1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/ethtool.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/netdevice.h> 18 #include <linux/of.h> 19 #include <linux/of_device.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/iopoll.h> 23 #include <linux/can/dev.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/phy/phy.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 160 /* Interrupt Register (IR) */ 161 #define IR_ALL_INT 0xffffffff 162 163 /* Renamed bits for versions > 3.1.x */ 164 #define IR_ARA BIT(29) 165 #define IR_PED BIT(28) 166 #define IR_PEA BIT(27) 167 168 /* Bits for version 3.0.x */ 169 #define IR_STE BIT(31) 170 #define IR_FOE BIT(30) 171 #define IR_ACKE BIT(29) 172 #define IR_BE BIT(28) 173 #define IR_CRCE BIT(27) 174 #define IR_WDI BIT(26) 175 #define IR_BO BIT(25) 176 #define IR_EW BIT(24) 177 #define IR_EP BIT(23) 178 #define IR_ELO BIT(22) 179 #define IR_BEU BIT(21) 180 #define IR_BEC BIT(20) 181 #define IR_DRX BIT(19) 182 #define IR_TOO BIT(18) 183 #define IR_MRAF BIT(17) 184 #define IR_TSW BIT(16) 185 #define IR_TEFL BIT(15) 186 #define IR_TEFF BIT(14) 187 #define IR_TEFW BIT(13) 188 #define IR_TEFN BIT(12) 189 #define IR_TFE BIT(11) 190 #define IR_TCF BIT(10) 191 #define IR_TC BIT(9) 192 #define IR_HPM BIT(8) 193 #define IR_RF1L BIT(7) 194 #define IR_RF1F BIT(6) 195 #define IR_RF1W BIT(5) 196 #define IR_RF1N BIT(4) 197 #define IR_RF0L BIT(3) 198 #define IR_RF0F BIT(2) 199 #define IR_RF0W BIT(1) 200 #define IR_RF0N BIT(0) 201 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 202 203 /* Interrupts for version 3.0.x */ 204 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 205 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 206 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 207 IR_RF0L) 208 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 209 210 /* Interrupts for version >= 3.1.x */ 211 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 212 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 213 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 214 IR_RF0L) 215 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 216 217 /* Interrupt Line Select (ILS) */ 218 #define ILS_ALL_INT0 0x0 219 #define ILS_ALL_INT1 0xFFFFFFFF 220 221 /* Interrupt Line Enable (ILE) */ 222 #define ILE_EINT1 BIT(1) 223 #define ILE_EINT0 BIT(0) 224 225 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 226 #define RXFC_FWM_MASK GENMASK(30, 24) 227 #define RXFC_FS_MASK GENMASK(22, 16) 228 229 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 230 #define RXFS_RFL BIT(25) 231 #define RXFS_FF BIT(24) 232 #define RXFS_FPI_MASK GENMASK(21, 16) 233 #define RXFS_FGI_MASK GENMASK(13, 8) 234 #define RXFS_FFL_MASK GENMASK(6, 0) 235 236 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 237 #define RXESC_RBDS_MASK GENMASK(10, 8) 238 #define RXESC_F1DS_MASK GENMASK(6, 4) 239 #define RXESC_F0DS_MASK GENMASK(2, 0) 240 #define RXESC_64B 0x7 241 242 /* Tx Buffer Configuration (TXBC) */ 243 #define TXBC_TFQS_MASK GENMASK(29, 24) 244 #define TXBC_NDTB_MASK GENMASK(21, 16) 245 246 /* Tx FIFO/Queue Status (TXFQS) */ 247 #define TXFQS_TFQF BIT(21) 248 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 249 #define TXFQS_TFGI_MASK GENMASK(12, 8) 250 #define TXFQS_TFFL_MASK GENMASK(5, 0) 251 252 /* Tx Buffer Element Size Configuration (TXESC) */ 253 #define TXESC_TBDS_MASK GENMASK(2, 0) 254 #define TXESC_TBDS_64B 0x7 255 256 /* Tx Event FIFO Configuration (TXEFC) */ 257 #define TXEFC_EFS_MASK GENMASK(21, 16) 258 259 /* Tx Event FIFO Status (TXEFS) */ 260 #define TXEFS_TEFL BIT(25) 261 #define TXEFS_EFF BIT(24) 262 #define TXEFS_EFGI_MASK GENMASK(12, 8) 263 #define TXEFS_EFFL_MASK GENMASK(5, 0) 264 265 /* Tx Event FIFO Acknowledge (TXEFA) */ 266 #define TXEFA_EFAI_MASK GENMASK(4, 0) 267 268 /* Message RAM Configuration (in bytes) */ 269 #define SIDF_ELEMENT_SIZE 4 270 #define XIDF_ELEMENT_SIZE 8 271 #define RXF0_ELEMENT_SIZE 72 272 #define RXF1_ELEMENT_SIZE 72 273 #define RXB_ELEMENT_SIZE 72 274 #define TXE_ELEMENT_SIZE 8 275 #define TXB_ELEMENT_SIZE 72 276 277 /* Message RAM Elements */ 278 #define M_CAN_FIFO_ID 0x0 279 #define M_CAN_FIFO_DLC 0x4 280 #define M_CAN_FIFO_DATA 0x8 281 282 /* Rx Buffer Element */ 283 /* R0 */ 284 #define RX_BUF_ESI BIT(31) 285 #define RX_BUF_XTD BIT(30) 286 #define RX_BUF_RTR BIT(29) 287 /* R1 */ 288 #define RX_BUF_ANMF BIT(31) 289 #define RX_BUF_FDF BIT(21) 290 #define RX_BUF_BRS BIT(20) 291 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 292 293 /* Tx Buffer Element */ 294 /* T0 */ 295 #define TX_BUF_ESI BIT(31) 296 #define TX_BUF_XTD BIT(30) 297 #define TX_BUF_RTR BIT(29) 298 /* T1 */ 299 #define TX_BUF_EFC BIT(23) 300 #define TX_BUF_FDF BIT(21) 301 #define TX_BUF_BRS BIT(20) 302 #define TX_BUF_MM_MASK GENMASK(31, 24) 303 #define TX_BUF_DLC_MASK GENMASK(19, 16) 304 305 /* Tx event FIFO Element */ 306 /* E1 */ 307 #define TX_EVENT_MM_MASK GENMASK(31, 24) 308 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 309 310 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 311 * and we can save a (potentially slow) bus round trip by combining 312 * reads and writes to them. 313 */ 314 struct id_and_dlc { 315 u32 id; 316 u32 dlc; 317 }; 318 319 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 320 { 321 return cdev->ops->read_reg(cdev, reg); 322 } 323 324 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 325 u32 val) 326 { 327 cdev->ops->write_reg(cdev, reg, val); 328 } 329 330 static int 331 m_can_fifo_read(struct m_can_classdev *cdev, 332 u32 fgi, unsigned int offset, void *val, size_t val_count) 333 { 334 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 335 offset; 336 337 if (val_count == 0) 338 return 0; 339 340 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 341 } 342 343 static int 344 m_can_fifo_write(struct m_can_classdev *cdev, 345 u32 fpi, unsigned int offset, const void *val, size_t val_count) 346 { 347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 348 offset; 349 350 if (val_count == 0) 351 return 0; 352 353 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 354 } 355 356 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 357 u32 fpi, u32 val) 358 { 359 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 360 } 361 362 static int 363 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 364 { 365 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 366 offset; 367 368 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 369 } 370 371 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 372 { 373 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 374 } 375 376 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 377 { 378 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 379 u32 timeout = 10; 380 u32 val = 0; 381 382 /* Clear the Clock stop request if it was set */ 383 if (cccr & CCCR_CSR) 384 cccr &= ~CCCR_CSR; 385 386 if (enable) { 387 /* enable m_can configuration */ 388 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 389 udelay(5); 390 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 391 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 392 } else { 393 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 394 } 395 396 /* there's a delay for module initialization */ 397 if (enable) 398 val = CCCR_INIT | CCCR_CCE; 399 400 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 401 if (timeout == 0) { 402 netdev_warn(cdev->net, "Failed to init module\n"); 403 return; 404 } 405 timeout--; 406 udelay(1); 407 } 408 } 409 410 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 411 { 412 /* Only interrupt line 0 is used in this driver */ 413 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 414 } 415 416 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 417 { 418 m_can_write(cdev, M_CAN_ILE, 0x0); 419 } 420 421 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 422 * width. 423 */ 424 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 425 { 426 u32 tscv; 427 u32 tsc; 428 429 tscv = m_can_read(cdev, M_CAN_TSCV); 430 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 431 432 return (tsc << 16); 433 } 434 435 static void m_can_clean(struct net_device *net) 436 { 437 struct m_can_classdev *cdev = netdev_priv(net); 438 439 if (cdev->tx_skb) { 440 int putidx = 0; 441 442 net->stats.tx_errors++; 443 if (cdev->version > 30) 444 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 445 m_can_read(cdev, M_CAN_TXFQS)); 446 447 can_free_echo_skb(cdev->net, putidx, NULL); 448 cdev->tx_skb = NULL; 449 } 450 } 451 452 /* For peripherals, pass skb to rx-offload, which will push skb from 453 * napi. For non-peripherals, RX is done in napi already, so push 454 * directly. timestamp is used to ensure good skb ordering in 455 * rx-offload and is ignored for non-peripherals. 456 */ 457 static void m_can_receive_skb(struct m_can_classdev *cdev, 458 struct sk_buff *skb, 459 u32 timestamp) 460 { 461 if (cdev->is_peripheral) { 462 struct net_device_stats *stats = &cdev->net->stats; 463 int err; 464 465 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 466 timestamp); 467 if (err) 468 stats->rx_fifo_errors++; 469 } else { 470 netif_receive_skb(skb); 471 } 472 } 473 474 static int m_can_read_fifo(struct net_device *dev, u32 rxfs) 475 { 476 struct net_device_stats *stats = &dev->stats; 477 struct m_can_classdev *cdev = netdev_priv(dev); 478 struct canfd_frame *cf; 479 struct sk_buff *skb; 480 struct id_and_dlc fifo_header; 481 u32 fgi; 482 u32 timestamp = 0; 483 int err; 484 485 /* calculate the fifo get index for where to read data */ 486 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 487 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 488 if (err) 489 goto out_fail; 490 491 if (fifo_header.dlc & RX_BUF_FDF) 492 skb = alloc_canfd_skb(dev, &cf); 493 else 494 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 495 if (!skb) { 496 stats->rx_dropped++; 497 return 0; 498 } 499 500 if (fifo_header.dlc & RX_BUF_FDF) 501 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 502 else 503 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 504 505 if (fifo_header.id & RX_BUF_XTD) 506 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 507 else 508 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 509 510 if (fifo_header.id & RX_BUF_ESI) { 511 cf->flags |= CANFD_ESI; 512 netdev_dbg(dev, "ESI Error\n"); 513 } 514 515 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 516 cf->can_id |= CAN_RTR_FLAG; 517 } else { 518 if (fifo_header.dlc & RX_BUF_BRS) 519 cf->flags |= CANFD_BRS; 520 521 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 522 cf->data, DIV_ROUND_UP(cf->len, 4)); 523 if (err) 524 goto out_free_skb; 525 526 stats->rx_bytes += cf->len; 527 } 528 stats->rx_packets++; 529 530 /* acknowledge rx fifo 0 */ 531 m_can_write(cdev, M_CAN_RXF0A, fgi); 532 533 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 534 535 m_can_receive_skb(cdev, skb, timestamp); 536 537 return 0; 538 539 out_free_skb: 540 kfree_skb(skb); 541 out_fail: 542 netdev_err(dev, "FIFO read returned %d\n", err); 543 return err; 544 } 545 546 static int m_can_do_rx_poll(struct net_device *dev, int quota) 547 { 548 struct m_can_classdev *cdev = netdev_priv(dev); 549 u32 pkts = 0; 550 u32 rxfs; 551 int err; 552 553 rxfs = m_can_read(cdev, M_CAN_RXF0S); 554 if (!(rxfs & RXFS_FFL_MASK)) { 555 netdev_dbg(dev, "no messages in fifo0\n"); 556 return 0; 557 } 558 559 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 560 err = m_can_read_fifo(dev, rxfs); 561 if (err) 562 return err; 563 564 quota--; 565 pkts++; 566 rxfs = m_can_read(cdev, M_CAN_RXF0S); 567 } 568 569 return pkts; 570 } 571 572 static int m_can_handle_lost_msg(struct net_device *dev) 573 { 574 struct m_can_classdev *cdev = netdev_priv(dev); 575 struct net_device_stats *stats = &dev->stats; 576 struct sk_buff *skb; 577 struct can_frame *frame; 578 u32 timestamp = 0; 579 580 netdev_err(dev, "msg lost in rxf0\n"); 581 582 stats->rx_errors++; 583 stats->rx_over_errors++; 584 585 skb = alloc_can_err_skb(dev, &frame); 586 if (unlikely(!skb)) 587 return 0; 588 589 frame->can_id |= CAN_ERR_CRTL; 590 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 591 592 if (cdev->is_peripheral) 593 timestamp = m_can_get_timestamp(cdev); 594 595 m_can_receive_skb(cdev, skb, timestamp); 596 597 return 1; 598 } 599 600 static int m_can_handle_lec_err(struct net_device *dev, 601 enum m_can_lec_type lec_type) 602 { 603 struct m_can_classdev *cdev = netdev_priv(dev); 604 struct net_device_stats *stats = &dev->stats; 605 struct can_frame *cf; 606 struct sk_buff *skb; 607 u32 timestamp = 0; 608 609 cdev->can.can_stats.bus_error++; 610 stats->rx_errors++; 611 612 /* propagate the error condition to the CAN stack */ 613 skb = alloc_can_err_skb(dev, &cf); 614 if (unlikely(!skb)) 615 return 0; 616 617 /* check for 'last error code' which tells us the 618 * type of the last error to occur on the CAN bus 619 */ 620 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 621 622 switch (lec_type) { 623 case LEC_STUFF_ERROR: 624 netdev_dbg(dev, "stuff error\n"); 625 cf->data[2] |= CAN_ERR_PROT_STUFF; 626 break; 627 case LEC_FORM_ERROR: 628 netdev_dbg(dev, "form error\n"); 629 cf->data[2] |= CAN_ERR_PROT_FORM; 630 break; 631 case LEC_ACK_ERROR: 632 netdev_dbg(dev, "ack error\n"); 633 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 634 break; 635 case LEC_BIT1_ERROR: 636 netdev_dbg(dev, "bit1 error\n"); 637 cf->data[2] |= CAN_ERR_PROT_BIT1; 638 break; 639 case LEC_BIT0_ERROR: 640 netdev_dbg(dev, "bit0 error\n"); 641 cf->data[2] |= CAN_ERR_PROT_BIT0; 642 break; 643 case LEC_CRC_ERROR: 644 netdev_dbg(dev, "CRC error\n"); 645 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 646 break; 647 default: 648 break; 649 } 650 651 if (cdev->is_peripheral) 652 timestamp = m_can_get_timestamp(cdev); 653 654 m_can_receive_skb(cdev, skb, timestamp); 655 656 return 1; 657 } 658 659 static int __m_can_get_berr_counter(const struct net_device *dev, 660 struct can_berr_counter *bec) 661 { 662 struct m_can_classdev *cdev = netdev_priv(dev); 663 unsigned int ecr; 664 665 ecr = m_can_read(cdev, M_CAN_ECR); 666 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 667 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 668 669 return 0; 670 } 671 672 static int m_can_clk_start(struct m_can_classdev *cdev) 673 { 674 if (cdev->pm_clock_support == 0) 675 return 0; 676 677 return pm_runtime_resume_and_get(cdev->dev); 678 } 679 680 static void m_can_clk_stop(struct m_can_classdev *cdev) 681 { 682 if (cdev->pm_clock_support) 683 pm_runtime_put_sync(cdev->dev); 684 } 685 686 static int m_can_get_berr_counter(const struct net_device *dev, 687 struct can_berr_counter *bec) 688 { 689 struct m_can_classdev *cdev = netdev_priv(dev); 690 int err; 691 692 err = m_can_clk_start(cdev); 693 if (err) 694 return err; 695 696 __m_can_get_berr_counter(dev, bec); 697 698 m_can_clk_stop(cdev); 699 700 return 0; 701 } 702 703 static int m_can_handle_state_change(struct net_device *dev, 704 enum can_state new_state) 705 { 706 struct m_can_classdev *cdev = netdev_priv(dev); 707 struct can_frame *cf; 708 struct sk_buff *skb; 709 struct can_berr_counter bec; 710 unsigned int ecr; 711 u32 timestamp = 0; 712 713 switch (new_state) { 714 case CAN_STATE_ERROR_WARNING: 715 /* error warning state */ 716 cdev->can.can_stats.error_warning++; 717 cdev->can.state = CAN_STATE_ERROR_WARNING; 718 break; 719 case CAN_STATE_ERROR_PASSIVE: 720 /* error passive state */ 721 cdev->can.can_stats.error_passive++; 722 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 723 break; 724 case CAN_STATE_BUS_OFF: 725 /* bus-off state */ 726 cdev->can.state = CAN_STATE_BUS_OFF; 727 m_can_disable_all_interrupts(cdev); 728 cdev->can.can_stats.bus_off++; 729 can_bus_off(dev); 730 break; 731 default: 732 break; 733 } 734 735 /* propagate the error condition to the CAN stack */ 736 skb = alloc_can_err_skb(dev, &cf); 737 if (unlikely(!skb)) 738 return 0; 739 740 __m_can_get_berr_counter(dev, &bec); 741 742 switch (new_state) { 743 case CAN_STATE_ERROR_WARNING: 744 /* error warning state */ 745 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 746 cf->data[1] = (bec.txerr > bec.rxerr) ? 747 CAN_ERR_CRTL_TX_WARNING : 748 CAN_ERR_CRTL_RX_WARNING; 749 cf->data[6] = bec.txerr; 750 cf->data[7] = bec.rxerr; 751 break; 752 case CAN_STATE_ERROR_PASSIVE: 753 /* error passive state */ 754 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 755 ecr = m_can_read(cdev, M_CAN_ECR); 756 if (ecr & ECR_RP) 757 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 758 if (bec.txerr > 127) 759 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 760 cf->data[6] = bec.txerr; 761 cf->data[7] = bec.rxerr; 762 break; 763 case CAN_STATE_BUS_OFF: 764 /* bus-off state */ 765 cf->can_id |= CAN_ERR_BUSOFF; 766 break; 767 default: 768 break; 769 } 770 771 if (cdev->is_peripheral) 772 timestamp = m_can_get_timestamp(cdev); 773 774 m_can_receive_skb(cdev, skb, timestamp); 775 776 return 1; 777 } 778 779 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 780 { 781 struct m_can_classdev *cdev = netdev_priv(dev); 782 int work_done = 0; 783 784 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 785 netdev_dbg(dev, "entered error warning state\n"); 786 work_done += m_can_handle_state_change(dev, 787 CAN_STATE_ERROR_WARNING); 788 } 789 790 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 791 netdev_dbg(dev, "entered error passive state\n"); 792 work_done += m_can_handle_state_change(dev, 793 CAN_STATE_ERROR_PASSIVE); 794 } 795 796 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 797 netdev_dbg(dev, "entered error bus off state\n"); 798 work_done += m_can_handle_state_change(dev, 799 CAN_STATE_BUS_OFF); 800 } 801 802 return work_done; 803 } 804 805 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 806 { 807 if (irqstatus & IR_WDI) 808 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 809 if (irqstatus & IR_BEU) 810 netdev_err(dev, "Bit Error Uncorrected\n"); 811 if (irqstatus & IR_BEC) 812 netdev_err(dev, "Bit Error Corrected\n"); 813 if (irqstatus & IR_TOO) 814 netdev_err(dev, "Timeout reached\n"); 815 if (irqstatus & IR_MRAF) 816 netdev_err(dev, "Message RAM access failure occurred\n"); 817 } 818 819 static inline bool is_lec_err(u32 psr) 820 { 821 psr &= LEC_UNUSED; 822 823 return psr && (psr != LEC_UNUSED); 824 } 825 826 static inline bool m_can_is_protocol_err(u32 irqstatus) 827 { 828 return irqstatus & IR_ERR_LEC_31X; 829 } 830 831 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 832 { 833 struct net_device_stats *stats = &dev->stats; 834 struct m_can_classdev *cdev = netdev_priv(dev); 835 struct can_frame *cf; 836 struct sk_buff *skb; 837 u32 timestamp = 0; 838 839 /* propagate the error condition to the CAN stack */ 840 skb = alloc_can_err_skb(dev, &cf); 841 842 /* update tx error stats since there is protocol error */ 843 stats->tx_errors++; 844 845 /* update arbitration lost status */ 846 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 847 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 848 cdev->can.can_stats.arbitration_lost++; 849 if (skb) { 850 cf->can_id |= CAN_ERR_LOSTARB; 851 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 852 } 853 } 854 855 if (unlikely(!skb)) { 856 netdev_dbg(dev, "allocation of skb failed\n"); 857 return 0; 858 } 859 860 if (cdev->is_peripheral) 861 timestamp = m_can_get_timestamp(cdev); 862 863 m_can_receive_skb(cdev, skb, timestamp); 864 865 return 1; 866 } 867 868 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 869 u32 psr) 870 { 871 struct m_can_classdev *cdev = netdev_priv(dev); 872 int work_done = 0; 873 874 if (irqstatus & IR_RF0L) 875 work_done += m_can_handle_lost_msg(dev); 876 877 /* handle lec errors on the bus */ 878 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 879 is_lec_err(psr)) 880 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 881 882 /* handle protocol errors in arbitration phase */ 883 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 884 m_can_is_protocol_err(irqstatus)) 885 work_done += m_can_handle_protocol_error(dev, irqstatus); 886 887 /* other unproccessed error interrupts */ 888 m_can_handle_other_err(dev, irqstatus); 889 890 return work_done; 891 } 892 893 static int m_can_rx_handler(struct net_device *dev, int quota) 894 { 895 struct m_can_classdev *cdev = netdev_priv(dev); 896 int rx_work_or_err; 897 int work_done = 0; 898 u32 irqstatus, psr; 899 900 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 901 if (!irqstatus) 902 goto end; 903 904 /* Errata workaround for issue "Needless activation of MRAF irq" 905 * During frame reception while the MCAN is in Error Passive state 906 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 907 * it may happen that MCAN_IR.MRAF is set although there was no 908 * Message RAM access failure. 909 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 910 * The Message RAM Access Failure interrupt routine needs to check 911 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 912 * In this case, reset MCAN_IR.MRAF. No further action is required. 913 */ 914 if (cdev->version <= 31 && irqstatus & IR_MRAF && 915 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 916 struct can_berr_counter bec; 917 918 __m_can_get_berr_counter(dev, &bec); 919 if (bec.rxerr == 127) { 920 m_can_write(cdev, M_CAN_IR, IR_MRAF); 921 irqstatus &= ~IR_MRAF; 922 } 923 } 924 925 psr = m_can_read(cdev, M_CAN_PSR); 926 927 if (irqstatus & IR_ERR_STATE) 928 work_done += m_can_handle_state_errors(dev, psr); 929 930 if (irqstatus & IR_ERR_BUS_30X) 931 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 932 933 if (irqstatus & IR_RF0N) { 934 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 935 if (rx_work_or_err < 0) 936 return rx_work_or_err; 937 938 work_done += rx_work_or_err; 939 } 940 end: 941 return work_done; 942 } 943 944 static int m_can_rx_peripheral(struct net_device *dev) 945 { 946 struct m_can_classdev *cdev = netdev_priv(dev); 947 int work_done; 948 949 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT); 950 951 /* Don't re-enable interrupts if the driver had a fatal error 952 * (e.g., FIFO read failure). 953 */ 954 if (work_done >= 0) 955 m_can_enable_all_interrupts(cdev); 956 957 return work_done; 958 } 959 960 static int m_can_poll(struct napi_struct *napi, int quota) 961 { 962 struct net_device *dev = napi->dev; 963 struct m_can_classdev *cdev = netdev_priv(dev); 964 int work_done; 965 966 work_done = m_can_rx_handler(dev, quota); 967 968 /* Don't re-enable interrupts if the driver had a fatal error 969 * (e.g., FIFO read failure). 970 */ 971 if (work_done >= 0 && work_done < quota) { 972 napi_complete_done(napi, work_done); 973 m_can_enable_all_interrupts(cdev); 974 } 975 976 return work_done; 977 } 978 979 /* Echo tx skb and update net stats. Peripherals use rx-offload for 980 * echo. timestamp is used for peripherals to ensure correct ordering 981 * by rx-offload, and is ignored for non-peripherals. 982 */ 983 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 984 unsigned int msg_mark, 985 u32 timestamp) 986 { 987 struct net_device *dev = cdev->net; 988 struct net_device_stats *stats = &dev->stats; 989 990 if (cdev->is_peripheral) 991 stats->tx_bytes += 992 can_rx_offload_get_echo_skb(&cdev->offload, 993 msg_mark, 994 timestamp, 995 NULL); 996 else 997 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 998 999 stats->tx_packets++; 1000 } 1001 1002 static int m_can_echo_tx_event(struct net_device *dev) 1003 { 1004 u32 txe_count = 0; 1005 u32 m_can_txefs; 1006 u32 fgi = 0; 1007 int i = 0; 1008 unsigned int msg_mark; 1009 1010 struct m_can_classdev *cdev = netdev_priv(dev); 1011 1012 /* read tx event fifo status */ 1013 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1014 1015 /* Get Tx Event fifo element count */ 1016 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1017 1018 /* Get and process all sent elements */ 1019 for (i = 0; i < txe_count; i++) { 1020 u32 txe, timestamp = 0; 1021 int err; 1022 1023 /* retrieve get index */ 1024 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS)); 1025 1026 /* get message marker, timestamp */ 1027 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1028 if (err) { 1029 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1030 return err; 1031 } 1032 1033 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1034 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1035 1036 /* ack txe element */ 1037 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1038 fgi)); 1039 1040 /* update stats */ 1041 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1042 } 1043 1044 return 0; 1045 } 1046 1047 static irqreturn_t m_can_isr(int irq, void *dev_id) 1048 { 1049 struct net_device *dev = (struct net_device *)dev_id; 1050 struct m_can_classdev *cdev = netdev_priv(dev); 1051 u32 ir; 1052 1053 if (pm_runtime_suspended(cdev->dev)) 1054 return IRQ_NONE; 1055 ir = m_can_read(cdev, M_CAN_IR); 1056 if (!ir) 1057 return IRQ_NONE; 1058 1059 /* ACK all irqs */ 1060 if (ir & IR_ALL_INT) 1061 m_can_write(cdev, M_CAN_IR, ir); 1062 1063 if (cdev->ops->clear_interrupts) 1064 cdev->ops->clear_interrupts(cdev); 1065 1066 /* schedule NAPI in case of 1067 * - rx IRQ 1068 * - state change IRQ 1069 * - bus error IRQ and bus error reporting 1070 */ 1071 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1072 cdev->irqstatus = ir; 1073 m_can_disable_all_interrupts(cdev); 1074 if (!cdev->is_peripheral) 1075 napi_schedule(&cdev->napi); 1076 else if (m_can_rx_peripheral(dev) < 0) 1077 goto out_fail; 1078 } 1079 1080 if (cdev->version == 30) { 1081 if (ir & IR_TC) { 1082 /* Transmission Complete Interrupt*/ 1083 u32 timestamp = 0; 1084 1085 if (cdev->is_peripheral) 1086 timestamp = m_can_get_timestamp(cdev); 1087 m_can_tx_update_stats(cdev, 0, timestamp); 1088 netif_wake_queue(dev); 1089 } 1090 } else { 1091 if (ir & IR_TEFN) { 1092 /* New TX FIFO Element arrived */ 1093 if (m_can_echo_tx_event(dev) != 0) 1094 goto out_fail; 1095 1096 if (netif_queue_stopped(dev) && 1097 !m_can_tx_fifo_full(cdev)) 1098 netif_wake_queue(dev); 1099 } 1100 } 1101 1102 if (cdev->is_peripheral) 1103 can_rx_offload_threaded_irq_finish(&cdev->offload); 1104 1105 return IRQ_HANDLED; 1106 1107 out_fail: 1108 m_can_disable_all_interrupts(cdev); 1109 return IRQ_HANDLED; 1110 } 1111 1112 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1113 .name = KBUILD_MODNAME, 1114 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1115 .tseg1_max = 64, 1116 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1117 .tseg2_max = 16, 1118 .sjw_max = 16, 1119 .brp_min = 1, 1120 .brp_max = 1024, 1121 .brp_inc = 1, 1122 }; 1123 1124 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1125 .name = KBUILD_MODNAME, 1126 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1127 .tseg1_max = 16, 1128 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1129 .tseg2_max = 8, 1130 .sjw_max = 4, 1131 .brp_min = 1, 1132 .brp_max = 32, 1133 .brp_inc = 1, 1134 }; 1135 1136 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1137 .name = KBUILD_MODNAME, 1138 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1139 .tseg1_max = 256, 1140 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1141 .tseg2_max = 128, 1142 .sjw_max = 128, 1143 .brp_min = 1, 1144 .brp_max = 512, 1145 .brp_inc = 1, 1146 }; 1147 1148 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1149 .name = KBUILD_MODNAME, 1150 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1151 .tseg1_max = 32, 1152 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1153 .tseg2_max = 16, 1154 .sjw_max = 16, 1155 .brp_min = 1, 1156 .brp_max = 32, 1157 .brp_inc = 1, 1158 }; 1159 1160 static int m_can_set_bittiming(struct net_device *dev) 1161 { 1162 struct m_can_classdev *cdev = netdev_priv(dev); 1163 const struct can_bittiming *bt = &cdev->can.bittiming; 1164 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1165 u16 brp, sjw, tseg1, tseg2; 1166 u32 reg_btp; 1167 1168 brp = bt->brp - 1; 1169 sjw = bt->sjw - 1; 1170 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1171 tseg2 = bt->phase_seg2 - 1; 1172 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1173 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1174 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1175 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1176 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1177 1178 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1179 reg_btp = 0; 1180 brp = dbt->brp - 1; 1181 sjw = dbt->sjw - 1; 1182 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1183 tseg2 = dbt->phase_seg2 - 1; 1184 1185 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1186 * This is mentioned in the "Bit Time Requirements for CAN FD" 1187 * paper presented at the International CAN Conference 2013 1188 */ 1189 if (dbt->bitrate > 2500000) { 1190 u32 tdco, ssp; 1191 1192 /* Use the same value of secondary sampling point 1193 * as the data sampling point 1194 */ 1195 ssp = dbt->sample_point; 1196 1197 /* Equation based on Bosch's M_CAN User Manual's 1198 * Transmitter Delay Compensation Section 1199 */ 1200 tdco = (cdev->can.clock.freq / 1000) * 1201 ssp / dbt->bitrate; 1202 1203 /* Max valid TDCO value is 127 */ 1204 if (tdco > 127) { 1205 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1206 tdco); 1207 tdco = 127; 1208 } 1209 1210 reg_btp |= DBTP_TDC; 1211 m_can_write(cdev, M_CAN_TDCR, 1212 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1213 } 1214 1215 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1216 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1217 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1218 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1219 1220 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1221 } 1222 1223 return 0; 1224 } 1225 1226 /* Configure M_CAN chip: 1227 * - set rx buffer/fifo element size 1228 * - configure rx fifo 1229 * - accept non-matching frame into fifo 0 1230 * - configure tx buffer 1231 * - >= v3.1.x: TX FIFO is used 1232 * - configure mode 1233 * - setup bittiming 1234 * - configure timestamp generation 1235 */ 1236 static void m_can_chip_config(struct net_device *dev) 1237 { 1238 struct m_can_classdev *cdev = netdev_priv(dev); 1239 u32 cccr, test; 1240 1241 m_can_config_endisable(cdev, true); 1242 1243 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1244 m_can_write(cdev, M_CAN_RXESC, 1245 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1246 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1247 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1248 1249 /* Accept Non-matching Frames Into FIFO 0 */ 1250 m_can_write(cdev, M_CAN_GFC, 0x0); 1251 1252 if (cdev->version == 30) { 1253 /* only support one Tx Buffer currently */ 1254 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1255 cdev->mcfg[MRAM_TXB].off); 1256 } else { 1257 /* TX FIFO is used for newer IP Core versions */ 1258 m_can_write(cdev, M_CAN_TXBC, 1259 FIELD_PREP(TXBC_TFQS_MASK, 1260 cdev->mcfg[MRAM_TXB].num) | 1261 cdev->mcfg[MRAM_TXB].off); 1262 } 1263 1264 /* support 64 bytes payload */ 1265 m_can_write(cdev, M_CAN_TXESC, 1266 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1267 1268 /* TX Event FIFO */ 1269 if (cdev->version == 30) { 1270 m_can_write(cdev, M_CAN_TXEFC, 1271 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1272 cdev->mcfg[MRAM_TXE].off); 1273 } else { 1274 /* Full TX Event FIFO is used */ 1275 m_can_write(cdev, M_CAN_TXEFC, 1276 FIELD_PREP(TXEFC_EFS_MASK, 1277 cdev->mcfg[MRAM_TXE].num) | 1278 cdev->mcfg[MRAM_TXE].off); 1279 } 1280 1281 /* rx fifo configuration, blocking mode, fifo size 1 */ 1282 m_can_write(cdev, M_CAN_RXF0C, 1283 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1284 cdev->mcfg[MRAM_RXF0].off); 1285 1286 m_can_write(cdev, M_CAN_RXF1C, 1287 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1288 cdev->mcfg[MRAM_RXF1].off); 1289 1290 cccr = m_can_read(cdev, M_CAN_CCCR); 1291 test = m_can_read(cdev, M_CAN_TEST); 1292 test &= ~TEST_LBCK; 1293 if (cdev->version == 30) { 1294 /* Version 3.0.x */ 1295 1296 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1297 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1298 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1299 1300 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1301 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1302 1303 } else { 1304 /* Version 3.1.x or 3.2.x */ 1305 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1306 CCCR_NISO | CCCR_DAR); 1307 1308 /* Only 3.2.x has NISO Bit implemented */ 1309 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1310 cccr |= CCCR_NISO; 1311 1312 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1313 cccr |= (CCCR_BRSE | CCCR_FDOE); 1314 } 1315 1316 /* Loopback Mode */ 1317 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1318 cccr |= CCCR_TEST | CCCR_MON; 1319 test |= TEST_LBCK; 1320 } 1321 1322 /* Enable Monitoring (all versions) */ 1323 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1324 cccr |= CCCR_MON; 1325 1326 /* Disable Auto Retransmission (all versions) */ 1327 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1328 cccr |= CCCR_DAR; 1329 1330 /* Write config */ 1331 m_can_write(cdev, M_CAN_CCCR, cccr); 1332 m_can_write(cdev, M_CAN_TEST, test); 1333 1334 /* Enable interrupts */ 1335 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1336 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1337 if (cdev->version == 30) 1338 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1339 ~(IR_ERR_LEC_30X)); 1340 else 1341 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1342 ~(IR_ERR_LEC_31X)); 1343 else 1344 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1345 1346 /* route all interrupts to INT0 */ 1347 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1348 1349 /* set bittiming params */ 1350 m_can_set_bittiming(dev); 1351 1352 /* enable internal timestamp generation, with a prescaler of 16. The 1353 * prescaler is applied to the nominal bit timing 1354 */ 1355 m_can_write(cdev, M_CAN_TSCC, 1356 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1357 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1358 1359 m_can_config_endisable(cdev, false); 1360 1361 if (cdev->ops->init) 1362 cdev->ops->init(cdev); 1363 } 1364 1365 static void m_can_start(struct net_device *dev) 1366 { 1367 struct m_can_classdev *cdev = netdev_priv(dev); 1368 1369 /* basic m_can configuration */ 1370 m_can_chip_config(dev); 1371 1372 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1373 1374 m_can_enable_all_interrupts(cdev); 1375 } 1376 1377 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1378 { 1379 switch (mode) { 1380 case CAN_MODE_START: 1381 m_can_clean(dev); 1382 m_can_start(dev); 1383 netif_wake_queue(dev); 1384 break; 1385 default: 1386 return -EOPNOTSUPP; 1387 } 1388 1389 return 0; 1390 } 1391 1392 /* Checks core release number of M_CAN 1393 * returns 0 if an unsupported device is detected 1394 * else it returns the release and step coded as: 1395 * return value = 10 * <release> + 1 * <step> 1396 */ 1397 static int m_can_check_core_release(struct m_can_classdev *cdev) 1398 { 1399 u32 crel_reg; 1400 u8 rel; 1401 u8 step; 1402 int res; 1403 1404 /* Read Core Release Version and split into version number 1405 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1406 */ 1407 crel_reg = m_can_read(cdev, M_CAN_CREL); 1408 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1409 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1410 1411 if (rel == 3) { 1412 /* M_CAN v3.x.y: create return value */ 1413 res = 30 + step; 1414 } else { 1415 /* Unsupported M_CAN version */ 1416 res = 0; 1417 } 1418 1419 return res; 1420 } 1421 1422 /* Selectable Non ISO support only in version 3.2.x 1423 * This function checks if the bit is writable. 1424 */ 1425 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1426 { 1427 u32 cccr_reg, cccr_poll = 0; 1428 int niso_timeout = -ETIMEDOUT; 1429 int i; 1430 1431 m_can_config_endisable(cdev, true); 1432 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1433 cccr_reg |= CCCR_NISO; 1434 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1435 1436 for (i = 0; i <= 10; i++) { 1437 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1438 if (cccr_poll == cccr_reg) { 1439 niso_timeout = 0; 1440 break; 1441 } 1442 1443 usleep_range(1, 5); 1444 } 1445 1446 /* Clear NISO */ 1447 cccr_reg &= ~(CCCR_NISO); 1448 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1449 1450 m_can_config_endisable(cdev, false); 1451 1452 /* return false if time out (-ETIMEDOUT), else return true */ 1453 return !niso_timeout; 1454 } 1455 1456 static int m_can_dev_setup(struct m_can_classdev *cdev) 1457 { 1458 struct net_device *dev = cdev->net; 1459 int m_can_version, err; 1460 1461 m_can_version = m_can_check_core_release(cdev); 1462 /* return if unsupported version */ 1463 if (!m_can_version) { 1464 dev_err(cdev->dev, "Unsupported version number: %2d", 1465 m_can_version); 1466 return -EINVAL; 1467 } 1468 1469 if (!cdev->is_peripheral) 1470 netif_napi_add(dev, &cdev->napi, m_can_poll); 1471 1472 /* Shared properties of all M_CAN versions */ 1473 cdev->version = m_can_version; 1474 cdev->can.do_set_mode = m_can_set_mode; 1475 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1476 1477 /* Set M_CAN supported operations */ 1478 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1479 CAN_CTRLMODE_LISTENONLY | 1480 CAN_CTRLMODE_BERR_REPORTING | 1481 CAN_CTRLMODE_FD | 1482 CAN_CTRLMODE_ONE_SHOT; 1483 1484 /* Set properties depending on M_CAN version */ 1485 switch (cdev->version) { 1486 case 30: 1487 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1488 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1489 if (err) 1490 return err; 1491 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1492 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1493 break; 1494 case 31: 1495 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1496 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1497 if (err) 1498 return err; 1499 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1500 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1501 break; 1502 case 32: 1503 case 33: 1504 /* Support both MCAN version v3.2.x and v3.3.0 */ 1505 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1506 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1507 1508 cdev->can.ctrlmode_supported |= 1509 (m_can_niso_supported(cdev) ? 1510 CAN_CTRLMODE_FD_NON_ISO : 0); 1511 break; 1512 default: 1513 dev_err(cdev->dev, "Unsupported version number: %2d", 1514 cdev->version); 1515 return -EINVAL; 1516 } 1517 1518 if (cdev->ops->init) 1519 cdev->ops->init(cdev); 1520 1521 return 0; 1522 } 1523 1524 static void m_can_stop(struct net_device *dev) 1525 { 1526 struct m_can_classdev *cdev = netdev_priv(dev); 1527 1528 /* disable all interrupts */ 1529 m_can_disable_all_interrupts(cdev); 1530 1531 /* Set init mode to disengage from the network */ 1532 m_can_config_endisable(cdev, true); 1533 1534 /* set the state as STOPPED */ 1535 cdev->can.state = CAN_STATE_STOPPED; 1536 } 1537 1538 static int m_can_close(struct net_device *dev) 1539 { 1540 struct m_can_classdev *cdev = netdev_priv(dev); 1541 1542 netif_stop_queue(dev); 1543 1544 if (!cdev->is_peripheral) 1545 napi_disable(&cdev->napi); 1546 1547 m_can_stop(dev); 1548 m_can_clk_stop(cdev); 1549 free_irq(dev->irq, dev); 1550 1551 if (cdev->is_peripheral) { 1552 cdev->tx_skb = NULL; 1553 destroy_workqueue(cdev->tx_wq); 1554 cdev->tx_wq = NULL; 1555 } 1556 1557 if (cdev->is_peripheral) 1558 can_rx_offload_disable(&cdev->offload); 1559 1560 close_candev(dev); 1561 1562 phy_power_off(cdev->transceiver); 1563 1564 return 0; 1565 } 1566 1567 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1568 { 1569 struct m_can_classdev *cdev = netdev_priv(dev); 1570 /*get wrap around for loopback skb index */ 1571 unsigned int wrap = cdev->can.echo_skb_max; 1572 int next_idx; 1573 1574 /* calculate next index */ 1575 next_idx = (++putidx >= wrap ? 0 : putidx); 1576 1577 /* check if occupied */ 1578 return !!cdev->can.echo_skb[next_idx]; 1579 } 1580 1581 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1582 { 1583 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1584 struct net_device *dev = cdev->net; 1585 struct sk_buff *skb = cdev->tx_skb; 1586 struct id_and_dlc fifo_header; 1587 u32 cccr, fdflags; 1588 int err; 1589 int putidx; 1590 1591 cdev->tx_skb = NULL; 1592 1593 /* Generate ID field for TX buffer Element */ 1594 /* Common to all supported M_CAN versions */ 1595 if (cf->can_id & CAN_EFF_FLAG) { 1596 fifo_header.id = cf->can_id & CAN_EFF_MASK; 1597 fifo_header.id |= TX_BUF_XTD; 1598 } else { 1599 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1600 } 1601 1602 if (cf->can_id & CAN_RTR_FLAG) 1603 fifo_header.id |= TX_BUF_RTR; 1604 1605 if (cdev->version == 30) { 1606 netif_stop_queue(dev); 1607 1608 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16; 1609 1610 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1611 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2); 1612 if (err) 1613 goto out_fail; 1614 1615 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1616 cf->data, DIV_ROUND_UP(cf->len, 4)); 1617 if (err) 1618 goto out_fail; 1619 1620 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1621 cccr = m_can_read(cdev, M_CAN_CCCR); 1622 cccr &= ~CCCR_CMR_MASK; 1623 if (can_is_canfd_skb(skb)) { 1624 if (cf->flags & CANFD_BRS) 1625 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1626 CCCR_CMR_CANFD_BRS); 1627 else 1628 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1629 CCCR_CMR_CANFD); 1630 } else { 1631 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1632 } 1633 m_can_write(cdev, M_CAN_CCCR, cccr); 1634 } 1635 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1636 1637 can_put_echo_skb(skb, dev, 0, 0); 1638 1639 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1640 /* End of xmit function for version 3.0.x */ 1641 } else { 1642 /* Transmit routine for version >= v3.1.x */ 1643 1644 /* Check if FIFO full */ 1645 if (m_can_tx_fifo_full(cdev)) { 1646 /* This shouldn't happen */ 1647 netif_stop_queue(dev); 1648 netdev_warn(dev, 1649 "TX queue active although FIFO is full."); 1650 1651 if (cdev->is_peripheral) { 1652 kfree_skb(skb); 1653 dev->stats.tx_dropped++; 1654 return NETDEV_TX_OK; 1655 } else { 1656 return NETDEV_TX_BUSY; 1657 } 1658 } 1659 1660 /* get put index for frame */ 1661 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 1662 m_can_read(cdev, M_CAN_TXFQS)); 1663 1664 /* Construct DLC Field, with CAN-FD configuration. 1665 * Use the put index of the fifo as the message marker, 1666 * used in the TX interrupt for sending the correct echo frame. 1667 */ 1668 1669 /* get CAN FD configuration of frame */ 1670 fdflags = 0; 1671 if (can_is_canfd_skb(skb)) { 1672 fdflags |= TX_BUF_FDF; 1673 if (cf->flags & CANFD_BRS) 1674 fdflags |= TX_BUF_BRS; 1675 } 1676 1677 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1678 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1679 fdflags | TX_BUF_EFC; 1680 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2); 1681 if (err) 1682 goto out_fail; 1683 1684 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA, 1685 cf->data, DIV_ROUND_UP(cf->len, 4)); 1686 if (err) 1687 goto out_fail; 1688 1689 /* Push loopback echo. 1690 * Will be looped back on TX interrupt based on message marker 1691 */ 1692 can_put_echo_skb(skb, dev, putidx, 0); 1693 1694 /* Enable TX FIFO element to start transfer */ 1695 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1696 1697 /* stop network queue if fifo full */ 1698 if (m_can_tx_fifo_full(cdev) || 1699 m_can_next_echo_skb_occupied(dev, putidx)) 1700 netif_stop_queue(dev); 1701 } 1702 1703 return NETDEV_TX_OK; 1704 1705 out_fail: 1706 netdev_err(dev, "FIFO write returned %d\n", err); 1707 m_can_disable_all_interrupts(cdev); 1708 return NETDEV_TX_BUSY; 1709 } 1710 1711 static void m_can_tx_work_queue(struct work_struct *ws) 1712 { 1713 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1714 tx_work); 1715 1716 m_can_tx_handler(cdev); 1717 } 1718 1719 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1720 struct net_device *dev) 1721 { 1722 struct m_can_classdev *cdev = netdev_priv(dev); 1723 1724 if (can_dropped_invalid_skb(dev, skb)) 1725 return NETDEV_TX_OK; 1726 1727 if (cdev->is_peripheral) { 1728 if (cdev->tx_skb) { 1729 netdev_err(dev, "hard_xmit called while tx busy\n"); 1730 return NETDEV_TX_BUSY; 1731 } 1732 1733 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1734 m_can_clean(dev); 1735 } else { 1736 /* Need to stop the queue to avoid numerous requests 1737 * from being sent. Suggested improvement is to create 1738 * a queueing mechanism that will queue the skbs and 1739 * process them in order. 1740 */ 1741 cdev->tx_skb = skb; 1742 netif_stop_queue(cdev->net); 1743 queue_work(cdev->tx_wq, &cdev->tx_work); 1744 } 1745 } else { 1746 cdev->tx_skb = skb; 1747 return m_can_tx_handler(cdev); 1748 } 1749 1750 return NETDEV_TX_OK; 1751 } 1752 1753 static int m_can_open(struct net_device *dev) 1754 { 1755 struct m_can_classdev *cdev = netdev_priv(dev); 1756 int err; 1757 1758 err = phy_power_on(cdev->transceiver); 1759 if (err) 1760 return err; 1761 1762 err = m_can_clk_start(cdev); 1763 if (err) 1764 goto out_phy_power_off; 1765 1766 /* open the can device */ 1767 err = open_candev(dev); 1768 if (err) { 1769 netdev_err(dev, "failed to open can device\n"); 1770 goto exit_disable_clks; 1771 } 1772 1773 if (cdev->is_peripheral) 1774 can_rx_offload_enable(&cdev->offload); 1775 1776 /* register interrupt handler */ 1777 if (cdev->is_peripheral) { 1778 cdev->tx_skb = NULL; 1779 cdev->tx_wq = alloc_workqueue("mcan_wq", 1780 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1781 if (!cdev->tx_wq) { 1782 err = -ENOMEM; 1783 goto out_wq_fail; 1784 } 1785 1786 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1787 1788 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1789 IRQF_ONESHOT, 1790 dev->name, dev); 1791 } else { 1792 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1793 dev); 1794 } 1795 1796 if (err < 0) { 1797 netdev_err(dev, "failed to request interrupt\n"); 1798 goto exit_irq_fail; 1799 } 1800 1801 /* start the m_can controller */ 1802 m_can_start(dev); 1803 1804 if (!cdev->is_peripheral) 1805 napi_enable(&cdev->napi); 1806 1807 netif_start_queue(dev); 1808 1809 return 0; 1810 1811 exit_irq_fail: 1812 if (cdev->is_peripheral) 1813 destroy_workqueue(cdev->tx_wq); 1814 out_wq_fail: 1815 if (cdev->is_peripheral) 1816 can_rx_offload_disable(&cdev->offload); 1817 close_candev(dev); 1818 exit_disable_clks: 1819 m_can_clk_stop(cdev); 1820 out_phy_power_off: 1821 phy_power_off(cdev->transceiver); 1822 return err; 1823 } 1824 1825 static const struct net_device_ops m_can_netdev_ops = { 1826 .ndo_open = m_can_open, 1827 .ndo_stop = m_can_close, 1828 .ndo_start_xmit = m_can_start_xmit, 1829 .ndo_change_mtu = can_change_mtu, 1830 }; 1831 1832 static const struct ethtool_ops m_can_ethtool_ops = { 1833 .get_ts_info = ethtool_op_get_ts_info, 1834 }; 1835 1836 static int register_m_can_dev(struct net_device *dev) 1837 { 1838 dev->flags |= IFF_ECHO; /* we support local echo */ 1839 dev->netdev_ops = &m_can_netdev_ops; 1840 dev->ethtool_ops = &m_can_ethtool_ops; 1841 1842 return register_candev(dev); 1843 } 1844 1845 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1846 const u32 *mram_config_vals) 1847 { 1848 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1849 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1850 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1851 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1852 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1853 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1854 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1855 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1856 FIELD_MAX(RXFC_FS_MASK); 1857 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1858 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1859 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1860 FIELD_MAX(RXFC_FS_MASK); 1861 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1862 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1863 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1864 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1865 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1866 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1867 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1868 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1869 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1870 FIELD_MAX(TXBC_NDTB_MASK); 1871 1872 dev_dbg(cdev->dev, 1873 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1874 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1875 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1876 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1877 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1878 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1879 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1880 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1881 } 1882 1883 int m_can_init_ram(struct m_can_classdev *cdev) 1884 { 1885 int end, i, start; 1886 int err = 0; 1887 1888 /* initialize the entire Message RAM in use to avoid possible 1889 * ECC/parity checksum errors when reading an uninitialized buffer 1890 */ 1891 start = cdev->mcfg[MRAM_SIDF].off; 1892 end = cdev->mcfg[MRAM_TXB].off + 1893 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1894 1895 for (i = start; i < end; i += 4) { 1896 err = m_can_fifo_write_no_off(cdev, i, 0x0); 1897 if (err) 1898 break; 1899 } 1900 1901 return err; 1902 } 1903 EXPORT_SYMBOL_GPL(m_can_init_ram); 1904 1905 int m_can_class_get_clocks(struct m_can_classdev *cdev) 1906 { 1907 int ret = 0; 1908 1909 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 1910 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 1911 1912 if (IS_ERR(cdev->cclk)) { 1913 dev_err(cdev->dev, "no clock found\n"); 1914 ret = -ENODEV; 1915 } 1916 1917 return ret; 1918 } 1919 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1920 1921 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 1922 int sizeof_priv) 1923 { 1924 struct m_can_classdev *class_dev = NULL; 1925 u32 mram_config_vals[MRAM_CFG_LEN]; 1926 struct net_device *net_dev; 1927 u32 tx_fifo_size; 1928 int ret; 1929 1930 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1931 "bosch,mram-cfg", 1932 mram_config_vals, 1933 sizeof(mram_config_vals) / 4); 1934 if (ret) { 1935 dev_err(dev, "Could not get Message RAM configuration."); 1936 goto out; 1937 } 1938 1939 /* Get TX FIFO size 1940 * Defines the total amount of echo buffers for loopback 1941 */ 1942 tx_fifo_size = mram_config_vals[7]; 1943 1944 /* allocate the m_can device */ 1945 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 1946 if (!net_dev) { 1947 dev_err(dev, "Failed to allocate CAN device"); 1948 goto out; 1949 } 1950 1951 class_dev = netdev_priv(net_dev); 1952 class_dev->net = net_dev; 1953 class_dev->dev = dev; 1954 SET_NETDEV_DEV(net_dev, dev); 1955 1956 m_can_of_parse_mram(class_dev, mram_config_vals); 1957 out: 1958 return class_dev; 1959 } 1960 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1961 1962 void m_can_class_free_dev(struct net_device *net) 1963 { 1964 free_candev(net); 1965 } 1966 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1967 1968 int m_can_class_register(struct m_can_classdev *cdev) 1969 { 1970 int ret; 1971 1972 if (cdev->pm_clock_support) { 1973 ret = m_can_clk_start(cdev); 1974 if (ret) 1975 return ret; 1976 } 1977 1978 if (cdev->is_peripheral) { 1979 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 1980 NAPI_POLL_WEIGHT); 1981 if (ret) 1982 goto clk_disable; 1983 } 1984 1985 ret = m_can_dev_setup(cdev); 1986 if (ret) 1987 goto rx_offload_del; 1988 1989 ret = register_m_can_dev(cdev->net); 1990 if (ret) { 1991 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 1992 cdev->net->name, ret); 1993 goto rx_offload_del; 1994 } 1995 1996 of_can_transceiver(cdev->net); 1997 1998 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 1999 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2000 2001 /* Probe finished 2002 * Stop clocks. They will be reactivated once the M_CAN device is opened 2003 */ 2004 m_can_clk_stop(cdev); 2005 2006 return 0; 2007 2008 rx_offload_del: 2009 if (cdev->is_peripheral) 2010 can_rx_offload_del(&cdev->offload); 2011 clk_disable: 2012 m_can_clk_stop(cdev); 2013 2014 return ret; 2015 } 2016 EXPORT_SYMBOL_GPL(m_can_class_register); 2017 2018 void m_can_class_unregister(struct m_can_classdev *cdev) 2019 { 2020 if (cdev->is_peripheral) 2021 can_rx_offload_del(&cdev->offload); 2022 unregister_candev(cdev->net); 2023 } 2024 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2025 2026 int m_can_class_suspend(struct device *dev) 2027 { 2028 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2029 struct net_device *ndev = cdev->net; 2030 2031 if (netif_running(ndev)) { 2032 netif_stop_queue(ndev); 2033 netif_device_detach(ndev); 2034 m_can_stop(ndev); 2035 m_can_clk_stop(cdev); 2036 } 2037 2038 pinctrl_pm_select_sleep_state(dev); 2039 2040 cdev->can.state = CAN_STATE_SLEEPING; 2041 2042 return 0; 2043 } 2044 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2045 2046 int m_can_class_resume(struct device *dev) 2047 { 2048 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2049 struct net_device *ndev = cdev->net; 2050 2051 pinctrl_pm_select_default_state(dev); 2052 2053 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2054 2055 if (netif_running(ndev)) { 2056 int ret; 2057 2058 ret = m_can_clk_start(cdev); 2059 if (ret) 2060 return ret; 2061 2062 m_can_init_ram(cdev); 2063 m_can_start(ndev); 2064 netif_device_attach(ndev); 2065 netif_start_queue(ndev); 2066 } 2067 2068 return 0; 2069 } 2070 EXPORT_SYMBOL_GPL(m_can_class_resume); 2071 2072 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2073 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2074 MODULE_LICENSE("GPL v2"); 2075 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2076