv->fdmode); 1969 return 0; 1970 1971 fail_channel: 1972 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) 1973 rcar_canfd_channel_remove(gpriv, ch); 1974 fail_mode: 1975 rcar_canfd_disable_global_interrupts(gpriv); 1976 fail_clk: 1977 clk_disable_unprepare(gpriv->clkp); 1978 fail_reset: 1979 reset_control_assert(gpriv->rstc1); 1980 reset_control_assert(gpriv->rstc2); 1981 fail_dev: 1982 return err; 1983 } 1984 1985 static int rcar_canfd_remove(struct platform_device *pdev) 1986 { 1987 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); 1988 u32 ch; 1989 1990 rcar_canfd_reset_controller(gpriv); 1991 rcar_canfd_disable_global_interrupts(gpriv); 1992 1993 for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { 1994 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); 1995 rcar_canfd_channel_remove(gpriv, ch); 1996 } 1997 1998 /* Enter global sleep mode */ 1999 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); 2000 clk_disable_unprepare(gpriv->clkp); 2001 reset_control_assert(gpriv->rstc1); 2002 reset_control_assert(gpriv->rstc2); 2003 2004 return 0; 2005 } 2006 2007 static int __maybe_unused rcar_canfd_suspend(struct device *dev) 2008 { 2009 return 0; 2010 } 2011 2012 static int __maybe_unused rcar_canfd_resume(struct device *dev) 2013 { 2014 return 0; 2015 } 2016 2017 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, 2018 rcar_canfd_resume); 2019 2020 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = { 2021 { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 }, 2022 { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L }, 2023 { } 2024 }; 2025 2026 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); 2027 2028 static struct platform_driver rcar_canfd_driver = { 2029 .driver = { 2030 .name = RCANFD_DRV_NAME, 2031 .of_match_table = of_match_ptr(rcar_canfd_of_table), 2032 .pm = &rcar_canfd_pm_ops, 2033 }, 2034 .probe = rcar_canfd_probe, 2035 .remove = rcar_canfd_remove, 2036 }; 2037 2038 module_platform_driver(rcar_canfd_driver); 2039 2040 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>"); 2041 MODULE_LICENSE("GPL"); 2042 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); 2043 MODULE_ALIAS("platform:" RCANFD_DRV_NAME); 2044