xref: /openbmc/linux/drivers/net/can/rcar/rcar_can.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN device driver
3  *
4  * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
5  * Copyright (C) 2013 Renesas Solutions Corp.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/platform_device.h>
15 #include <linux/can/led.h>
16 #include <linux/can/dev.h>
17 #include <linux/clk.h>
18 #include <linux/can/platform/rcar_can.h>
19 #include <linux/of.h>
20 
21 #define RCAR_CAN_DRV_NAME	"rcar_can"
22 
23 #define RCAR_SUPPORTED_CLOCKS	(BIT(CLKR_CLKP1) | BIT(CLKR_CLKP2) | \
24 				 BIT(CLKR_CLKEXT))
25 
26 /* Mailbox configuration:
27  * mailbox 60 - 63 - Rx FIFO mailboxes
28  * mailbox 56 - 59 - Tx FIFO mailboxes
29  * non-FIFO mailboxes are not used
30  */
31 #define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
32 #define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
33 #define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
34 #define RCAR_CAN_FIFO_DEPTH	4
35 
36 /* Mailbox registers structure */
37 struct rcar_can_mbox_regs {
38 	u32 id;		/* IDE and RTR bits, SID and EID */
39 	u8 stub;	/* Not used */
40 	u8 dlc;		/* Data Length Code - bits [0..3] */
41 	u8 data[8];	/* Data Bytes */
42 	u8 tsh;		/* Time Stamp Higher Byte */
43 	u8 tsl;		/* Time Stamp Lower Byte */
44 };
45 
46 struct rcar_can_regs {
47 	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
48 	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
49 	u32 fidcr[2];	/* FIFO Received ID Compare Register */
50 	u32 mkivlr1;	/* Mask Invalid Register 1 */
51 	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
52 	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
53 	u32 mkivlr0;    /* Mask Invalid Register 0*/
54 	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
55 	u8 pad_440[0x3c0];
56 	u8 mctl[64];	/* Message Control Registers */
57 	u16 ctlr;	/* Control Register */
58 	u16 str;	/* Status register */
59 	u8 bcr[3];	/* Bit Configuration Register */
60 	u8 clkr;	/* Clock Select Register */
61 	u8 rfcr;	/* Receive FIFO Control Register */
62 	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
63 	u8 tfcr;	/* Transmit FIFO Control Register */
64 	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
65 	u8 eier;	/* Error Interrupt Enable Register */
66 	u8 eifr;	/* Error Interrupt Factor Judge Register */
67 	u8 recr;	/* Receive Error Count Register */
68 	u8 tecr;        /* Transmit Error Count Register */
69 	u8 ecsr;	/* Error Code Store Register */
70 	u8 cssr;	/* Channel Search Support Register */
71 	u8 mssr;	/* Mailbox Search Status Register */
72 	u8 msmr;	/* Mailbox Search Mode Register */
73 	u16 tsr;	/* Time Stamp Register */
74 	u8 afsr;	/* Acceptance Filter Support Register */
75 	u8 pad_857;
76 	u8 tcr;		/* Test Control Register */
77 	u8 pad_859[7];
78 	u8 ier;		/* Interrupt Enable Register */
79 	u8 isr;		/* Interrupt Status Register */
80 	u8 pad_862;
81 	u8 mbsmr;	/* Mailbox Search Mask Register */
82 };
83 
84 struct rcar_can_priv {
85 	struct can_priv can;	/* Must be the first member! */
86 	struct net_device *ndev;
87 	struct napi_struct napi;
88 	struct rcar_can_regs __iomem *regs;
89 	struct clk *clk;
90 	struct clk *can_clk;
91 	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
92 	u32 tx_head;
93 	u32 tx_tail;
94 	u8 clock_select;
95 	u8 ier;
96 };
97 
98 static const struct can_bittiming_const rcar_can_bittiming_const = {
99 	.name = RCAR_CAN_DRV_NAME,
100 	.tseg1_min = 4,
101 	.tseg1_max = 16,
102 	.tseg2_min = 2,
103 	.tseg2_max = 8,
104 	.sjw_max = 4,
105 	.brp_min = 1,
106 	.brp_max = 1024,
107 	.brp_inc = 1,
108 };
109 
110 /* Control Register bits */
111 #define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
112 #define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
113 					/* at bus-off entry */
114 #define RCAR_CAN_CTLR_SLPM	(1 << 10)
115 #define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
116 #define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
117 #define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
118 #define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
119 #define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
120 #define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
121 #define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
122 #define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
123 
124 /* Status Register bits */
125 #define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
126 
127 /* FIFO Received ID Compare Registers 0 and 1 bits */
128 #define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
129 #define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
130 
131 /* Receive FIFO Control Register bits */
132 #define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
133 #define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
134 
135 /* Transmit FIFO Control Register bits */
136 #define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
137 					/* Number Status Bits */
138 #define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
139 					/* Message Number Status Bits */
140 #define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
141 
142 #define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
143 					/* for Rx mailboxes 0-31 */
144 #define RCAR_CAN_N_RX_MKREGS2	8
145 
146 /* Bit Configuration Register settings */
147 #define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
148 #define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
149 #define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
150 #define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
151 
152 /* Mailbox and Mask Registers bits */
153 #define RCAR_CAN_IDE		(1 << 31)
154 #define RCAR_CAN_RTR		(1 << 30)
155 #define RCAR_CAN_SID_SHIFT	18
156 
157 /* Mailbox Interrupt Enable Register 1 bits */
158 #define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
159 #define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
160 
161 /* Interrupt Enable Register bits */
162 #define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
163 #define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
164 					/* Enable Bit */
165 #define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
166 					/* Enable Bit */
167 /* Interrupt Status Register bits */
168 #define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
169 #define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
170 					/* Status Bit */
171 #define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
172 					/* Status Bit */
173 
174 /* Error Interrupt Enable Register bits */
175 #define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
176 #define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
177 					/* Interrupt Enable */
178 #define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
179 #define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
180 #define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
181 #define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
182 #define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
183 #define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
184 
185 /* Error Interrupt Factor Judge Register bits */
186 #define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
187 #define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
188 					 /* Detect Flag */
189 #define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
190 #define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
191 #define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
192 #define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
193 #define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
194 #define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
195 
196 /* Error Code Store Register bits */
197 #define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
198 #define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
199 #define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
200 #define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
201 #define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
202 #define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
203 #define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
204 #define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
205 
206 #define RCAR_CAN_NAPI_WEIGHT	4
207 #define MAX_STR_READS		0x100
208 
209 static void tx_failure_cleanup(struct net_device *ndev)
210 {
211 	int i;
212 
213 	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
214 		can_free_echo_skb(ndev, i);
215 }
216 
217 static void rcar_can_error(struct net_device *ndev)
218 {
219 	struct rcar_can_priv *priv = netdev_priv(ndev);
220 	struct net_device_stats *stats = &ndev->stats;
221 	struct can_frame *cf;
222 	struct sk_buff *skb;
223 	u8 eifr, txerr = 0, rxerr = 0;
224 
225 	/* Propagate the error condition to the CAN stack */
226 	skb = alloc_can_err_skb(ndev, &cf);
227 
228 	eifr = readb(&priv->regs->eifr);
229 	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
230 		txerr = readb(&priv->regs->tecr);
231 		rxerr = readb(&priv->regs->recr);
232 		if (skb) {
233 			cf->can_id |= CAN_ERR_CRTL;
234 			cf->data[6] = txerr;
235 			cf->data[7] = rxerr;
236 		}
237 	}
238 	if (eifr & RCAR_CAN_EIFR_BEIF) {
239 		int rx_errors = 0, tx_errors = 0;
240 		u8 ecsr;
241 
242 		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
243 		if (skb)
244 			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
245 
246 		ecsr = readb(&priv->regs->ecsr);
247 		if (ecsr & RCAR_CAN_ECSR_ADEF) {
248 			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
249 			tx_errors++;
250 			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
251 			if (skb)
252 				cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
253 		}
254 		if (ecsr & RCAR_CAN_ECSR_BE0F) {
255 			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
256 			tx_errors++;
257 			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
258 			if (skb)
259 				cf->data[2] |= CAN_ERR_PROT_BIT0;
260 		}
261 		if (ecsr & RCAR_CAN_ECSR_BE1F) {
262 			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
263 			tx_errors++;
264 			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
265 			if (skb)
266 				cf->data[2] |= CAN_ERR_PROT_BIT1;
267 		}
268 		if (ecsr & RCAR_CAN_ECSR_CEF) {
269 			netdev_dbg(priv->ndev, "CRC Error\n");
270 			rx_errors++;
271 			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
272 			if (skb)
273 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
274 		}
275 		if (ecsr & RCAR_CAN_ECSR_AEF) {
276 			netdev_dbg(priv->ndev, "ACK Error\n");
277 			tx_errors++;
278 			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
279 			if (skb) {
280 				cf->can_id |= CAN_ERR_ACK;
281 				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
282 			}
283 		}
284 		if (ecsr & RCAR_CAN_ECSR_FEF) {
285 			netdev_dbg(priv->ndev, "Form Error\n");
286 			rx_errors++;
287 			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
288 			if (skb)
289 				cf->data[2] |= CAN_ERR_PROT_FORM;
290 		}
291 		if (ecsr & RCAR_CAN_ECSR_SEF) {
292 			netdev_dbg(priv->ndev, "Stuff Error\n");
293 			rx_errors++;
294 			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
295 			if (skb)
296 				cf->data[2] |= CAN_ERR_PROT_STUFF;
297 		}
298 
299 		priv->can.can_stats.bus_error++;
300 		ndev->stats.rx_errors += rx_errors;
301 		ndev->stats.tx_errors += tx_errors;
302 		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
303 	}
304 	if (eifr & RCAR_CAN_EIFR_EWIF) {
305 		netdev_dbg(priv->ndev, "Error warning interrupt\n");
306 		priv->can.state = CAN_STATE_ERROR_WARNING;
307 		priv->can.can_stats.error_warning++;
308 		/* Clear interrupt condition */
309 		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
310 		if (skb)
311 			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
312 					      CAN_ERR_CRTL_RX_WARNING;
313 	}
314 	if (eifr & RCAR_CAN_EIFR_EPIF) {
315 		netdev_dbg(priv->ndev, "Error passive interrupt\n");
316 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
317 		priv->can.can_stats.error_passive++;
318 		/* Clear interrupt condition */
319 		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
320 		if (skb)
321 			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
322 					      CAN_ERR_CRTL_RX_PASSIVE;
323 	}
324 	if (eifr & RCAR_CAN_EIFR_BOEIF) {
325 		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
326 		tx_failure_cleanup(ndev);
327 		priv->ier = RCAR_CAN_IER_ERSIE;
328 		writeb(priv->ier, &priv->regs->ier);
329 		priv->can.state = CAN_STATE_BUS_OFF;
330 		/* Clear interrupt condition */
331 		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
332 		priv->can.can_stats.bus_off++;
333 		can_bus_off(ndev);
334 		if (skb)
335 			cf->can_id |= CAN_ERR_BUSOFF;
336 	}
337 	if (eifr & RCAR_CAN_EIFR_ORIF) {
338 		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
339 		ndev->stats.rx_over_errors++;
340 		ndev->stats.rx_errors++;
341 		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
342 		if (skb) {
343 			cf->can_id |= CAN_ERR_CRTL;
344 			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
345 		}
346 	}
347 	if (eifr & RCAR_CAN_EIFR_OLIF) {
348 		netdev_dbg(priv->ndev,
349 			   "Overload Frame Transmission error interrupt\n");
350 		ndev->stats.rx_over_errors++;
351 		ndev->stats.rx_errors++;
352 		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
353 		if (skb) {
354 			cf->can_id |= CAN_ERR_PROT;
355 			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
356 		}
357 	}
358 
359 	if (skb) {
360 		stats->rx_packets++;
361 		stats->rx_bytes += cf->can_dlc;
362 		netif_rx(skb);
363 	}
364 }
365 
366 static void rcar_can_tx_done(struct net_device *ndev)
367 {
368 	struct rcar_can_priv *priv = netdev_priv(ndev);
369 	struct net_device_stats *stats = &ndev->stats;
370 	u8 isr;
371 
372 	while (1) {
373 		u8 unsent = readb(&priv->regs->tfcr);
374 
375 		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
376 			  RCAR_CAN_TFCR_TFUST_SHIFT;
377 		if (priv->tx_head - priv->tx_tail <= unsent)
378 			break;
379 		stats->tx_packets++;
380 		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
381 						RCAR_CAN_FIFO_DEPTH];
382 		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
383 		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
384 		priv->tx_tail++;
385 		netif_wake_queue(ndev);
386 	}
387 	/* Clear interrupt */
388 	isr = readb(&priv->regs->isr);
389 	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
390 	can_led_event(ndev, CAN_LED_EVENT_TX);
391 }
392 
393 static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
394 {
395 	struct net_device *ndev = dev_id;
396 	struct rcar_can_priv *priv = netdev_priv(ndev);
397 	u8 isr;
398 
399 	isr = readb(&priv->regs->isr);
400 	if (!(isr & priv->ier))
401 		return IRQ_NONE;
402 
403 	if (isr & RCAR_CAN_ISR_ERSF)
404 		rcar_can_error(ndev);
405 
406 	if (isr & RCAR_CAN_ISR_TXFF)
407 		rcar_can_tx_done(ndev);
408 
409 	if (isr & RCAR_CAN_ISR_RXFF) {
410 		if (napi_schedule_prep(&priv->napi)) {
411 			/* Disable Rx FIFO interrupts */
412 			priv->ier &= ~RCAR_CAN_IER_RXFIE;
413 			writeb(priv->ier, &priv->regs->ier);
414 			__napi_schedule(&priv->napi);
415 		}
416 	}
417 
418 	return IRQ_HANDLED;
419 }
420 
421 static void rcar_can_set_bittiming(struct net_device *dev)
422 {
423 	struct rcar_can_priv *priv = netdev_priv(dev);
424 	struct can_bittiming *bt = &priv->can.bittiming;
425 	u32 bcr;
426 
427 	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
428 	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
429 	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
430 	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
431 	 * All the registers are big-endian but they get byte-swapped on 32-bit
432 	 * read/write (but not on 8-bit, contrary to the manuals)...
433 	 */
434 	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
435 }
436 
437 static void rcar_can_start(struct net_device *ndev)
438 {
439 	struct rcar_can_priv *priv = netdev_priv(ndev);
440 	u16 ctlr;
441 	int i;
442 
443 	/* Set controller to known mode:
444 	 * - FIFO mailbox mode
445 	 * - accept all messages
446 	 * - overrun mode
447 	 * CAN is in sleep mode after MCU hardware or software reset.
448 	 */
449 	ctlr = readw(&priv->regs->ctlr);
450 	ctlr &= ~RCAR_CAN_CTLR_SLPM;
451 	writew(ctlr, &priv->regs->ctlr);
452 	/* Go to reset mode */
453 	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
454 	writew(ctlr, &priv->regs->ctlr);
455 	for (i = 0; i < MAX_STR_READS; i++) {
456 		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
457 			break;
458 	}
459 	rcar_can_set_bittiming(ndev);
460 	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
461 	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
462 					/* at bus-off */
463 	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
464 	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
465 	writew(ctlr, &priv->regs->ctlr);
466 
467 	/* Accept all SID and EID */
468 	writel(0, &priv->regs->mkr_2_9[6]);
469 	writel(0, &priv->regs->mkr_2_9[7]);
470 	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
471 	writel(0, &priv->regs->mkivlr1);
472 	/* Accept all frames */
473 	writel(0, &priv->regs->fidcr[0]);
474 	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
475 	/* Enable and configure FIFO mailbox interrupts */
476 	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
477 
478 	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
479 		    RCAR_CAN_IER_TXFIE;
480 	writeb(priv->ier, &priv->regs->ier);
481 
482 	/* Accumulate error codes */
483 	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
484 	/* Enable error interrupts */
485 	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
486 	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
487 	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
488 	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
489 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
490 
491 	/* Go to operation mode */
492 	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
493 	for (i = 0; i < MAX_STR_READS; i++) {
494 		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
495 			break;
496 	}
497 	/* Enable Rx and Tx FIFO */
498 	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
499 	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
500 }
501 
502 static int rcar_can_open(struct net_device *ndev)
503 {
504 	struct rcar_can_priv *priv = netdev_priv(ndev);
505 	int err;
506 
507 	err = clk_prepare_enable(priv->clk);
508 	if (err) {
509 		netdev_err(ndev,
510 			   "failed to enable peripheral clock, error %d\n",
511 			   err);
512 		goto out;
513 	}
514 	err = clk_prepare_enable(priv->can_clk);
515 	if (err) {
516 		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
517 			   err);
518 		goto out_clock;
519 	}
520 	err = open_candev(ndev);
521 	if (err) {
522 		netdev_err(ndev, "open_candev() failed, error %d\n", err);
523 		goto out_can_clock;
524 	}
525 	napi_enable(&priv->napi);
526 	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
527 	if (err) {
528 		netdev_err(ndev, "request_irq(%d) failed, error %d\n",
529 			   ndev->irq, err);
530 		goto out_close;
531 	}
532 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
533 	rcar_can_start(ndev);
534 	netif_start_queue(ndev);
535 	return 0;
536 out_close:
537 	napi_disable(&priv->napi);
538 	close_candev(ndev);
539 out_can_clock:
540 	clk_disable_unprepare(priv->can_clk);
541 out_clock:
542 	clk_disable_unprepare(priv->clk);
543 out:
544 	return err;
545 }
546 
547 static void rcar_can_stop(struct net_device *ndev)
548 {
549 	struct rcar_can_priv *priv = netdev_priv(ndev);
550 	u16 ctlr;
551 	int i;
552 
553 	/* Go to (force) reset mode */
554 	ctlr = readw(&priv->regs->ctlr);
555 	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
556 	writew(ctlr, &priv->regs->ctlr);
557 	for (i = 0; i < MAX_STR_READS; i++) {
558 		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
559 			break;
560 	}
561 	writel(0, &priv->regs->mier0);
562 	writel(0, &priv->regs->mier1);
563 	writeb(0, &priv->regs->ier);
564 	writeb(0, &priv->regs->eier);
565 	/* Go to sleep mode */
566 	ctlr |= RCAR_CAN_CTLR_SLPM;
567 	writew(ctlr, &priv->regs->ctlr);
568 	priv->can.state = CAN_STATE_STOPPED;
569 }
570 
571 static int rcar_can_close(struct net_device *ndev)
572 {
573 	struct rcar_can_priv *priv = netdev_priv(ndev);
574 
575 	netif_stop_queue(ndev);
576 	rcar_can_stop(ndev);
577 	free_irq(ndev->irq, ndev);
578 	napi_disable(&priv->napi);
579 	clk_disable_unprepare(priv->can_clk);
580 	clk_disable_unprepare(priv->clk);
581 	close_candev(ndev);
582 	can_led_event(ndev, CAN_LED_EVENT_STOP);
583 	return 0;
584 }
585 
586 static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
587 				       struct net_device *ndev)
588 {
589 	struct rcar_can_priv *priv = netdev_priv(ndev);
590 	struct can_frame *cf = (struct can_frame *)skb->data;
591 	u32 data, i;
592 
593 	if (can_dropped_invalid_skb(ndev, skb))
594 		return NETDEV_TX_OK;
595 
596 	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
597 		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
598 	else				/* Standard frame format */
599 		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
600 
601 	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
602 		data |= RCAR_CAN_RTR;
603 	} else {
604 		for (i = 0; i < cf->can_dlc; i++)
605 			writeb(cf->data[i],
606 			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
607 	}
608 
609 	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
610 
611 	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
612 
613 	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
614 	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
615 	priv->tx_head++;
616 	/* Start Tx: write 0xff to the TFPCR register to increment
617 	 * the CPU-side pointer for the transmit FIFO to the next
618 	 * mailbox location
619 	 */
620 	writeb(0xff, &priv->regs->tfpcr);
621 	/* Stop the queue if we've filled all FIFO entries */
622 	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
623 		netif_stop_queue(ndev);
624 
625 	return NETDEV_TX_OK;
626 }
627 
628 static const struct net_device_ops rcar_can_netdev_ops = {
629 	.ndo_open = rcar_can_open,
630 	.ndo_stop = rcar_can_close,
631 	.ndo_start_xmit = rcar_can_start_xmit,
632 	.ndo_change_mtu = can_change_mtu,
633 };
634 
635 static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
636 {
637 	struct net_device_stats *stats = &priv->ndev->stats;
638 	struct can_frame *cf;
639 	struct sk_buff *skb;
640 	u32 data;
641 	u8 dlc;
642 
643 	skb = alloc_can_skb(priv->ndev, &cf);
644 	if (!skb) {
645 		stats->rx_dropped++;
646 		return;
647 	}
648 
649 	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
650 	if (data & RCAR_CAN_IDE)
651 		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
652 	else
653 		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
654 
655 	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
656 	cf->can_dlc = get_can_dlc(dlc);
657 	if (data & RCAR_CAN_RTR) {
658 		cf->can_id |= CAN_RTR_FLAG;
659 	} else {
660 		for (dlc = 0; dlc < cf->can_dlc; dlc++)
661 			cf->data[dlc] =
662 			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
663 	}
664 
665 	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
666 
667 	stats->rx_bytes += cf->can_dlc;
668 	stats->rx_packets++;
669 	netif_receive_skb(skb);
670 }
671 
672 static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
673 {
674 	struct rcar_can_priv *priv = container_of(napi,
675 						  struct rcar_can_priv, napi);
676 	int num_pkts;
677 
678 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
679 		u8 rfcr, isr;
680 
681 		isr = readb(&priv->regs->isr);
682 		/* Clear interrupt bit */
683 		if (isr & RCAR_CAN_ISR_RXFF)
684 			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
685 		rfcr = readb(&priv->regs->rfcr);
686 		if (rfcr & RCAR_CAN_RFCR_RFEST)
687 			break;
688 		rcar_can_rx_pkt(priv);
689 		/* Write 0xff to the RFPCR register to increment
690 		 * the CPU-side pointer for the receive FIFO
691 		 * to the next mailbox location
692 		 */
693 		writeb(0xff, &priv->regs->rfpcr);
694 	}
695 	/* All packets processed */
696 	if (num_pkts < quota) {
697 		napi_complete_done(napi, num_pkts);
698 		priv->ier |= RCAR_CAN_IER_RXFIE;
699 		writeb(priv->ier, &priv->regs->ier);
700 	}
701 	return num_pkts;
702 }
703 
704 static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
705 {
706 	switch (mode) {
707 	case CAN_MODE_START:
708 		rcar_can_start(ndev);
709 		netif_wake_queue(ndev);
710 		return 0;
711 	default:
712 		return -EOPNOTSUPP;
713 	}
714 }
715 
716 static int rcar_can_get_berr_counter(const struct net_device *dev,
717 				     struct can_berr_counter *bec)
718 {
719 	struct rcar_can_priv *priv = netdev_priv(dev);
720 	int err;
721 
722 	err = clk_prepare_enable(priv->clk);
723 	if (err)
724 		return err;
725 	bec->txerr = readb(&priv->regs->tecr);
726 	bec->rxerr = readb(&priv->regs->recr);
727 	clk_disable_unprepare(priv->clk);
728 	return 0;
729 }
730 
731 static const char * const clock_names[] = {
732 	[CLKR_CLKP1]	= "clkp1",
733 	[CLKR_CLKP2]	= "clkp2",
734 	[CLKR_CLKEXT]	= "can_clk",
735 };
736 
737 static int rcar_can_probe(struct platform_device *pdev)
738 {
739 	struct rcar_can_platform_data *pdata;
740 	struct rcar_can_priv *priv;
741 	struct net_device *ndev;
742 	struct resource *mem;
743 	void __iomem *addr;
744 	u32 clock_select = CLKR_CLKP1;
745 	int err = -ENODEV;
746 	int irq;
747 
748 	if (pdev->dev.of_node) {
749 		of_property_read_u32(pdev->dev.of_node,
750 				     "renesas,can-clock-select", &clock_select);
751 	} else {
752 		pdata = dev_get_platdata(&pdev->dev);
753 		if (!pdata) {
754 			dev_err(&pdev->dev, "No platform data provided!\n");
755 			goto fail;
756 		}
757 		clock_select = pdata->clock_select;
758 	}
759 
760 	irq = platform_get_irq(pdev, 0);
761 	if (irq < 0) {
762 		dev_err(&pdev->dev, "No IRQ resource\n");
763 		err = irq;
764 		goto fail;
765 	}
766 
767 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
768 	addr = devm_ioremap_resource(&pdev->dev, mem);
769 	if (IS_ERR(addr)) {
770 		err = PTR_ERR(addr);
771 		goto fail;
772 	}
773 
774 	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
775 	if (!ndev) {
776 		dev_err(&pdev->dev, "alloc_candev() failed\n");
777 		err = -ENOMEM;
778 		goto fail;
779 	}
780 
781 	priv = netdev_priv(ndev);
782 
783 	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
784 	if (IS_ERR(priv->clk)) {
785 		err = PTR_ERR(priv->clk);
786 		dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
787 			err);
788 		goto fail_clk;
789 	}
790 
791 	if (!(BIT(clock_select) & RCAR_SUPPORTED_CLOCKS)) {
792 		err = -EINVAL;
793 		dev_err(&pdev->dev, "invalid CAN clock selected\n");
794 		goto fail_clk;
795 	}
796 	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
797 	if (IS_ERR(priv->can_clk)) {
798 		err = PTR_ERR(priv->can_clk);
799 		dev_err(&pdev->dev, "cannot get CAN clock, error %d\n", err);
800 		goto fail_clk;
801 	}
802 
803 	ndev->netdev_ops = &rcar_can_netdev_ops;
804 	ndev->irq = irq;
805 	ndev->flags |= IFF_ECHO;
806 	priv->ndev = ndev;
807 	priv->regs = addr;
808 	priv->clock_select = clock_select;
809 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
810 	priv->can.bittiming_const = &rcar_can_bittiming_const;
811 	priv->can.do_set_mode = rcar_can_do_set_mode;
812 	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
813 	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
814 	platform_set_drvdata(pdev, ndev);
815 	SET_NETDEV_DEV(ndev, &pdev->dev);
816 
817 	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
818 		       RCAR_CAN_NAPI_WEIGHT);
819 	err = register_candev(ndev);
820 	if (err) {
821 		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
822 			err);
823 		goto fail_candev;
824 	}
825 
826 	devm_can_led_init(ndev);
827 
828 	dev_info(&pdev->dev, "device registered (IRQ%d)\n", ndev->irq);
829 
830 	return 0;
831 fail_candev:
832 	netif_napi_del(&priv->napi);
833 fail_clk:
834 	free_candev(ndev);
835 fail:
836 	return err;
837 }
838 
839 static int rcar_can_remove(struct platform_device *pdev)
840 {
841 	struct net_device *ndev = platform_get_drvdata(pdev);
842 	struct rcar_can_priv *priv = netdev_priv(ndev);
843 
844 	unregister_candev(ndev);
845 	netif_napi_del(&priv->napi);
846 	free_candev(ndev);
847 	return 0;
848 }
849 
850 static int __maybe_unused rcar_can_suspend(struct device *dev)
851 {
852 	struct net_device *ndev = dev_get_drvdata(dev);
853 	struct rcar_can_priv *priv = netdev_priv(ndev);
854 	u16 ctlr;
855 
856 	if (netif_running(ndev)) {
857 		netif_stop_queue(ndev);
858 		netif_device_detach(ndev);
859 	}
860 	ctlr = readw(&priv->regs->ctlr);
861 	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
862 	writew(ctlr, &priv->regs->ctlr);
863 	ctlr |= RCAR_CAN_CTLR_SLPM;
864 	writew(ctlr, &priv->regs->ctlr);
865 	priv->can.state = CAN_STATE_SLEEPING;
866 
867 	clk_disable(priv->clk);
868 	return 0;
869 }
870 
871 static int __maybe_unused rcar_can_resume(struct device *dev)
872 {
873 	struct net_device *ndev = dev_get_drvdata(dev);
874 	struct rcar_can_priv *priv = netdev_priv(ndev);
875 	u16 ctlr;
876 	int err;
877 
878 	err = clk_enable(priv->clk);
879 	if (err) {
880 		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
881 		return err;
882 	}
883 
884 	ctlr = readw(&priv->regs->ctlr);
885 	ctlr &= ~RCAR_CAN_CTLR_SLPM;
886 	writew(ctlr, &priv->regs->ctlr);
887 	ctlr &= ~RCAR_CAN_CTLR_CANM;
888 	writew(ctlr, &priv->regs->ctlr);
889 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
890 
891 	if (netif_running(ndev)) {
892 		netif_device_attach(ndev);
893 		netif_start_queue(ndev);
894 	}
895 	return 0;
896 }
897 
898 static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
899 
900 static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
901 	{ .compatible = "renesas,can-r8a7778" },
902 	{ .compatible = "renesas,can-r8a7779" },
903 	{ .compatible = "renesas,can-r8a7790" },
904 	{ .compatible = "renesas,can-r8a7791" },
905 	{ .compatible = "renesas,rcar-gen1-can" },
906 	{ .compatible = "renesas,rcar-gen2-can" },
907 	{ .compatible = "renesas,rcar-gen3-can" },
908 	{ }
909 };
910 MODULE_DEVICE_TABLE(of, rcar_can_of_table);
911 
912 static struct platform_driver rcar_can_driver = {
913 	.driver = {
914 		.name = RCAR_CAN_DRV_NAME,
915 		.of_match_table = of_match_ptr(rcar_can_of_table),
916 		.pm = &rcar_can_pm_ops,
917 	},
918 	.probe = rcar_can_probe,
919 	.remove = rcar_can_remove,
920 };
921 
922 module_platform_driver(rcar_can_driver);
923 
924 MODULE_AUTHOR("Cogent Embedded, Inc.");
925 MODULE_LICENSE("GPL");
926 MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
927 MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
928