1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * https://github.com/linux-can/can-doc/tree/master/m_can 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/can/dev.h> 13 #include <linux/ethtool.h> 14 #include <linux/hrtimer.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iopoll.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 27 #include "m_can.h" 28 29 /* registers definition */ 30 enum m_can_reg { 31 M_CAN_CREL = 0x0, 32 M_CAN_ENDN = 0x4, 33 M_CAN_CUST = 0x8, 34 M_CAN_DBTP = 0xc, 35 M_CAN_TEST = 0x10, 36 M_CAN_RWD = 0x14, 37 M_CAN_CCCR = 0x18, 38 M_CAN_NBTP = 0x1c, 39 M_CAN_TSCC = 0x20, 40 M_CAN_TSCV = 0x24, 41 M_CAN_TOCC = 0x28, 42 M_CAN_TOCV = 0x2c, 43 M_CAN_ECR = 0x40, 44 M_CAN_PSR = 0x44, 45 /* TDCR Register only available for version >=3.1.x */ 46 M_CAN_TDCR = 0x48, 47 M_CAN_IR = 0x50, 48 M_CAN_IE = 0x54, 49 M_CAN_ILS = 0x58, 50 M_CAN_ILE = 0x5c, 51 M_CAN_GFC = 0x80, 52 M_CAN_SIDFC = 0x84, 53 M_CAN_XIDFC = 0x88, 54 M_CAN_XIDAM = 0x90, 55 M_CAN_HPMS = 0x94, 56 M_CAN_NDAT1 = 0x98, 57 M_CAN_NDAT2 = 0x9c, 58 M_CAN_RXF0C = 0xa0, 59 M_CAN_RXF0S = 0xa4, 60 M_CAN_RXF0A = 0xa8, 61 M_CAN_RXBC = 0xac, 62 M_CAN_RXF1C = 0xb0, 63 M_CAN_RXF1S = 0xb4, 64 M_CAN_RXF1A = 0xb8, 65 M_CAN_RXESC = 0xbc, 66 M_CAN_TXBC = 0xc0, 67 M_CAN_TXFQS = 0xc4, 68 M_CAN_TXESC = 0xc8, 69 M_CAN_TXBRP = 0xcc, 70 M_CAN_TXBAR = 0xd0, 71 M_CAN_TXBCR = 0xd4, 72 M_CAN_TXBTO = 0xd8, 73 M_CAN_TXBCF = 0xdc, 74 M_CAN_TXBTIE = 0xe0, 75 M_CAN_TXBCIE = 0xe4, 76 M_CAN_TXEFC = 0xf0, 77 M_CAN_TXEFS = 0xf4, 78 M_CAN_TXEFA = 0xf8, 79 }; 80 81 /* message ram configuration data length */ 82 #define MRAM_CFG_LEN 8 83 84 /* Core Release Register (CREL) */ 85 #define CREL_REL_MASK GENMASK(31, 28) 86 #define CREL_STEP_MASK GENMASK(27, 24) 87 #define CREL_SUBSTEP_MASK GENMASK(23, 20) 88 89 /* Data Bit Timing & Prescaler Register (DBTP) */ 90 #define DBTP_TDC BIT(23) 91 #define DBTP_DBRP_MASK GENMASK(20, 16) 92 #define DBTP_DTSEG1_MASK GENMASK(12, 8) 93 #define DBTP_DTSEG2_MASK GENMASK(7, 4) 94 #define DBTP_DSJW_MASK GENMASK(3, 0) 95 96 /* Transmitter Delay Compensation Register (TDCR) */ 97 #define TDCR_TDCO_MASK GENMASK(14, 8) 98 #define TDCR_TDCF_MASK GENMASK(6, 0) 99 100 /* Test Register (TEST) */ 101 #define TEST_LBCK BIT(4) 102 103 /* CC Control Register (CCCR) */ 104 #define CCCR_TXP BIT(14) 105 #define CCCR_TEST BIT(7) 106 #define CCCR_DAR BIT(6) 107 #define CCCR_MON BIT(5) 108 #define CCCR_CSR BIT(4) 109 #define CCCR_CSA BIT(3) 110 #define CCCR_ASM BIT(2) 111 #define CCCR_CCE BIT(1) 112 #define CCCR_INIT BIT(0) 113 /* for version 3.0.x */ 114 #define CCCR_CMR_MASK GENMASK(11, 10) 115 #define CCCR_CMR_CANFD 0x1 116 #define CCCR_CMR_CANFD_BRS 0x2 117 #define CCCR_CMR_CAN 0x3 118 #define CCCR_CME_MASK GENMASK(9, 8) 119 #define CCCR_CME_CAN 0 120 #define CCCR_CME_CANFD 0x1 121 #define CCCR_CME_CANFD_BRS 0x2 122 /* for version >=3.1.x */ 123 #define CCCR_EFBI BIT(13) 124 #define CCCR_PXHD BIT(12) 125 #define CCCR_BRSE BIT(9) 126 #define CCCR_FDOE BIT(8) 127 /* for version >=3.2.x */ 128 #define CCCR_NISO BIT(15) 129 /* for version >=3.3.x */ 130 #define CCCR_WMM BIT(11) 131 #define CCCR_UTSU BIT(10) 132 133 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 134 #define NBTP_NSJW_MASK GENMASK(31, 25) 135 #define NBTP_NBRP_MASK GENMASK(24, 16) 136 #define NBTP_NTSEG1_MASK GENMASK(15, 8) 137 #define NBTP_NTSEG2_MASK GENMASK(6, 0) 138 139 /* Timestamp Counter Configuration Register (TSCC) */ 140 #define TSCC_TCP_MASK GENMASK(19, 16) 141 #define TSCC_TSS_MASK GENMASK(1, 0) 142 #define TSCC_TSS_DISABLE 0x0 143 #define TSCC_TSS_INTERNAL 0x1 144 #define TSCC_TSS_EXTERNAL 0x2 145 146 /* Timestamp Counter Value Register (TSCV) */ 147 #define TSCV_TSC_MASK GENMASK(15, 0) 148 149 /* Error Counter Register (ECR) */ 150 #define ECR_RP BIT(15) 151 #define ECR_REC_MASK GENMASK(14, 8) 152 #define ECR_TEC_MASK GENMASK(7, 0) 153 154 /* Protocol Status Register (PSR) */ 155 #define PSR_BO BIT(7) 156 #define PSR_EW BIT(6) 157 #define PSR_EP BIT(5) 158 #define PSR_LEC_MASK GENMASK(2, 0) 159 #define PSR_DLEC_MASK GENMASK(10, 8) 160 161 /* Interrupt Register (IR) */ 162 #define IR_ALL_INT 0xffffffff 163 164 /* Renamed bits for versions > 3.1.x */ 165 #define IR_ARA BIT(29) 166 #define IR_PED BIT(28) 167 #define IR_PEA BIT(27) 168 169 /* Bits for version 3.0.x */ 170 #define IR_STE BIT(31) 171 #define IR_FOE BIT(30) 172 #define IR_ACKE BIT(29) 173 #define IR_BE BIT(28) 174 #define IR_CRCE BIT(27) 175 #define IR_WDI BIT(26) 176 #define IR_BO BIT(25) 177 #define IR_EW BIT(24) 178 #define IR_EP BIT(23) 179 #define IR_ELO BIT(22) 180 #define IR_BEU BIT(21) 181 #define IR_BEC BIT(20) 182 #define IR_DRX BIT(19) 183 #define IR_TOO BIT(18) 184 #define IR_MRAF BIT(17) 185 #define IR_TSW BIT(16) 186 #define IR_TEFL BIT(15) 187 #define IR_TEFF BIT(14) 188 #define IR_TEFW BIT(13) 189 #define IR_TEFN BIT(12) 190 #define IR_TFE BIT(11) 191 #define IR_TCF BIT(10) 192 #define IR_TC BIT(9) 193 #define IR_HPM BIT(8) 194 #define IR_RF1L BIT(7) 195 #define IR_RF1F BIT(6) 196 #define IR_RF1W BIT(5) 197 #define IR_RF1N BIT(4) 198 #define IR_RF0L BIT(3) 199 #define IR_RF0F BIT(2) 200 #define IR_RF0W BIT(1) 201 #define IR_RF0N BIT(0) 202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 203 204 /* Interrupts for version 3.0.x */ 205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ 207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 208 IR_RF0L) 209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 210 211 /* Interrupts for version >= 3.1.x */ 212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ 214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ 215 IR_RF0L) 216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 217 218 /* Interrupt Line Select (ILS) */ 219 #define ILS_ALL_INT0 0x0 220 #define ILS_ALL_INT1 0xFFFFFFFF 221 222 /* Interrupt Line Enable (ILE) */ 223 #define ILE_EINT1 BIT(1) 224 #define ILE_EINT0 BIT(0) 225 226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 227 #define RXFC_FWM_MASK GENMASK(30, 24) 228 #define RXFC_FS_MASK GENMASK(22, 16) 229 230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 231 #define RXFS_RFL BIT(25) 232 #define RXFS_FF BIT(24) 233 #define RXFS_FPI_MASK GENMASK(21, 16) 234 #define RXFS_FGI_MASK GENMASK(13, 8) 235 #define RXFS_FFL_MASK GENMASK(6, 0) 236 237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 238 #define RXESC_RBDS_MASK GENMASK(10, 8) 239 #define RXESC_F1DS_MASK GENMASK(6, 4) 240 #define RXESC_F0DS_MASK GENMASK(2, 0) 241 #define RXESC_64B 0x7 242 243 /* Tx Buffer Configuration (TXBC) */ 244 #define TXBC_TFQS_MASK GENMASK(29, 24) 245 #define TXBC_NDTB_MASK GENMASK(21, 16) 246 247 /* Tx FIFO/Queue Status (TXFQS) */ 248 #define TXFQS_TFQF BIT(21) 249 #define TXFQS_TFQPI_MASK GENMASK(20, 16) 250 #define TXFQS_TFGI_MASK GENMASK(12, 8) 251 #define TXFQS_TFFL_MASK GENMASK(5, 0) 252 253 /* Tx Buffer Element Size Configuration (TXESC) */ 254 #define TXESC_TBDS_MASK GENMASK(2, 0) 255 #define TXESC_TBDS_64B 0x7 256 257 /* Tx Event FIFO Configuration (TXEFC) */ 258 #define TXEFC_EFS_MASK GENMASK(21, 16) 259 260 /* Tx Event FIFO Status (TXEFS) */ 261 #define TXEFS_TEFL BIT(25) 262 #define TXEFS_EFF BIT(24) 263 #define TXEFS_EFGI_MASK GENMASK(12, 8) 264 #define TXEFS_EFFL_MASK GENMASK(5, 0) 265 266 /* Tx Event FIFO Acknowledge (TXEFA) */ 267 #define TXEFA_EFAI_MASK GENMASK(4, 0) 268 269 /* Message RAM Configuration (in bytes) */ 270 #define SIDF_ELEMENT_SIZE 4 271 #define XIDF_ELEMENT_SIZE 8 272 #define RXF0_ELEMENT_SIZE 72 273 #define RXF1_ELEMENT_SIZE 72 274 #define RXB_ELEMENT_SIZE 72 275 #define TXE_ELEMENT_SIZE 8 276 #define TXB_ELEMENT_SIZE 72 277 278 /* Message RAM Elements */ 279 #define M_CAN_FIFO_ID 0x0 280 #define M_CAN_FIFO_DLC 0x4 281 #define M_CAN_FIFO_DATA 0x8 282 283 /* Rx Buffer Element */ 284 /* R0 */ 285 #define RX_BUF_ESI BIT(31) 286 #define RX_BUF_XTD BIT(30) 287 #define RX_BUF_RTR BIT(29) 288 /* R1 */ 289 #define RX_BUF_ANMF BIT(31) 290 #define RX_BUF_FDF BIT(21) 291 #define RX_BUF_BRS BIT(20) 292 #define RX_BUF_RXTS_MASK GENMASK(15, 0) 293 294 /* Tx Buffer Element */ 295 /* T0 */ 296 #define TX_BUF_ESI BIT(31) 297 #define TX_BUF_XTD BIT(30) 298 #define TX_BUF_RTR BIT(29) 299 /* T1 */ 300 #define TX_BUF_EFC BIT(23) 301 #define TX_BUF_FDF BIT(21) 302 #define TX_BUF_BRS BIT(20) 303 #define TX_BUF_MM_MASK GENMASK(31, 24) 304 #define TX_BUF_DLC_MASK GENMASK(19, 16) 305 306 /* Tx event FIFO Element */ 307 /* E1 */ 308 #define TX_EVENT_MM_MASK GENMASK(31, 24) 309 #define TX_EVENT_TXTS_MASK GENMASK(15, 0) 310 311 /* Hrtimer polling interval */ 312 #define HRTIMER_POLL_INTERVAL_MS 1 313 314 /* The ID and DLC registers are adjacent in M_CAN FIFO memory, 315 * and we can save a (potentially slow) bus round trip by combining 316 * reads and writes to them. 317 */ 318 struct id_and_dlc { 319 u32 id; 320 u32 dlc; 321 }; 322 323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 324 { 325 return cdev->ops->read_reg(cdev, reg); 326 } 327 328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 329 u32 val) 330 { 331 cdev->ops->write_reg(cdev, reg, val); 332 } 333 334 static int 335 m_can_fifo_read(struct m_can_classdev *cdev, 336 u32 fgi, unsigned int offset, void *val, size_t val_count) 337 { 338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 339 offset; 340 341 if (val_count == 0) 342 return 0; 343 344 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count); 345 } 346 347 static int 348 m_can_fifo_write(struct m_can_classdev *cdev, 349 u32 fpi, unsigned int offset, const void *val, size_t val_count) 350 { 351 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 352 offset; 353 354 if (val_count == 0) 355 return 0; 356 357 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count); 358 } 359 360 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev, 361 u32 fpi, u32 val) 362 { 363 return cdev->ops->write_fifo(cdev, fpi, &val, 1); 364 } 365 366 static int 367 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val) 368 { 369 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 370 offset; 371 372 return cdev->ops->read_fifo(cdev, addr_offset, val, 1); 373 } 374 375 static inline bool _m_can_tx_fifo_full(u32 txfqs) 376 { 377 return !!(txfqs & TXFQS_TFQF); 378 } 379 380 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 381 { 382 return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS)); 383 } 384 385 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 386 { 387 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 388 u32 timeout = 10; 389 u32 val = 0; 390 391 /* Clear the Clock stop request if it was set */ 392 if (cccr & CCCR_CSR) 393 cccr &= ~CCCR_CSR; 394 395 if (enable) { 396 /* enable m_can configuration */ 397 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 398 udelay(5); 399 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 400 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 401 } else { 402 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 403 } 404 405 /* there's a delay for module initialization */ 406 if (enable) 407 val = CCCR_INIT | CCCR_CCE; 408 409 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 410 if (timeout == 0) { 411 netdev_warn(cdev->net, "Failed to init module\n"); 412 return; 413 } 414 timeout--; 415 udelay(1); 416 } 417 } 418 419 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 420 { 421 if (!cdev->net->irq) { 422 dev_dbg(cdev->dev, "Start hrtimer\n"); 423 hrtimer_start(&cdev->hrtimer, 424 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS), 425 HRTIMER_MODE_REL_PINNED); 426 } 427 428 /* Only interrupt line 0 is used in this driver */ 429 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 430 } 431 432 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 433 { 434 m_can_write(cdev, M_CAN_ILE, 0x0); 435 436 if (!cdev->net->irq) { 437 dev_dbg(cdev->dev, "Stop hrtimer\n"); 438 hrtimer_cancel(&cdev->hrtimer); 439 } 440 } 441 442 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit 443 * width. 444 */ 445 static u32 m_can_get_timestamp(struct m_can_classdev *cdev) 446 { 447 u32 tscv; 448 u32 tsc; 449 450 tscv = m_can_read(cdev, M_CAN_TSCV); 451 tsc = FIELD_GET(TSCV_TSC_MASK, tscv); 452 453 return (tsc << 16); 454 } 455 456 static void m_can_clean(struct net_device *net) 457 { 458 struct m_can_classdev *cdev = netdev_priv(net); 459 460 if (cdev->tx_skb) { 461 int putidx = 0; 462 463 net->stats.tx_errors++; 464 if (cdev->version > 30) 465 putidx = FIELD_GET(TXFQS_TFQPI_MASK, 466 m_can_read(cdev, M_CAN_TXFQS)); 467 468 can_free_echo_skb(cdev->net, putidx, NULL); 469 cdev->tx_skb = NULL; 470 } 471 } 472 473 /* For peripherals, pass skb to rx-offload, which will push skb from 474 * napi. For non-peripherals, RX is done in napi already, so push 475 * directly. timestamp is used to ensure good skb ordering in 476 * rx-offload and is ignored for non-peripherals. 477 */ 478 static void m_can_receive_skb(struct m_can_classdev *cdev, 479 struct sk_buff *skb, 480 u32 timestamp) 481 { 482 if (cdev->is_peripheral) { 483 struct net_device_stats *stats = &cdev->net->stats; 484 int err; 485 486 err = can_rx_offload_queue_timestamp(&cdev->offload, skb, 487 timestamp); 488 if (err) 489 stats->rx_fifo_errors++; 490 } else { 491 netif_receive_skb(skb); 492 } 493 } 494 495 static int m_can_read_fifo(struct net_device *dev, u32 fgi) 496 { 497 struct net_device_stats *stats = &dev->stats; 498 struct m_can_classdev *cdev = netdev_priv(dev); 499 struct canfd_frame *cf; 500 struct sk_buff *skb; 501 struct id_and_dlc fifo_header; 502 u32 timestamp = 0; 503 int err; 504 505 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2); 506 if (err) 507 goto out_fail; 508 509 if (fifo_header.dlc & RX_BUF_FDF) 510 skb = alloc_canfd_skb(dev, &cf); 511 else 512 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 513 if (!skb) { 514 stats->rx_dropped++; 515 return 0; 516 } 517 518 if (fifo_header.dlc & RX_BUF_FDF) 519 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F); 520 else 521 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F); 522 523 if (fifo_header.id & RX_BUF_XTD) 524 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG; 525 else 526 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK; 527 528 if (fifo_header.id & RX_BUF_ESI) { 529 cf->flags |= CANFD_ESI; 530 netdev_dbg(dev, "ESI Error\n"); 531 } 532 533 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) { 534 cf->can_id |= CAN_RTR_FLAG; 535 } else { 536 if (fifo_header.dlc & RX_BUF_BRS) 537 cf->flags |= CANFD_BRS; 538 539 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA, 540 cf->data, DIV_ROUND_UP(cf->len, 4)); 541 if (err) 542 goto out_free_skb; 543 544 stats->rx_bytes += cf->len; 545 } 546 stats->rx_packets++; 547 548 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16; 549 550 m_can_receive_skb(cdev, skb, timestamp); 551 552 return 0; 553 554 out_free_skb: 555 kfree_skb(skb); 556 out_fail: 557 netdev_err(dev, "FIFO read returned %d\n", err); 558 return err; 559 } 560 561 static int m_can_do_rx_poll(struct net_device *dev, int quota) 562 { 563 struct m_can_classdev *cdev = netdev_priv(dev); 564 u32 pkts = 0; 565 u32 rxfs; 566 u32 rx_count; 567 u32 fgi; 568 int ack_fgi = -1; 569 int i; 570 int err = 0; 571 572 rxfs = m_can_read(cdev, M_CAN_RXF0S); 573 if (!(rxfs & RXFS_FFL_MASK)) { 574 netdev_dbg(dev, "no messages in fifo0\n"); 575 return 0; 576 } 577 578 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs); 579 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs); 580 581 for (i = 0; i < rx_count && quota > 0; ++i) { 582 err = m_can_read_fifo(dev, fgi); 583 if (err) 584 break; 585 586 quota--; 587 pkts++; 588 ack_fgi = fgi; 589 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi); 590 } 591 592 if (ack_fgi != -1) 593 m_can_write(cdev, M_CAN_RXF0A, ack_fgi); 594 595 if (err) 596 return err; 597 598 return pkts; 599 } 600 601 static int m_can_handle_lost_msg(struct net_device *dev) 602 { 603 struct m_can_classdev *cdev = netdev_priv(dev); 604 struct net_device_stats *stats = &dev->stats; 605 struct sk_buff *skb; 606 struct can_frame *frame; 607 u32 timestamp = 0; 608 609 netdev_err(dev, "msg lost in rxf0\n"); 610 611 stats->rx_errors++; 612 stats->rx_over_errors++; 613 614 skb = alloc_can_err_skb(dev, &frame); 615 if (unlikely(!skb)) 616 return 0; 617 618 frame->can_id |= CAN_ERR_CRTL; 619 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 620 621 if (cdev->is_peripheral) 622 timestamp = m_can_get_timestamp(cdev); 623 624 m_can_receive_skb(cdev, skb, timestamp); 625 626 return 1; 627 } 628 629 static int m_can_handle_lec_err(struct net_device *dev, 630 enum m_can_lec_type lec_type) 631 { 632 struct m_can_classdev *cdev = netdev_priv(dev); 633 struct net_device_stats *stats = &dev->stats; 634 struct can_frame *cf; 635 struct sk_buff *skb; 636 u32 timestamp = 0; 637 638 cdev->can.can_stats.bus_error++; 639 640 /* propagate the error condition to the CAN stack */ 641 skb = alloc_can_err_skb(dev, &cf); 642 643 /* check for 'last error code' which tells us the 644 * type of the last error to occur on the CAN bus 645 */ 646 if (likely(skb)) 647 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 648 649 switch (lec_type) { 650 case LEC_STUFF_ERROR: 651 netdev_dbg(dev, "stuff error\n"); 652 stats->rx_errors++; 653 if (likely(skb)) 654 cf->data[2] |= CAN_ERR_PROT_STUFF; 655 break; 656 case LEC_FORM_ERROR: 657 netdev_dbg(dev, "form error\n"); 658 stats->rx_errors++; 659 if (likely(skb)) 660 cf->data[2] |= CAN_ERR_PROT_FORM; 661 break; 662 case LEC_ACK_ERROR: 663 netdev_dbg(dev, "ack error\n"); 664 stats->tx_errors++; 665 if (likely(skb)) 666 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 667 break; 668 case LEC_BIT1_ERROR: 669 netdev_dbg(dev, "bit1 error\n"); 670 stats->tx_errors++; 671 if (likely(skb)) 672 cf->data[2] |= CAN_ERR_PROT_BIT1; 673 break; 674 case LEC_BIT0_ERROR: 675 netdev_dbg(dev, "bit0 error\n"); 676 stats->tx_errors++; 677 if (likely(skb)) 678 cf->data[2] |= CAN_ERR_PROT_BIT0; 679 break; 680 case LEC_CRC_ERROR: 681 netdev_dbg(dev, "CRC error\n"); 682 stats->rx_errors++; 683 if (likely(skb)) 684 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 685 break; 686 default: 687 break; 688 } 689 690 if (unlikely(!skb)) 691 return 0; 692 693 if (cdev->is_peripheral) 694 timestamp = m_can_get_timestamp(cdev); 695 696 m_can_receive_skb(cdev, skb, timestamp); 697 698 return 1; 699 } 700 701 static int __m_can_get_berr_counter(const struct net_device *dev, 702 struct can_berr_counter *bec) 703 { 704 struct m_can_classdev *cdev = netdev_priv(dev); 705 unsigned int ecr; 706 707 ecr = m_can_read(cdev, M_CAN_ECR); 708 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr); 709 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr); 710 711 return 0; 712 } 713 714 static int m_can_clk_start(struct m_can_classdev *cdev) 715 { 716 if (cdev->pm_clock_support == 0) 717 return 0; 718 719 return pm_runtime_resume_and_get(cdev->dev); 720 } 721 722 static void m_can_clk_stop(struct m_can_classdev *cdev) 723 { 724 if (cdev->pm_clock_support) 725 pm_runtime_put_sync(cdev->dev); 726 } 727 728 static int m_can_get_berr_counter(const struct net_device *dev, 729 struct can_berr_counter *bec) 730 { 731 struct m_can_classdev *cdev = netdev_priv(dev); 732 int err; 733 734 err = m_can_clk_start(cdev); 735 if (err) 736 return err; 737 738 __m_can_get_berr_counter(dev, bec); 739 740 m_can_clk_stop(cdev); 741 742 return 0; 743 } 744 745 static int m_can_handle_state_change(struct net_device *dev, 746 enum can_state new_state) 747 { 748 struct m_can_classdev *cdev = netdev_priv(dev); 749 struct can_frame *cf; 750 struct sk_buff *skb; 751 struct can_berr_counter bec; 752 unsigned int ecr; 753 u32 timestamp = 0; 754 755 switch (new_state) { 756 case CAN_STATE_ERROR_WARNING: 757 /* error warning state */ 758 cdev->can.can_stats.error_warning++; 759 cdev->can.state = CAN_STATE_ERROR_WARNING; 760 break; 761 case CAN_STATE_ERROR_PASSIVE: 762 /* error passive state */ 763 cdev->can.can_stats.error_passive++; 764 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 765 break; 766 case CAN_STATE_BUS_OFF: 767 /* bus-off state */ 768 cdev->can.state = CAN_STATE_BUS_OFF; 769 m_can_disable_all_interrupts(cdev); 770 cdev->can.can_stats.bus_off++; 771 can_bus_off(dev); 772 break; 773 default: 774 break; 775 } 776 777 /* propagate the error condition to the CAN stack */ 778 skb = alloc_can_err_skb(dev, &cf); 779 if (unlikely(!skb)) 780 return 0; 781 782 __m_can_get_berr_counter(dev, &bec); 783 784 switch (new_state) { 785 case CAN_STATE_ERROR_WARNING: 786 /* error warning state */ 787 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 788 cf->data[1] = (bec.txerr > bec.rxerr) ? 789 CAN_ERR_CRTL_TX_WARNING : 790 CAN_ERR_CRTL_RX_WARNING; 791 cf->data[6] = bec.txerr; 792 cf->data[7] = bec.rxerr; 793 break; 794 case CAN_STATE_ERROR_PASSIVE: 795 /* error passive state */ 796 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT; 797 ecr = m_can_read(cdev, M_CAN_ECR); 798 if (ecr & ECR_RP) 799 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 800 if (bec.txerr > 127) 801 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 802 cf->data[6] = bec.txerr; 803 cf->data[7] = bec.rxerr; 804 break; 805 case CAN_STATE_BUS_OFF: 806 /* bus-off state */ 807 cf->can_id |= CAN_ERR_BUSOFF; 808 break; 809 default: 810 break; 811 } 812 813 if (cdev->is_peripheral) 814 timestamp = m_can_get_timestamp(cdev); 815 816 m_can_receive_skb(cdev, skb, timestamp); 817 818 return 1; 819 } 820 821 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 822 { 823 struct m_can_classdev *cdev = netdev_priv(dev); 824 int work_done = 0; 825 826 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 827 netdev_dbg(dev, "entered error warning state\n"); 828 work_done += m_can_handle_state_change(dev, 829 CAN_STATE_ERROR_WARNING); 830 } 831 832 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 833 netdev_dbg(dev, "entered error passive state\n"); 834 work_done += m_can_handle_state_change(dev, 835 CAN_STATE_ERROR_PASSIVE); 836 } 837 838 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 839 netdev_dbg(dev, "entered error bus off state\n"); 840 work_done += m_can_handle_state_change(dev, 841 CAN_STATE_BUS_OFF); 842 } 843 844 return work_done; 845 } 846 847 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 848 { 849 if (irqstatus & IR_WDI) 850 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 851 if (irqstatus & IR_BEU) 852 netdev_err(dev, "Bit Error Uncorrected\n"); 853 if (irqstatus & IR_BEC) 854 netdev_err(dev, "Bit Error Corrected\n"); 855 if (irqstatus & IR_TOO) 856 netdev_err(dev, "Timeout reached\n"); 857 if (irqstatus & IR_MRAF) 858 netdev_err(dev, "Message RAM access failure occurred\n"); 859 } 860 861 static inline bool is_lec_err(u8 lec) 862 { 863 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE; 864 } 865 866 static inline bool m_can_is_protocol_err(u32 irqstatus) 867 { 868 return irqstatus & IR_ERR_LEC_31X; 869 } 870 871 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 872 { 873 struct net_device_stats *stats = &dev->stats; 874 struct m_can_classdev *cdev = netdev_priv(dev); 875 struct can_frame *cf; 876 struct sk_buff *skb; 877 u32 timestamp = 0; 878 879 /* propagate the error condition to the CAN stack */ 880 skb = alloc_can_err_skb(dev, &cf); 881 882 /* update tx error stats since there is protocol error */ 883 stats->tx_errors++; 884 885 /* update arbitration lost status */ 886 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 887 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 888 cdev->can.can_stats.arbitration_lost++; 889 if (skb) { 890 cf->can_id |= CAN_ERR_LOSTARB; 891 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 892 } 893 } 894 895 if (unlikely(!skb)) { 896 netdev_dbg(dev, "allocation of skb failed\n"); 897 return 0; 898 } 899 900 if (cdev->is_peripheral) 901 timestamp = m_can_get_timestamp(cdev); 902 903 m_can_receive_skb(cdev, skb, timestamp); 904 905 return 1; 906 } 907 908 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 909 u32 psr) 910 { 911 struct m_can_classdev *cdev = netdev_priv(dev); 912 int work_done = 0; 913 914 if (irqstatus & IR_RF0L) 915 work_done += m_can_handle_lost_msg(dev); 916 917 /* handle lec errors on the bus */ 918 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { 919 u8 lec = FIELD_GET(PSR_LEC_MASK, psr); 920 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr); 921 922 if (is_lec_err(lec)) { 923 netdev_dbg(dev, "Arbitration phase error detected\n"); 924 work_done += m_can_handle_lec_err(dev, lec); 925 } 926 927 if (is_lec_err(dlec)) { 928 netdev_dbg(dev, "Data phase error detected\n"); 929 work_done += m_can_handle_lec_err(dev, dlec); 930 } 931 } 932 933 /* handle protocol errors in arbitration phase */ 934 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 935 m_can_is_protocol_err(irqstatus)) 936 work_done += m_can_handle_protocol_error(dev, irqstatus); 937 938 /* other unproccessed error interrupts */ 939 m_can_handle_other_err(dev, irqstatus); 940 941 return work_done; 942 } 943 944 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus) 945 { 946 struct m_can_classdev *cdev = netdev_priv(dev); 947 int rx_work_or_err; 948 int work_done = 0; 949 950 if (!irqstatus) 951 goto end; 952 953 /* Errata workaround for issue "Needless activation of MRAF irq" 954 * During frame reception while the MCAN is in Error Passive state 955 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 956 * it may happen that MCAN_IR.MRAF is set although there was no 957 * Message RAM access failure. 958 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 959 * The Message RAM Access Failure interrupt routine needs to check 960 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 961 * In this case, reset MCAN_IR.MRAF. No further action is required. 962 */ 963 if (cdev->version <= 31 && irqstatus & IR_MRAF && 964 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 965 struct can_berr_counter bec; 966 967 __m_can_get_berr_counter(dev, &bec); 968 if (bec.rxerr == 127) { 969 m_can_write(cdev, M_CAN_IR, IR_MRAF); 970 irqstatus &= ~IR_MRAF; 971 } 972 } 973 974 if (irqstatus & IR_ERR_STATE) 975 work_done += m_can_handle_state_errors(dev, 976 m_can_read(cdev, M_CAN_PSR)); 977 978 if (irqstatus & IR_ERR_BUS_30X) 979 work_done += m_can_handle_bus_errors(dev, irqstatus, 980 m_can_read(cdev, M_CAN_PSR)); 981 982 if (irqstatus & IR_RF0N) { 983 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done)); 984 if (rx_work_or_err < 0) 985 return rx_work_or_err; 986 987 work_done += rx_work_or_err; 988 } 989 end: 990 return work_done; 991 } 992 993 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus) 994 { 995 struct m_can_classdev *cdev = netdev_priv(dev); 996 int work_done; 997 998 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus); 999 1000 /* Don't re-enable interrupts if the driver had a fatal error 1001 * (e.g., FIFO read failure). 1002 */ 1003 if (work_done < 0) 1004 m_can_disable_all_interrupts(cdev); 1005 1006 return work_done; 1007 } 1008 1009 static int m_can_poll(struct napi_struct *napi, int quota) 1010 { 1011 struct net_device *dev = napi->dev; 1012 struct m_can_classdev *cdev = netdev_priv(dev); 1013 int work_done; 1014 u32 irqstatus; 1015 1016 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 1017 1018 work_done = m_can_rx_handler(dev, quota, irqstatus); 1019 1020 /* Don't re-enable interrupts if the driver had a fatal error 1021 * (e.g., FIFO read failure). 1022 */ 1023 if (work_done >= 0 && work_done < quota) { 1024 napi_complete_done(napi, work_done); 1025 m_can_enable_all_interrupts(cdev); 1026 } 1027 1028 return work_done; 1029 } 1030 1031 /* Echo tx skb and update net stats. Peripherals use rx-offload for 1032 * echo. timestamp is used for peripherals to ensure correct ordering 1033 * by rx-offload, and is ignored for non-peripherals. 1034 */ 1035 static void m_can_tx_update_stats(struct m_can_classdev *cdev, 1036 unsigned int msg_mark, 1037 u32 timestamp) 1038 { 1039 struct net_device *dev = cdev->net; 1040 struct net_device_stats *stats = &dev->stats; 1041 1042 if (cdev->is_peripheral) 1043 stats->tx_bytes += 1044 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload, 1045 msg_mark, 1046 timestamp, 1047 NULL); 1048 else 1049 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL); 1050 1051 stats->tx_packets++; 1052 } 1053 1054 static int m_can_echo_tx_event(struct net_device *dev) 1055 { 1056 u32 txe_count = 0; 1057 u32 m_can_txefs; 1058 u32 fgi = 0; 1059 int ack_fgi = -1; 1060 int i = 0; 1061 int err = 0; 1062 unsigned int msg_mark; 1063 1064 struct m_can_classdev *cdev = netdev_priv(dev); 1065 1066 /* read tx event fifo status */ 1067 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 1068 1069 /* Get Tx Event fifo element count */ 1070 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs); 1071 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs); 1072 1073 /* Get and process all sent elements */ 1074 for (i = 0; i < txe_count; i++) { 1075 u32 txe, timestamp = 0; 1076 1077 /* get message marker, timestamp */ 1078 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe); 1079 if (err) { 1080 netdev_err(dev, "TXE FIFO read returned %d\n", err); 1081 break; 1082 } 1083 1084 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe); 1085 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16; 1086 1087 ack_fgi = fgi; 1088 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi); 1089 1090 /* update stats */ 1091 m_can_tx_update_stats(cdev, msg_mark, timestamp); 1092 } 1093 1094 if (ack_fgi != -1) 1095 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK, 1096 ack_fgi)); 1097 1098 return err; 1099 } 1100 1101 static irqreturn_t m_can_isr(int irq, void *dev_id) 1102 { 1103 struct net_device *dev = (struct net_device *)dev_id; 1104 struct m_can_classdev *cdev = netdev_priv(dev); 1105 u32 ir; 1106 1107 if (pm_runtime_suspended(cdev->dev)) 1108 return IRQ_NONE; 1109 ir = m_can_read(cdev, M_CAN_IR); 1110 if (!ir) 1111 return IRQ_NONE; 1112 1113 /* ACK all irqs */ 1114 m_can_write(cdev, M_CAN_IR, ir); 1115 1116 if (cdev->ops->clear_interrupts) 1117 cdev->ops->clear_interrupts(cdev); 1118 1119 /* schedule NAPI in case of 1120 * - rx IRQ 1121 * - state change IRQ 1122 * - bus error IRQ and bus error reporting 1123 */ 1124 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 1125 cdev->irqstatus = ir; 1126 if (!cdev->is_peripheral) { 1127 m_can_disable_all_interrupts(cdev); 1128 napi_schedule(&cdev->napi); 1129 } else if (m_can_rx_peripheral(dev, ir) < 0) { 1130 goto out_fail; 1131 } 1132 } 1133 1134 if (cdev->version == 30) { 1135 if (ir & IR_TC) { 1136 /* Transmission Complete Interrupt*/ 1137 u32 timestamp = 0; 1138 1139 if (cdev->is_peripheral) 1140 timestamp = m_can_get_timestamp(cdev); 1141 m_can_tx_update_stats(cdev, 0, timestamp); 1142 netif_wake_queue(dev); 1143 } 1144 } else { 1145 if (ir & IR_TEFN) { 1146 /* New TX FIFO Element arrived */ 1147 if (m_can_echo_tx_event(dev) != 0) 1148 goto out_fail; 1149 1150 if (netif_queue_stopped(dev) && 1151 !m_can_tx_fifo_full(cdev)) 1152 netif_wake_queue(dev); 1153 } 1154 } 1155 1156 if (cdev->is_peripheral) 1157 can_rx_offload_threaded_irq_finish(&cdev->offload); 1158 1159 return IRQ_HANDLED; 1160 1161 out_fail: 1162 m_can_disable_all_interrupts(cdev); 1163 return IRQ_HANDLED; 1164 } 1165 1166 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1167 .name = KBUILD_MODNAME, 1168 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1169 .tseg1_max = 64, 1170 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1171 .tseg2_max = 16, 1172 .sjw_max = 16, 1173 .brp_min = 1, 1174 .brp_max = 1024, 1175 .brp_inc = 1, 1176 }; 1177 1178 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1179 .name = KBUILD_MODNAME, 1180 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1181 .tseg1_max = 16, 1182 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1183 .tseg2_max = 8, 1184 .sjw_max = 4, 1185 .brp_min = 1, 1186 .brp_max = 32, 1187 .brp_inc = 1, 1188 }; 1189 1190 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1191 .name = KBUILD_MODNAME, 1192 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1193 .tseg1_max = 256, 1194 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1195 .tseg2_max = 128, 1196 .sjw_max = 128, 1197 .brp_min = 1, 1198 .brp_max = 512, 1199 .brp_inc = 1, 1200 }; 1201 1202 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1203 .name = KBUILD_MODNAME, 1204 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1205 .tseg1_max = 32, 1206 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1207 .tseg2_max = 16, 1208 .sjw_max = 16, 1209 .brp_min = 1, 1210 .brp_max = 32, 1211 .brp_inc = 1, 1212 }; 1213 1214 static int m_can_set_bittiming(struct net_device *dev) 1215 { 1216 struct m_can_classdev *cdev = netdev_priv(dev); 1217 const struct can_bittiming *bt = &cdev->can.bittiming; 1218 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1219 u16 brp, sjw, tseg1, tseg2; 1220 u32 reg_btp; 1221 1222 brp = bt->brp - 1; 1223 sjw = bt->sjw - 1; 1224 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1225 tseg2 = bt->phase_seg2 - 1; 1226 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) | 1227 FIELD_PREP(NBTP_NSJW_MASK, sjw) | 1228 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) | 1229 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2); 1230 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1231 1232 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1233 reg_btp = 0; 1234 brp = dbt->brp - 1; 1235 sjw = dbt->sjw - 1; 1236 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1237 tseg2 = dbt->phase_seg2 - 1; 1238 1239 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1240 * This is mentioned in the "Bit Time Requirements for CAN FD" 1241 * paper presented at the International CAN Conference 2013 1242 */ 1243 if (dbt->bitrate > 2500000) { 1244 u32 tdco, ssp; 1245 1246 /* Use the same value of secondary sampling point 1247 * as the data sampling point 1248 */ 1249 ssp = dbt->sample_point; 1250 1251 /* Equation based on Bosch's M_CAN User Manual's 1252 * Transmitter Delay Compensation Section 1253 */ 1254 tdco = (cdev->can.clock.freq / 1000) * 1255 ssp / dbt->bitrate; 1256 1257 /* Max valid TDCO value is 127 */ 1258 if (tdco > 127) { 1259 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1260 tdco); 1261 tdco = 127; 1262 } 1263 1264 reg_btp |= DBTP_TDC; 1265 m_can_write(cdev, M_CAN_TDCR, 1266 FIELD_PREP(TDCR_TDCO_MASK, tdco)); 1267 } 1268 1269 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) | 1270 FIELD_PREP(DBTP_DSJW_MASK, sjw) | 1271 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) | 1272 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2); 1273 1274 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* Configure M_CAN chip: 1281 * - set rx buffer/fifo element size 1282 * - configure rx fifo 1283 * - accept non-matching frame into fifo 0 1284 * - configure tx buffer 1285 * - >= v3.1.x: TX FIFO is used 1286 * - configure mode 1287 * - setup bittiming 1288 * - configure timestamp generation 1289 */ 1290 static int m_can_chip_config(struct net_device *dev) 1291 { 1292 struct m_can_classdev *cdev = netdev_priv(dev); 1293 u32 interrupts = IR_ALL_INT; 1294 u32 cccr, test; 1295 int err; 1296 1297 err = m_can_init_ram(cdev); 1298 if (err) { 1299 dev_err(cdev->dev, "Message RAM configuration failed\n"); 1300 return err; 1301 } 1302 1303 /* Disable unused interrupts */ 1304 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE | 1305 IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | 1306 IR_RF0F | IR_RF0W); 1307 1308 m_can_config_endisable(cdev, true); 1309 1310 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1311 m_can_write(cdev, M_CAN_RXESC, 1312 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) | 1313 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) | 1314 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B)); 1315 1316 /* Accept Non-matching Frames Into FIFO 0 */ 1317 m_can_write(cdev, M_CAN_GFC, 0x0); 1318 1319 if (cdev->version == 30) { 1320 /* only support one Tx Buffer currently */ 1321 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) | 1322 cdev->mcfg[MRAM_TXB].off); 1323 } else { 1324 /* TX FIFO is used for newer IP Core versions */ 1325 m_can_write(cdev, M_CAN_TXBC, 1326 FIELD_PREP(TXBC_TFQS_MASK, 1327 cdev->mcfg[MRAM_TXB].num) | 1328 cdev->mcfg[MRAM_TXB].off); 1329 } 1330 1331 /* support 64 bytes payload */ 1332 m_can_write(cdev, M_CAN_TXESC, 1333 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B)); 1334 1335 /* TX Event FIFO */ 1336 if (cdev->version == 30) { 1337 m_can_write(cdev, M_CAN_TXEFC, 1338 FIELD_PREP(TXEFC_EFS_MASK, 1) | 1339 cdev->mcfg[MRAM_TXE].off); 1340 } else { 1341 /* Full TX Event FIFO is used */ 1342 m_can_write(cdev, M_CAN_TXEFC, 1343 FIELD_PREP(TXEFC_EFS_MASK, 1344 cdev->mcfg[MRAM_TXE].num) | 1345 cdev->mcfg[MRAM_TXE].off); 1346 } 1347 1348 /* rx fifo configuration, blocking mode, fifo size 1 */ 1349 m_can_write(cdev, M_CAN_RXF0C, 1350 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) | 1351 cdev->mcfg[MRAM_RXF0].off); 1352 1353 m_can_write(cdev, M_CAN_RXF1C, 1354 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) | 1355 cdev->mcfg[MRAM_RXF1].off); 1356 1357 cccr = m_can_read(cdev, M_CAN_CCCR); 1358 test = m_can_read(cdev, M_CAN_TEST); 1359 test &= ~TEST_LBCK; 1360 if (cdev->version == 30) { 1361 /* Version 3.0.x */ 1362 1363 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1364 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) | 1365 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK))); 1366 1367 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1368 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS); 1369 1370 } else { 1371 /* Version 3.1.x or 3.2.x */ 1372 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1373 CCCR_NISO | CCCR_DAR); 1374 1375 /* Only 3.2.x has NISO Bit implemented */ 1376 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1377 cccr |= CCCR_NISO; 1378 1379 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1380 cccr |= (CCCR_BRSE | CCCR_FDOE); 1381 } 1382 1383 /* Loopback Mode */ 1384 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1385 cccr |= CCCR_TEST | CCCR_MON; 1386 test |= TEST_LBCK; 1387 } 1388 1389 /* Enable Monitoring (all versions) */ 1390 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1391 cccr |= CCCR_MON; 1392 1393 /* Disable Auto Retransmission (all versions) */ 1394 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1395 cccr |= CCCR_DAR; 1396 1397 /* Write config */ 1398 m_can_write(cdev, M_CAN_CCCR, cccr); 1399 m_can_write(cdev, M_CAN_TEST, test); 1400 1401 /* Enable interrupts */ 1402 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { 1403 if (cdev->version == 30) 1404 interrupts &= ~(IR_ERR_LEC_30X); 1405 else 1406 interrupts &= ~(IR_ERR_LEC_31X); 1407 } 1408 m_can_write(cdev, M_CAN_IE, interrupts); 1409 1410 /* route all interrupts to INT0 */ 1411 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1412 1413 /* set bittiming params */ 1414 m_can_set_bittiming(dev); 1415 1416 /* enable internal timestamp generation, with a prescaler of 16. The 1417 * prescaler is applied to the nominal bit timing 1418 */ 1419 m_can_write(cdev, M_CAN_TSCC, 1420 FIELD_PREP(TSCC_TCP_MASK, 0xf) | 1421 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL)); 1422 1423 m_can_config_endisable(cdev, false); 1424 1425 if (cdev->ops->init) 1426 cdev->ops->init(cdev); 1427 1428 return 0; 1429 } 1430 1431 static int m_can_start(struct net_device *dev) 1432 { 1433 struct m_can_classdev *cdev = netdev_priv(dev); 1434 int ret; 1435 1436 /* basic m_can configuration */ 1437 ret = m_can_chip_config(dev); 1438 if (ret) 1439 return ret; 1440 1441 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1442 1443 m_can_enable_all_interrupts(cdev); 1444 1445 return 0; 1446 } 1447 1448 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1449 { 1450 switch (mode) { 1451 case CAN_MODE_START: 1452 m_can_clean(dev); 1453 m_can_start(dev); 1454 netif_wake_queue(dev); 1455 break; 1456 default: 1457 return -EOPNOTSUPP; 1458 } 1459 1460 return 0; 1461 } 1462 1463 /* Checks core release number of M_CAN 1464 * returns 0 if an unsupported device is detected 1465 * else it returns the release and step coded as: 1466 * return value = 10 * <release> + 1 * <step> 1467 */ 1468 static int m_can_check_core_release(struct m_can_classdev *cdev) 1469 { 1470 u32 crel_reg; 1471 u8 rel; 1472 u8 step; 1473 int res; 1474 1475 /* Read Core Release Version and split into version number 1476 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1477 */ 1478 crel_reg = m_can_read(cdev, M_CAN_CREL); 1479 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg); 1480 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg); 1481 1482 if (rel == 3) { 1483 /* M_CAN v3.x.y: create return value */ 1484 res = 30 + step; 1485 } else { 1486 /* Unsupported M_CAN version */ 1487 res = 0; 1488 } 1489 1490 return res; 1491 } 1492 1493 /* Selectable Non ISO support only in version 3.2.x 1494 * This function checks if the bit is writable. 1495 */ 1496 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1497 { 1498 u32 cccr_reg, cccr_poll = 0; 1499 int niso_timeout = -ETIMEDOUT; 1500 int i; 1501 1502 m_can_config_endisable(cdev, true); 1503 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1504 cccr_reg |= CCCR_NISO; 1505 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1506 1507 for (i = 0; i <= 10; i++) { 1508 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1509 if (cccr_poll == cccr_reg) { 1510 niso_timeout = 0; 1511 break; 1512 } 1513 1514 usleep_range(1, 5); 1515 } 1516 1517 /* Clear NISO */ 1518 cccr_reg &= ~(CCCR_NISO); 1519 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1520 1521 m_can_config_endisable(cdev, false); 1522 1523 /* return false if time out (-ETIMEDOUT), else return true */ 1524 return !niso_timeout; 1525 } 1526 1527 static int m_can_dev_setup(struct m_can_classdev *cdev) 1528 { 1529 struct net_device *dev = cdev->net; 1530 int m_can_version, err; 1531 1532 m_can_version = m_can_check_core_release(cdev); 1533 /* return if unsupported version */ 1534 if (!m_can_version) { 1535 dev_err(cdev->dev, "Unsupported version number: %2d", 1536 m_can_version); 1537 return -EINVAL; 1538 } 1539 1540 if (!cdev->is_peripheral) 1541 netif_napi_add(dev, &cdev->napi, m_can_poll); 1542 1543 /* Shared properties of all M_CAN versions */ 1544 cdev->version = m_can_version; 1545 cdev->can.do_set_mode = m_can_set_mode; 1546 cdev->can.do_get_berr_counter = m_can_get_berr_counter; 1547 1548 /* Set M_CAN supported operations */ 1549 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1550 CAN_CTRLMODE_LISTENONLY | 1551 CAN_CTRLMODE_BERR_REPORTING | 1552 CAN_CTRLMODE_FD | 1553 CAN_CTRLMODE_ONE_SHOT; 1554 1555 /* Set properties depending on M_CAN version */ 1556 switch (cdev->version) { 1557 case 30: 1558 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1559 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1560 if (err) 1561 return err; 1562 cdev->can.bittiming_const = &m_can_bittiming_const_30X; 1563 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X; 1564 break; 1565 case 31: 1566 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1567 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1568 if (err) 1569 return err; 1570 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1571 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1572 break; 1573 case 32: 1574 case 33: 1575 /* Support both MCAN version v3.2.x and v3.3.0 */ 1576 cdev->can.bittiming_const = &m_can_bittiming_const_31X; 1577 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X; 1578 1579 cdev->can.ctrlmode_supported |= 1580 (m_can_niso_supported(cdev) ? 1581 CAN_CTRLMODE_FD_NON_ISO : 0); 1582 break; 1583 default: 1584 dev_err(cdev->dev, "Unsupported version number: %2d", 1585 cdev->version); 1586 return -EINVAL; 1587 } 1588 1589 if (cdev->ops->init) 1590 cdev->ops->init(cdev); 1591 1592 return 0; 1593 } 1594 1595 static void m_can_stop(struct net_device *dev) 1596 { 1597 struct m_can_classdev *cdev = netdev_priv(dev); 1598 1599 /* disable all interrupts */ 1600 m_can_disable_all_interrupts(cdev); 1601 1602 /* Set init mode to disengage from the network */ 1603 m_can_config_endisable(cdev, true); 1604 1605 /* set the state as STOPPED */ 1606 cdev->can.state = CAN_STATE_STOPPED; 1607 } 1608 1609 static int m_can_close(struct net_device *dev) 1610 { 1611 struct m_can_classdev *cdev = netdev_priv(dev); 1612 1613 netif_stop_queue(dev); 1614 1615 m_can_stop(dev); 1616 if (dev->irq) 1617 free_irq(dev->irq, dev); 1618 1619 if (cdev->is_peripheral) { 1620 cdev->tx_skb = NULL; 1621 destroy_workqueue(cdev->tx_wq); 1622 cdev->tx_wq = NULL; 1623 can_rx_offload_disable(&cdev->offload); 1624 } else { 1625 napi_disable(&cdev->napi); 1626 } 1627 1628 close_candev(dev); 1629 1630 m_can_clk_stop(cdev); 1631 phy_power_off(cdev->transceiver); 1632 1633 return 0; 1634 } 1635 1636 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1637 { 1638 struct m_can_classdev *cdev = netdev_priv(dev); 1639 /*get wrap around for loopback skb index */ 1640 unsigned int wrap = cdev->can.echo_skb_max; 1641 int next_idx; 1642 1643 /* calculate next index */ 1644 next_idx = (++putidx >= wrap ? 0 : putidx); 1645 1646 /* check if occupied */ 1647 return !!cdev->can.echo_skb[next_idx]; 1648 } 1649 1650 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1651 { 1652 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1653 struct net_device *dev = cdev->net; 1654 struct sk_buff *skb = cdev->tx_skb; 1655 struct id_and_dlc fifo_header; 1656 u32 cccr, fdflags; 1657 u32 txfqs; 1658 int err; 1659 int putidx; 1660 1661 cdev->tx_skb = NULL; 1662 1663 /* Generate ID field for TX buffer Element */ 1664 /* Common to all supported M_CAN versions */ 1665 if (cf->can_id & CAN_EFF_FLAG) { 1666 fifo_header.id = cf->can_id & CAN_EFF_MASK; 1667 fifo_header.id |= TX_BUF_XTD; 1668 } else { 1669 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18); 1670 } 1671 1672 if (cf->can_id & CAN_RTR_FLAG) 1673 fifo_header.id |= TX_BUF_RTR; 1674 1675 if (cdev->version == 30) { 1676 netif_stop_queue(dev); 1677 1678 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16; 1679 1680 /* Write the frame ID, DLC, and payload to the FIFO element. */ 1681 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2); 1682 if (err) 1683 goto out_fail; 1684 1685 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA, 1686 cf->data, DIV_ROUND_UP(cf->len, 4)); 1687 if (err) 1688 goto out_fail; 1689 1690 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1691 cccr = m_can_read(cdev, M_CAN_CCCR); 1692 cccr &= ~CCCR_CMR_MASK; 1693 if (can_is_canfd_skb(skb)) { 1694 if (cf->flags & CANFD_BRS) 1695 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1696 CCCR_CMR_CANFD_BRS); 1697 else 1698 cccr |= FIELD_PREP(CCCR_CMR_MASK, 1699 CCCR_CMR_CANFD); 1700 } else { 1701 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN); 1702 } 1703 m_can_write(cdev, M_CAN_CCCR, cccr); 1704 } 1705 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1706 1707 can_put_echo_skb(skb, dev, 0, 0); 1708 1709 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1710 /* End of xmit function for version 3.0.x */ 1711 } else { 1712 /* Transmit routine for version >= v3.1.x */ 1713 1714 txfqs = m_can_read(cdev, M_CAN_TXFQS); 1715 1716 /* Check if FIFO full */ 1717 if (_m_can_tx_fifo_full(txfqs)) { 1718 /* This shouldn't happen */ 1719 netif_stop_queue(dev); 1720 netdev_warn(dev, 1721 "TX queue active although FIFO is full."); 1722 1723 if (cdev->is_peripheral) { 1724 kfree_skb(skb); 1725 dev->stats.tx_dropped++; 1726 return NETDEV_TX_OK; 1727 } else { 1728 return NETDEV_TX_BUSY; 1729 } 1730 } 1731 1732 /* get put index for frame */ 1733 putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs); 1734 1735 /* Construct DLC Field, with CAN-FD configuration. 1736 * Use the put index of the fifo as the message marker, 1737 * used in the TX interrupt for sending the correct echo frame. 1738 */ 1739 1740 /* get CAN FD configuration of frame */ 1741 fdflags = 0; 1742 if (can_is_canfd_skb(skb)) { 1743 fdflags |= TX_BUF_FDF; 1744 if (cf->flags & CANFD_BRS) 1745 fdflags |= TX_BUF_BRS; 1746 } 1747 1748 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) | 1749 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) | 1750 fdflags | TX_BUF_EFC; 1751 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2); 1752 if (err) 1753 goto out_fail; 1754 1755 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA, 1756 cf->data, DIV_ROUND_UP(cf->len, 4)); 1757 if (err) 1758 goto out_fail; 1759 1760 /* Push loopback echo. 1761 * Will be looped back on TX interrupt based on message marker 1762 */ 1763 can_put_echo_skb(skb, dev, putidx, 0); 1764 1765 /* Enable TX FIFO element to start transfer */ 1766 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1767 1768 /* stop network queue if fifo full */ 1769 if (m_can_tx_fifo_full(cdev) || 1770 m_can_next_echo_skb_occupied(dev, putidx)) 1771 netif_stop_queue(dev); 1772 } 1773 1774 return NETDEV_TX_OK; 1775 1776 out_fail: 1777 netdev_err(dev, "FIFO write returned %d\n", err); 1778 m_can_disable_all_interrupts(cdev); 1779 return NETDEV_TX_BUSY; 1780 } 1781 1782 static void m_can_tx_work_queue(struct work_struct *ws) 1783 { 1784 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1785 tx_work); 1786 1787 m_can_tx_handler(cdev); 1788 } 1789 1790 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1791 struct net_device *dev) 1792 { 1793 struct m_can_classdev *cdev = netdev_priv(dev); 1794 1795 if (can_dev_dropped_skb(dev, skb)) 1796 return NETDEV_TX_OK; 1797 1798 if (cdev->is_peripheral) { 1799 if (cdev->tx_skb) { 1800 netdev_err(dev, "hard_xmit called while tx busy\n"); 1801 return NETDEV_TX_BUSY; 1802 } 1803 1804 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1805 m_can_clean(dev); 1806 } else { 1807 /* Need to stop the queue to avoid numerous requests 1808 * from being sent. Suggested improvement is to create 1809 * a queueing mechanism that will queue the skbs and 1810 * process them in order. 1811 */ 1812 cdev->tx_skb = skb; 1813 netif_stop_queue(cdev->net); 1814 queue_work(cdev->tx_wq, &cdev->tx_work); 1815 } 1816 } else { 1817 cdev->tx_skb = skb; 1818 return m_can_tx_handler(cdev); 1819 } 1820 1821 return NETDEV_TX_OK; 1822 } 1823 1824 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer) 1825 { 1826 struct m_can_classdev *cdev = container_of(timer, struct 1827 m_can_classdev, hrtimer); 1828 1829 m_can_isr(0, cdev->net); 1830 1831 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS)); 1832 1833 return HRTIMER_RESTART; 1834 } 1835 1836 static int m_can_open(struct net_device *dev) 1837 { 1838 struct m_can_classdev *cdev = netdev_priv(dev); 1839 int err; 1840 1841 err = phy_power_on(cdev->transceiver); 1842 if (err) 1843 return err; 1844 1845 err = m_can_clk_start(cdev); 1846 if (err) 1847 goto out_phy_power_off; 1848 1849 /* open the can device */ 1850 err = open_candev(dev); 1851 if (err) { 1852 netdev_err(dev, "failed to open can device\n"); 1853 goto exit_disable_clks; 1854 } 1855 1856 if (cdev->is_peripheral) 1857 can_rx_offload_enable(&cdev->offload); 1858 else 1859 napi_enable(&cdev->napi); 1860 1861 /* register interrupt handler */ 1862 if (cdev->is_peripheral) { 1863 cdev->tx_skb = NULL; 1864 cdev->tx_wq = alloc_workqueue("mcan_wq", 1865 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1866 if (!cdev->tx_wq) { 1867 err = -ENOMEM; 1868 goto out_wq_fail; 1869 } 1870 1871 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1872 1873 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1874 IRQF_ONESHOT, 1875 dev->name, dev); 1876 } else if (dev->irq) { 1877 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1878 dev); 1879 } 1880 1881 if (err < 0) { 1882 netdev_err(dev, "failed to request interrupt\n"); 1883 goto exit_irq_fail; 1884 } 1885 1886 /* start the m_can controller */ 1887 err = m_can_start(dev); 1888 if (err) 1889 goto exit_start_fail; 1890 1891 netif_start_queue(dev); 1892 1893 return 0; 1894 1895 exit_start_fail: 1896 if (cdev->is_peripheral || dev->irq) 1897 free_irq(dev->irq, dev); 1898 exit_irq_fail: 1899 if (cdev->is_peripheral) 1900 destroy_workqueue(cdev->tx_wq); 1901 out_wq_fail: 1902 if (cdev->is_peripheral) 1903 can_rx_offload_disable(&cdev->offload); 1904 else 1905 napi_disable(&cdev->napi); 1906 close_candev(dev); 1907 exit_disable_clks: 1908 m_can_clk_stop(cdev); 1909 out_phy_power_off: 1910 phy_power_off(cdev->transceiver); 1911 return err; 1912 } 1913 1914 static const struct net_device_ops m_can_netdev_ops = { 1915 .ndo_open = m_can_open, 1916 .ndo_stop = m_can_close, 1917 .ndo_start_xmit = m_can_start_xmit, 1918 .ndo_change_mtu = can_change_mtu, 1919 }; 1920 1921 static const struct ethtool_ops m_can_ethtool_ops = { 1922 .get_ts_info = ethtool_op_get_ts_info, 1923 }; 1924 1925 static int register_m_can_dev(struct net_device *dev) 1926 { 1927 dev->flags |= IFF_ECHO; /* we support local echo */ 1928 dev->netdev_ops = &m_can_netdev_ops; 1929 dev->ethtool_ops = &m_can_ethtool_ops; 1930 1931 return register_candev(dev); 1932 } 1933 1934 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size) 1935 { 1936 u32 total_size; 1937 1938 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off + 1939 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1940 if (total_size > mram_max_size) { 1941 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n", 1942 total_size, mram_max_size); 1943 return -EINVAL; 1944 } 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg); 1949 1950 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1951 const u32 *mram_config_vals) 1952 { 1953 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1954 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1955 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1956 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1957 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1958 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1959 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1960 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1961 FIELD_MAX(RXFC_FS_MASK); 1962 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1963 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1964 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1965 FIELD_MAX(RXFC_FS_MASK); 1966 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1967 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1968 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1969 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1970 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1971 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1972 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1973 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1974 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1975 FIELD_MAX(TXBC_NDTB_MASK); 1976 1977 dev_dbg(cdev->dev, 1978 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1979 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1980 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1981 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1982 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1983 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1984 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1985 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1986 } 1987 1988 int m_can_init_ram(struct m_can_classdev *cdev) 1989 { 1990 int end, i, start; 1991 int err = 0; 1992 1993 /* initialize the entire Message RAM in use to avoid possible 1994 * ECC/parity checksum errors when reading an uninitialized buffer 1995 */ 1996 start = cdev->mcfg[MRAM_SIDF].off; 1997 end = cdev->mcfg[MRAM_TXB].off + 1998 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1999 2000 for (i = start; i < end; i += 4) { 2001 err = m_can_fifo_write_no_off(cdev, i, 0x0); 2002 if (err) 2003 break; 2004 } 2005 2006 return err; 2007 } 2008 EXPORT_SYMBOL_GPL(m_can_init_ram); 2009 2010 int m_can_class_get_clocks(struct m_can_classdev *cdev) 2011 { 2012 int ret = 0; 2013 2014 cdev->hclk = devm_clk_get(cdev->dev, "hclk"); 2015 cdev->cclk = devm_clk_get(cdev->dev, "cclk"); 2016 2017 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) { 2018 dev_err(cdev->dev, "no clock found\n"); 2019 ret = -ENODEV; 2020 } 2021 2022 return ret; 2023 } 2024 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 2025 2026 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev, 2027 int sizeof_priv) 2028 { 2029 struct m_can_classdev *class_dev = NULL; 2030 u32 mram_config_vals[MRAM_CFG_LEN]; 2031 struct net_device *net_dev; 2032 u32 tx_fifo_size; 2033 int ret; 2034 2035 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 2036 "bosch,mram-cfg", 2037 mram_config_vals, 2038 sizeof(mram_config_vals) / 4); 2039 if (ret) { 2040 dev_err(dev, "Could not get Message RAM configuration."); 2041 goto out; 2042 } 2043 2044 /* Get TX FIFO size 2045 * Defines the total amount of echo buffers for loopback 2046 */ 2047 tx_fifo_size = mram_config_vals[7]; 2048 2049 /* allocate the m_can device */ 2050 net_dev = alloc_candev(sizeof_priv, tx_fifo_size); 2051 if (!net_dev) { 2052 dev_err(dev, "Failed to allocate CAN device"); 2053 goto out; 2054 } 2055 2056 class_dev = netdev_priv(net_dev); 2057 class_dev->net = net_dev; 2058 class_dev->dev = dev; 2059 SET_NETDEV_DEV(net_dev, dev); 2060 2061 m_can_of_parse_mram(class_dev, mram_config_vals); 2062 out: 2063 return class_dev; 2064 } 2065 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 2066 2067 void m_can_class_free_dev(struct net_device *net) 2068 { 2069 free_candev(net); 2070 } 2071 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 2072 2073 int m_can_class_register(struct m_can_classdev *cdev) 2074 { 2075 int ret; 2076 2077 if (cdev->pm_clock_support) { 2078 ret = m_can_clk_start(cdev); 2079 if (ret) 2080 return ret; 2081 } 2082 2083 if (cdev->is_peripheral) { 2084 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload, 2085 NAPI_POLL_WEIGHT); 2086 if (ret) 2087 goto clk_disable; 2088 } 2089 2090 if (!cdev->net->irq) 2091 cdev->hrtimer.function = &hrtimer_callback; 2092 2093 ret = m_can_dev_setup(cdev); 2094 if (ret) 2095 goto rx_offload_del; 2096 2097 ret = register_m_can_dev(cdev->net); 2098 if (ret) { 2099 dev_err(cdev->dev, "registering %s failed (err=%d)\n", 2100 cdev->net->name, ret); 2101 goto rx_offload_del; 2102 } 2103 2104 of_can_transceiver(cdev->net); 2105 2106 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n", 2107 KBUILD_MODNAME, cdev->net->irq, cdev->version); 2108 2109 /* Probe finished 2110 * Stop clocks. They will be reactivated once the M_CAN device is opened 2111 */ 2112 m_can_clk_stop(cdev); 2113 2114 return 0; 2115 2116 rx_offload_del: 2117 if (cdev->is_peripheral) 2118 can_rx_offload_del(&cdev->offload); 2119 clk_disable: 2120 m_can_clk_stop(cdev); 2121 2122 return ret; 2123 } 2124 EXPORT_SYMBOL_GPL(m_can_class_register); 2125 2126 void m_can_class_unregister(struct m_can_classdev *cdev) 2127 { 2128 if (cdev->is_peripheral) 2129 can_rx_offload_del(&cdev->offload); 2130 unregister_candev(cdev->net); 2131 } 2132 EXPORT_SYMBOL_GPL(m_can_class_unregister); 2133 2134 int m_can_class_suspend(struct device *dev) 2135 { 2136 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2137 struct net_device *ndev = cdev->net; 2138 2139 if (netif_running(ndev)) { 2140 netif_stop_queue(ndev); 2141 netif_device_detach(ndev); 2142 m_can_stop(ndev); 2143 m_can_clk_stop(cdev); 2144 } 2145 2146 pinctrl_pm_select_sleep_state(dev); 2147 2148 cdev->can.state = CAN_STATE_SLEEPING; 2149 2150 return 0; 2151 } 2152 EXPORT_SYMBOL_GPL(m_can_class_suspend); 2153 2154 int m_can_class_resume(struct device *dev) 2155 { 2156 struct m_can_classdev *cdev = dev_get_drvdata(dev); 2157 struct net_device *ndev = cdev->net; 2158 2159 pinctrl_pm_select_default_state(dev); 2160 2161 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 2162 2163 if (netif_running(ndev)) { 2164 int ret; 2165 2166 ret = m_can_clk_start(cdev); 2167 if (ret) 2168 return ret; 2169 ret = m_can_start(ndev); 2170 if (ret) { 2171 m_can_clk_stop(cdev); 2172 2173 return ret; 2174 } 2175 2176 netif_device_attach(ndev); 2177 netif_start_queue(ndev); 2178 } 2179 2180 return 0; 2181 } 2182 EXPORT_SYMBOL_GPL(m_can_class_resume); 2183 2184 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 2185 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 2186 MODULE_LICENSE("GPL v2"); 2187 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 2188