1 // SPDX-License-Identifier: GPL-2.0 2 // CAN bus driver for Bosch M_CAN controller 3 // Copyright (C) 2014 Freescale Semiconductor, Inc. 4 // Dong Aisheng <b29396@freescale.com> 5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ 6 7 /* Bosch M_CAN user manual can be obtained from: 8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ 9 * mcan_users_manual_v302.pdf 10 */ 11 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/netdevice.h> 17 #include <linux/of.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/iopoll.h> 22 #include <linux/can/dev.h> 23 #include <linux/pinctrl/consumer.h> 24 25 #include "m_can.h" 26 27 /* registers definition */ 28 enum m_can_reg { 29 M_CAN_CREL = 0x0, 30 M_CAN_ENDN = 0x4, 31 M_CAN_CUST = 0x8, 32 M_CAN_DBTP = 0xc, 33 M_CAN_TEST = 0x10, 34 M_CAN_RWD = 0x14, 35 M_CAN_CCCR = 0x18, 36 M_CAN_NBTP = 0x1c, 37 M_CAN_TSCC = 0x20, 38 M_CAN_TSCV = 0x24, 39 M_CAN_TOCC = 0x28, 40 M_CAN_TOCV = 0x2c, 41 M_CAN_ECR = 0x40, 42 M_CAN_PSR = 0x44, 43 /* TDCR Register only available for version >=3.1.x */ 44 M_CAN_TDCR = 0x48, 45 M_CAN_IR = 0x50, 46 M_CAN_IE = 0x54, 47 M_CAN_ILS = 0x58, 48 M_CAN_ILE = 0x5c, 49 M_CAN_GFC = 0x80, 50 M_CAN_SIDFC = 0x84, 51 M_CAN_XIDFC = 0x88, 52 M_CAN_XIDAM = 0x90, 53 M_CAN_HPMS = 0x94, 54 M_CAN_NDAT1 = 0x98, 55 M_CAN_NDAT2 = 0x9c, 56 M_CAN_RXF0C = 0xa0, 57 M_CAN_RXF0S = 0xa4, 58 M_CAN_RXF0A = 0xa8, 59 M_CAN_RXBC = 0xac, 60 M_CAN_RXF1C = 0xb0, 61 M_CAN_RXF1S = 0xb4, 62 M_CAN_RXF1A = 0xb8, 63 M_CAN_RXESC = 0xbc, 64 M_CAN_TXBC = 0xc0, 65 M_CAN_TXFQS = 0xc4, 66 M_CAN_TXESC = 0xc8, 67 M_CAN_TXBRP = 0xcc, 68 M_CAN_TXBAR = 0xd0, 69 M_CAN_TXBCR = 0xd4, 70 M_CAN_TXBTO = 0xd8, 71 M_CAN_TXBCF = 0xdc, 72 M_CAN_TXBTIE = 0xe0, 73 M_CAN_TXBCIE = 0xe4, 74 M_CAN_TXEFC = 0xf0, 75 M_CAN_TXEFS = 0xf4, 76 M_CAN_TXEFA = 0xf8, 77 }; 78 79 /* napi related */ 80 #define M_CAN_NAPI_WEIGHT 64 81 82 /* message ram configuration data length */ 83 #define MRAM_CFG_LEN 8 84 85 /* Core Release Register (CREL) */ 86 #define CREL_REL_SHIFT 28 87 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT) 88 #define CREL_STEP_SHIFT 24 89 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT) 90 #define CREL_SUBSTEP_SHIFT 20 91 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT) 92 93 /* Data Bit Timing & Prescaler Register (DBTP) */ 94 #define DBTP_TDC BIT(23) 95 #define DBTP_DBRP_SHIFT 16 96 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT) 97 #define DBTP_DTSEG1_SHIFT 8 98 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT) 99 #define DBTP_DTSEG2_SHIFT 4 100 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT) 101 #define DBTP_DSJW_SHIFT 0 102 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT) 103 104 /* Transmitter Delay Compensation Register (TDCR) */ 105 #define TDCR_TDCO_SHIFT 8 106 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT) 107 #define TDCR_TDCF_SHIFT 0 108 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT) 109 110 /* Test Register (TEST) */ 111 #define TEST_LBCK BIT(4) 112 113 /* CC Control Register(CCCR) */ 114 #define CCCR_CMR_MASK 0x3 115 #define CCCR_CMR_SHIFT 10 116 #define CCCR_CMR_CANFD 0x1 117 #define CCCR_CMR_CANFD_BRS 0x2 118 #define CCCR_CMR_CAN 0x3 119 #define CCCR_CME_MASK 0x3 120 #define CCCR_CME_SHIFT 8 121 #define CCCR_CME_CAN 0 122 #define CCCR_CME_CANFD 0x1 123 #define CCCR_CME_CANFD_BRS 0x2 124 #define CCCR_TXP BIT(14) 125 #define CCCR_TEST BIT(7) 126 #define CCCR_DAR BIT(6) 127 #define CCCR_MON BIT(5) 128 #define CCCR_CSR BIT(4) 129 #define CCCR_CSA BIT(3) 130 #define CCCR_ASM BIT(2) 131 #define CCCR_CCE BIT(1) 132 #define CCCR_INIT BIT(0) 133 #define CCCR_CANFD 0x10 134 /* for version >=3.1.x */ 135 #define CCCR_EFBI BIT(13) 136 #define CCCR_PXHD BIT(12) 137 #define CCCR_BRSE BIT(9) 138 #define CCCR_FDOE BIT(8) 139 /* only for version >=3.2.x */ 140 #define CCCR_NISO BIT(15) 141 142 /* Nominal Bit Timing & Prescaler Register (NBTP) */ 143 #define NBTP_NSJW_SHIFT 25 144 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT) 145 #define NBTP_NBRP_SHIFT 16 146 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT) 147 #define NBTP_NTSEG1_SHIFT 8 148 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT) 149 #define NBTP_NTSEG2_SHIFT 0 150 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT) 151 152 /* Error Counter Register(ECR) */ 153 #define ECR_RP BIT(15) 154 #define ECR_REC_SHIFT 8 155 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) 156 #define ECR_TEC_SHIFT 0 157 #define ECR_TEC_MASK 0xff 158 159 /* Protocol Status Register(PSR) */ 160 #define PSR_BO BIT(7) 161 #define PSR_EW BIT(6) 162 #define PSR_EP BIT(5) 163 #define PSR_LEC_MASK 0x7 164 165 /* Interrupt Register(IR) */ 166 #define IR_ALL_INT 0xffffffff 167 168 /* Renamed bits for versions > 3.1.x */ 169 #define IR_ARA BIT(29) 170 #define IR_PED BIT(28) 171 #define IR_PEA BIT(27) 172 173 /* Bits for version 3.0.x */ 174 #define IR_STE BIT(31) 175 #define IR_FOE BIT(30) 176 #define IR_ACKE BIT(29) 177 #define IR_BE BIT(28) 178 #define IR_CRCE BIT(27) 179 #define IR_WDI BIT(26) 180 #define IR_BO BIT(25) 181 #define IR_EW BIT(24) 182 #define IR_EP BIT(23) 183 #define IR_ELO BIT(22) 184 #define IR_BEU BIT(21) 185 #define IR_BEC BIT(20) 186 #define IR_DRX BIT(19) 187 #define IR_TOO BIT(18) 188 #define IR_MRAF BIT(17) 189 #define IR_TSW BIT(16) 190 #define IR_TEFL BIT(15) 191 #define IR_TEFF BIT(14) 192 #define IR_TEFW BIT(13) 193 #define IR_TEFN BIT(12) 194 #define IR_TFE BIT(11) 195 #define IR_TCF BIT(10) 196 #define IR_TC BIT(9) 197 #define IR_HPM BIT(8) 198 #define IR_RF1L BIT(7) 199 #define IR_RF1F BIT(6) 200 #define IR_RF1W BIT(5) 201 #define IR_RF1N BIT(4) 202 #define IR_RF0L BIT(3) 203 #define IR_RF0F BIT(2) 204 #define IR_RF0W BIT(1) 205 #define IR_RF0N BIT(0) 206 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) 207 208 /* Interrupts for version 3.0.x */ 209 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) 210 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \ 211 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 212 IR_RF1L | IR_RF0L) 213 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) 214 /* Interrupts for version >= 3.1.x */ 215 #define IR_ERR_LEC_31X (IR_PED | IR_PEA) 216 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \ 217 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \ 218 IR_RF1L | IR_RF0L) 219 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) 220 221 /* Interrupt Line Select (ILS) */ 222 #define ILS_ALL_INT0 0x0 223 #define ILS_ALL_INT1 0xFFFFFFFF 224 225 /* Interrupt Line Enable (ILE) */ 226 #define ILE_EINT1 BIT(1) 227 #define ILE_EINT0 BIT(0) 228 229 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ 230 #define RXFC_FWM_SHIFT 24 231 #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT) 232 #define RXFC_FS_SHIFT 16 233 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT) 234 235 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ 236 #define RXFS_RFL BIT(25) 237 #define RXFS_FF BIT(24) 238 #define RXFS_FPI_SHIFT 16 239 #define RXFS_FPI_MASK 0x3f0000 240 #define RXFS_FGI_SHIFT 8 241 #define RXFS_FGI_MASK 0x3f00 242 #define RXFS_FFL_MASK 0x7f 243 244 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */ 245 #define M_CAN_RXESC_8BYTES 0x0 246 #define M_CAN_RXESC_64BYTES 0x777 247 248 /* Tx Buffer Configuration(TXBC) */ 249 #define TXBC_NDTB_SHIFT 16 250 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT) 251 #define TXBC_TFQS_SHIFT 24 252 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT) 253 254 /* Tx FIFO/Queue Status (TXFQS) */ 255 #define TXFQS_TFQF BIT(21) 256 #define TXFQS_TFQPI_SHIFT 16 257 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT) 258 #define TXFQS_TFGI_SHIFT 8 259 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT) 260 #define TXFQS_TFFL_SHIFT 0 261 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT) 262 263 /* Tx Buffer Element Size Configuration(TXESC) */ 264 #define TXESC_TBDS_8BYTES 0x0 265 #define TXESC_TBDS_64BYTES 0x7 266 267 /* Tx Event FIFO Configuration (TXEFC) */ 268 #define TXEFC_EFS_SHIFT 16 269 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT) 270 271 /* Tx Event FIFO Status (TXEFS) */ 272 #define TXEFS_TEFL BIT(25) 273 #define TXEFS_EFF BIT(24) 274 #define TXEFS_EFGI_SHIFT 8 275 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT) 276 #define TXEFS_EFFL_SHIFT 0 277 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT) 278 279 /* Tx Event FIFO Acknowledge (TXEFA) */ 280 #define TXEFA_EFAI_SHIFT 0 281 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT) 282 283 /* Message RAM Configuration (in bytes) */ 284 #define SIDF_ELEMENT_SIZE 4 285 #define XIDF_ELEMENT_SIZE 8 286 #define RXF0_ELEMENT_SIZE 72 287 #define RXF1_ELEMENT_SIZE 72 288 #define RXB_ELEMENT_SIZE 72 289 #define TXE_ELEMENT_SIZE 8 290 #define TXB_ELEMENT_SIZE 72 291 292 /* Message RAM Elements */ 293 #define M_CAN_FIFO_ID 0x0 294 #define M_CAN_FIFO_DLC 0x4 295 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) 296 297 /* Rx Buffer Element */ 298 /* R0 */ 299 #define RX_BUF_ESI BIT(31) 300 #define RX_BUF_XTD BIT(30) 301 #define RX_BUF_RTR BIT(29) 302 /* R1 */ 303 #define RX_BUF_ANMF BIT(31) 304 #define RX_BUF_FDF BIT(21) 305 #define RX_BUF_BRS BIT(20) 306 307 /* Tx Buffer Element */ 308 /* T0 */ 309 #define TX_BUF_ESI BIT(31) 310 #define TX_BUF_XTD BIT(30) 311 #define TX_BUF_RTR BIT(29) 312 /* T1 */ 313 #define TX_BUF_EFC BIT(23) 314 #define TX_BUF_FDF BIT(21) 315 #define TX_BUF_BRS BIT(20) 316 #define TX_BUF_MM_SHIFT 24 317 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT) 318 319 /* Tx event FIFO Element */ 320 /* E1 */ 321 #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT 322 #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT) 323 324 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) 325 { 326 return cdev->ops->read_reg(cdev, reg); 327 } 328 329 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, 330 u32 val) 331 { 332 cdev->ops->write_reg(cdev, reg, val); 333 } 334 335 static u32 m_can_fifo_read(struct m_can_classdev *cdev, 336 u32 fgi, unsigned int offset) 337 { 338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + 339 offset; 340 341 return cdev->ops->read_fifo(cdev, addr_offset); 342 } 343 344 static void m_can_fifo_write(struct m_can_classdev *cdev, 345 u32 fpi, unsigned int offset, u32 val) 346 { 347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + 348 offset; 349 350 cdev->ops->write_fifo(cdev, addr_offset, val); 351 } 352 353 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, 354 u32 fpi, u32 val) 355 { 356 cdev->ops->write_fifo(cdev, fpi, val); 357 } 358 359 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) 360 { 361 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + 362 offset; 363 364 return cdev->ops->read_fifo(cdev, addr_offset); 365 } 366 367 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) 368 { 369 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); 370 } 371 372 void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) 373 { 374 u32 cccr = m_can_read(cdev, M_CAN_CCCR); 375 u32 timeout = 10; 376 u32 val = 0; 377 378 /* Clear the Clock stop request if it was set */ 379 if (cccr & CCCR_CSR) 380 cccr &= ~CCCR_CSR; 381 382 if (enable) { 383 /* Clear the Clock stop request if it was set */ 384 if (cccr & CCCR_CSR) 385 cccr &= ~CCCR_CSR; 386 387 /* enable m_can configuration */ 388 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); 389 udelay(5); 390 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ 391 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); 392 } else { 393 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); 394 } 395 396 /* there's a delay for module initialization */ 397 if (enable) 398 val = CCCR_INIT | CCCR_CCE; 399 400 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { 401 if (timeout == 0) { 402 netdev_warn(cdev->net, "Failed to init module\n"); 403 return; 404 } 405 timeout--; 406 udelay(1); 407 } 408 } 409 410 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) 411 { 412 /* Only interrupt line 0 is used in this driver */ 413 m_can_write(cdev, M_CAN_ILE, ILE_EINT0); 414 } 415 416 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) 417 { 418 m_can_write(cdev, M_CAN_ILE, 0x0); 419 } 420 421 static void m_can_clean(struct net_device *net) 422 { 423 struct m_can_classdev *cdev = netdev_priv(net); 424 425 if (cdev->tx_skb) { 426 int putidx = 0; 427 428 net->stats.tx_errors++; 429 if (cdev->version > 30) 430 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & 431 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); 432 433 can_free_echo_skb(cdev->net, putidx); 434 cdev->tx_skb = NULL; 435 } 436 } 437 438 static void m_can_read_fifo(struct net_device *dev, u32 rxfs) 439 { 440 struct net_device_stats *stats = &dev->stats; 441 struct m_can_classdev *cdev = netdev_priv(dev); 442 struct canfd_frame *cf; 443 struct sk_buff *skb; 444 u32 id, fgi, dlc; 445 int i; 446 447 /* calculate the fifo get index for where to read data */ 448 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT; 449 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); 450 if (dlc & RX_BUF_FDF) 451 skb = alloc_canfd_skb(dev, &cf); 452 else 453 skb = alloc_can_skb(dev, (struct can_frame **)&cf); 454 if (!skb) { 455 stats->rx_dropped++; 456 return; 457 } 458 459 if (dlc & RX_BUF_FDF) 460 cf->len = can_dlc2len((dlc >> 16) & 0x0F); 461 else 462 cf->len = get_can_dlc((dlc >> 16) & 0x0F); 463 464 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); 465 if (id & RX_BUF_XTD) 466 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; 467 else 468 cf->can_id = (id >> 18) & CAN_SFF_MASK; 469 470 if (id & RX_BUF_ESI) { 471 cf->flags |= CANFD_ESI; 472 netdev_dbg(dev, "ESI Error\n"); 473 } 474 475 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { 476 cf->can_id |= CAN_RTR_FLAG; 477 } else { 478 if (dlc & RX_BUF_BRS) 479 cf->flags |= CANFD_BRS; 480 481 for (i = 0; i < cf->len; i += 4) 482 *(u32 *)(cf->data + i) = 483 m_can_fifo_read(cdev, fgi, 484 M_CAN_FIFO_DATA(i / 4)); 485 } 486 487 /* acknowledge rx fifo 0 */ 488 m_can_write(cdev, M_CAN_RXF0A, fgi); 489 490 stats->rx_packets++; 491 stats->rx_bytes += cf->len; 492 493 netif_receive_skb(skb); 494 } 495 496 static int m_can_do_rx_poll(struct net_device *dev, int quota) 497 { 498 struct m_can_classdev *cdev = netdev_priv(dev); 499 u32 pkts = 0; 500 u32 rxfs; 501 502 rxfs = m_can_read(cdev, M_CAN_RXF0S); 503 if (!(rxfs & RXFS_FFL_MASK)) { 504 netdev_dbg(dev, "no messages in fifo0\n"); 505 return 0; 506 } 507 508 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { 509 if (rxfs & RXFS_RFL) 510 netdev_warn(dev, "Rx FIFO 0 Message Lost\n"); 511 512 m_can_read_fifo(dev, rxfs); 513 514 quota--; 515 pkts++; 516 rxfs = m_can_read(cdev, M_CAN_RXF0S); 517 } 518 519 if (pkts) 520 can_led_event(dev, CAN_LED_EVENT_RX); 521 522 return pkts; 523 } 524 525 static int m_can_handle_lost_msg(struct net_device *dev) 526 { 527 struct net_device_stats *stats = &dev->stats; 528 struct sk_buff *skb; 529 struct can_frame *frame; 530 531 netdev_err(dev, "msg lost in rxf0\n"); 532 533 stats->rx_errors++; 534 stats->rx_over_errors++; 535 536 skb = alloc_can_err_skb(dev, &frame); 537 if (unlikely(!skb)) 538 return 0; 539 540 frame->can_id |= CAN_ERR_CRTL; 541 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; 542 543 netif_receive_skb(skb); 544 545 return 1; 546 } 547 548 static int m_can_handle_lec_err(struct net_device *dev, 549 enum m_can_lec_type lec_type) 550 { 551 struct m_can_classdev *cdev = netdev_priv(dev); 552 struct net_device_stats *stats = &dev->stats; 553 struct can_frame *cf; 554 struct sk_buff *skb; 555 556 cdev->can.can_stats.bus_error++; 557 stats->rx_errors++; 558 559 /* propagate the error condition to the CAN stack */ 560 skb = alloc_can_err_skb(dev, &cf); 561 if (unlikely(!skb)) 562 return 0; 563 564 /* check for 'last error code' which tells us the 565 * type of the last error to occur on the CAN bus 566 */ 567 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; 568 569 switch (lec_type) { 570 case LEC_STUFF_ERROR: 571 netdev_dbg(dev, "stuff error\n"); 572 cf->data[2] |= CAN_ERR_PROT_STUFF; 573 break; 574 case LEC_FORM_ERROR: 575 netdev_dbg(dev, "form error\n"); 576 cf->data[2] |= CAN_ERR_PROT_FORM; 577 break; 578 case LEC_ACK_ERROR: 579 netdev_dbg(dev, "ack error\n"); 580 cf->data[3] = CAN_ERR_PROT_LOC_ACK; 581 break; 582 case LEC_BIT1_ERROR: 583 netdev_dbg(dev, "bit1 error\n"); 584 cf->data[2] |= CAN_ERR_PROT_BIT1; 585 break; 586 case LEC_BIT0_ERROR: 587 netdev_dbg(dev, "bit0 error\n"); 588 cf->data[2] |= CAN_ERR_PROT_BIT0; 589 break; 590 case LEC_CRC_ERROR: 591 netdev_dbg(dev, "CRC error\n"); 592 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; 593 break; 594 default: 595 break; 596 } 597 598 stats->rx_packets++; 599 stats->rx_bytes += cf->can_dlc; 600 netif_receive_skb(skb); 601 602 return 1; 603 } 604 605 static int __m_can_get_berr_counter(const struct net_device *dev, 606 struct can_berr_counter *bec) 607 { 608 struct m_can_classdev *cdev = netdev_priv(dev); 609 unsigned int ecr; 610 611 ecr = m_can_read(cdev, M_CAN_ECR); 612 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; 613 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT; 614 615 return 0; 616 } 617 618 static int m_can_clk_start(struct m_can_classdev *cdev) 619 { 620 int err; 621 622 if (cdev->pm_clock_support == 0) 623 return 0; 624 625 err = pm_runtime_get_sync(cdev->dev); 626 if (err < 0) { 627 pm_runtime_put_noidle(cdev->dev); 628 return err; 629 } 630 631 return 0; 632 } 633 634 static void m_can_clk_stop(struct m_can_classdev *cdev) 635 { 636 if (cdev->pm_clock_support) 637 pm_runtime_put_sync(cdev->dev); 638 } 639 640 static int m_can_get_berr_counter(const struct net_device *dev, 641 struct can_berr_counter *bec) 642 { 643 struct m_can_classdev *cdev = netdev_priv(dev); 644 int err; 645 646 err = m_can_clk_start(cdev); 647 if (err) 648 return err; 649 650 __m_can_get_berr_counter(dev, bec); 651 652 m_can_clk_stop(cdev); 653 654 return 0; 655 } 656 657 static int m_can_handle_state_change(struct net_device *dev, 658 enum can_state new_state) 659 { 660 struct m_can_classdev *cdev = netdev_priv(dev); 661 struct net_device_stats *stats = &dev->stats; 662 struct can_frame *cf; 663 struct sk_buff *skb; 664 struct can_berr_counter bec; 665 unsigned int ecr; 666 667 switch (new_state) { 668 case CAN_STATE_ERROR_WARNING: 669 /* error warning state */ 670 cdev->can.can_stats.error_warning++; 671 cdev->can.state = CAN_STATE_ERROR_WARNING; 672 break; 673 case CAN_STATE_ERROR_PASSIVE: 674 /* error passive state */ 675 cdev->can.can_stats.error_passive++; 676 cdev->can.state = CAN_STATE_ERROR_PASSIVE; 677 break; 678 case CAN_STATE_BUS_OFF: 679 /* bus-off state */ 680 cdev->can.state = CAN_STATE_BUS_OFF; 681 m_can_disable_all_interrupts(cdev); 682 cdev->can.can_stats.bus_off++; 683 can_bus_off(dev); 684 break; 685 default: 686 break; 687 } 688 689 /* propagate the error condition to the CAN stack */ 690 skb = alloc_can_err_skb(dev, &cf); 691 if (unlikely(!skb)) 692 return 0; 693 694 __m_can_get_berr_counter(dev, &bec); 695 696 switch (new_state) { 697 case CAN_STATE_ERROR_WARNING: 698 /* error warning state */ 699 cf->can_id |= CAN_ERR_CRTL; 700 cf->data[1] = (bec.txerr > bec.rxerr) ? 701 CAN_ERR_CRTL_TX_WARNING : 702 CAN_ERR_CRTL_RX_WARNING; 703 cf->data[6] = bec.txerr; 704 cf->data[7] = bec.rxerr; 705 break; 706 case CAN_STATE_ERROR_PASSIVE: 707 /* error passive state */ 708 cf->can_id |= CAN_ERR_CRTL; 709 ecr = m_can_read(cdev, M_CAN_ECR); 710 if (ecr & ECR_RP) 711 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; 712 if (bec.txerr > 127) 713 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; 714 cf->data[6] = bec.txerr; 715 cf->data[7] = bec.rxerr; 716 break; 717 case CAN_STATE_BUS_OFF: 718 /* bus-off state */ 719 cf->can_id |= CAN_ERR_BUSOFF; 720 break; 721 default: 722 break; 723 } 724 725 stats->rx_packets++; 726 stats->rx_bytes += cf->can_dlc; 727 netif_receive_skb(skb); 728 729 return 1; 730 } 731 732 static int m_can_handle_state_errors(struct net_device *dev, u32 psr) 733 { 734 struct m_can_classdev *cdev = netdev_priv(dev); 735 int work_done = 0; 736 737 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { 738 netdev_dbg(dev, "entered error warning state\n"); 739 work_done += m_can_handle_state_change(dev, 740 CAN_STATE_ERROR_WARNING); 741 } 742 743 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { 744 netdev_dbg(dev, "entered error passive state\n"); 745 work_done += m_can_handle_state_change(dev, 746 CAN_STATE_ERROR_PASSIVE); 747 } 748 749 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { 750 netdev_dbg(dev, "entered error bus off state\n"); 751 work_done += m_can_handle_state_change(dev, 752 CAN_STATE_BUS_OFF); 753 } 754 755 return work_done; 756 } 757 758 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) 759 { 760 if (irqstatus & IR_WDI) 761 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); 762 if (irqstatus & IR_ELO) 763 netdev_err(dev, "Error Logging Overflow\n"); 764 if (irqstatus & IR_BEU) 765 netdev_err(dev, "Bit Error Uncorrected\n"); 766 if (irqstatus & IR_BEC) 767 netdev_err(dev, "Bit Error Corrected\n"); 768 if (irqstatus & IR_TOO) 769 netdev_err(dev, "Timeout reached\n"); 770 if (irqstatus & IR_MRAF) 771 netdev_err(dev, "Message RAM access failure occurred\n"); 772 } 773 774 static inline bool is_lec_err(u32 psr) 775 { 776 psr &= LEC_UNUSED; 777 778 return psr && (psr != LEC_UNUSED); 779 } 780 781 static inline bool m_can_is_protocol_err(u32 irqstatus) 782 { 783 return irqstatus & IR_ERR_LEC_31X; 784 } 785 786 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) 787 { 788 struct net_device_stats *stats = &dev->stats; 789 struct m_can_classdev *cdev = netdev_priv(dev); 790 struct can_frame *cf; 791 struct sk_buff *skb; 792 793 /* propagate the error condition to the CAN stack */ 794 skb = alloc_can_err_skb(dev, &cf); 795 796 /* update tx error stats since there is protocol error */ 797 stats->tx_errors++; 798 799 /* update arbitration lost status */ 800 if (cdev->version >= 31 && (irqstatus & IR_PEA)) { 801 netdev_dbg(dev, "Protocol error in Arbitration fail\n"); 802 cdev->can.can_stats.arbitration_lost++; 803 if (skb) { 804 cf->can_id |= CAN_ERR_LOSTARB; 805 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; 806 } 807 } 808 809 if (unlikely(!skb)) { 810 netdev_dbg(dev, "allocation of skb failed\n"); 811 return 0; 812 } 813 netif_receive_skb(skb); 814 815 return 1; 816 } 817 818 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, 819 u32 psr) 820 { 821 struct m_can_classdev *cdev = netdev_priv(dev); 822 int work_done = 0; 823 824 if (irqstatus & IR_RF0L) 825 work_done += m_can_handle_lost_msg(dev); 826 827 /* handle lec errors on the bus */ 828 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 829 is_lec_err(psr)) 830 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); 831 832 /* handle protocol errors in arbitration phase */ 833 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 834 m_can_is_protocol_err(irqstatus)) 835 work_done += m_can_handle_protocol_error(dev, irqstatus); 836 837 /* other unproccessed error interrupts */ 838 m_can_handle_other_err(dev, irqstatus); 839 840 return work_done; 841 } 842 843 static int m_can_rx_handler(struct net_device *dev, int quota) 844 { 845 struct m_can_classdev *cdev = netdev_priv(dev); 846 int work_done = 0; 847 u32 irqstatus, psr; 848 849 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); 850 if (!irqstatus) 851 goto end; 852 853 /* Errata workaround for issue "Needless activation of MRAF irq" 854 * During frame reception while the MCAN is in Error Passive state 855 * and the Receive Error Counter has the value MCAN_ECR.REC = 127, 856 * it may happen that MCAN_IR.MRAF is set although there was no 857 * Message RAM access failure. 858 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated 859 * The Message RAM Access Failure interrupt routine needs to check 860 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. 861 * In this case, reset MCAN_IR.MRAF. No further action is required. 862 */ 863 if (cdev->version <= 31 && irqstatus & IR_MRAF && 864 m_can_read(cdev, M_CAN_ECR) & ECR_RP) { 865 struct can_berr_counter bec; 866 867 __m_can_get_berr_counter(dev, &bec); 868 if (bec.rxerr == 127) { 869 m_can_write(cdev, M_CAN_IR, IR_MRAF); 870 irqstatus &= ~IR_MRAF; 871 } 872 } 873 874 psr = m_can_read(cdev, M_CAN_PSR); 875 876 if (irqstatus & IR_ERR_STATE) 877 work_done += m_can_handle_state_errors(dev, psr); 878 879 if (irqstatus & IR_ERR_BUS_30X) 880 work_done += m_can_handle_bus_errors(dev, irqstatus, psr); 881 882 if (irqstatus & IR_RF0N) 883 work_done += m_can_do_rx_poll(dev, (quota - work_done)); 884 end: 885 return work_done; 886 } 887 888 static int m_can_rx_peripheral(struct net_device *dev) 889 { 890 struct m_can_classdev *cdev = netdev_priv(dev); 891 892 m_can_rx_handler(dev, 1); 893 894 m_can_enable_all_interrupts(cdev); 895 896 return 0; 897 } 898 899 static int m_can_poll(struct napi_struct *napi, int quota) 900 { 901 struct net_device *dev = napi->dev; 902 struct m_can_classdev *cdev = netdev_priv(dev); 903 int work_done; 904 905 work_done = m_can_rx_handler(dev, quota); 906 if (work_done < quota) { 907 napi_complete_done(napi, work_done); 908 m_can_enable_all_interrupts(cdev); 909 } 910 911 return work_done; 912 } 913 914 static void m_can_echo_tx_event(struct net_device *dev) 915 { 916 u32 txe_count = 0; 917 u32 m_can_txefs; 918 u32 fgi = 0; 919 int i = 0; 920 unsigned int msg_mark; 921 922 struct m_can_classdev *cdev = netdev_priv(dev); 923 struct net_device_stats *stats = &dev->stats; 924 925 /* read tx event fifo status */ 926 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); 927 928 /* Get Tx Event fifo element count */ 929 txe_count = (m_can_txefs & TXEFS_EFFL_MASK) 930 >> TXEFS_EFFL_SHIFT; 931 932 /* Get and process all sent elements */ 933 for (i = 0; i < txe_count; i++) { 934 /* retrieve get index */ 935 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) 936 >> TXEFS_EFGI_SHIFT; 937 938 /* get message marker */ 939 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) & 940 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT; 941 942 /* ack txe element */ 943 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK & 944 (fgi << TXEFA_EFAI_SHIFT))); 945 946 /* update stats */ 947 stats->tx_bytes += can_get_echo_skb(dev, msg_mark); 948 stats->tx_packets++; 949 } 950 } 951 952 static irqreturn_t m_can_isr(int irq, void *dev_id) 953 { 954 struct net_device *dev = (struct net_device *)dev_id; 955 struct m_can_classdev *cdev = netdev_priv(dev); 956 struct net_device_stats *stats = &dev->stats; 957 u32 ir; 958 959 if (pm_runtime_suspended(cdev->dev)) 960 return IRQ_NONE; 961 ir = m_can_read(cdev, M_CAN_IR); 962 if (!ir) 963 return IRQ_NONE; 964 965 /* ACK all irqs */ 966 if (ir & IR_ALL_INT) 967 m_can_write(cdev, M_CAN_IR, ir); 968 969 if (cdev->ops->clear_interrupts) 970 cdev->ops->clear_interrupts(cdev); 971 972 /* schedule NAPI in case of 973 * - rx IRQ 974 * - state change IRQ 975 * - bus error IRQ and bus error reporting 976 */ 977 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { 978 cdev->irqstatus = ir; 979 m_can_disable_all_interrupts(cdev); 980 if (!cdev->is_peripheral) 981 napi_schedule(&cdev->napi); 982 else 983 m_can_rx_peripheral(dev); 984 } 985 986 if (cdev->version == 30) { 987 if (ir & IR_TC) { 988 /* Transmission Complete Interrupt*/ 989 stats->tx_bytes += can_get_echo_skb(dev, 0); 990 stats->tx_packets++; 991 can_led_event(dev, CAN_LED_EVENT_TX); 992 netif_wake_queue(dev); 993 } 994 } else { 995 if (ir & IR_TEFN) { 996 /* New TX FIFO Element arrived */ 997 m_can_echo_tx_event(dev); 998 can_led_event(dev, CAN_LED_EVENT_TX); 999 if (netif_queue_stopped(dev) && 1000 !m_can_tx_fifo_full(cdev)) 1001 netif_wake_queue(dev); 1002 } 1003 } 1004 1005 return IRQ_HANDLED; 1006 } 1007 1008 static const struct can_bittiming_const m_can_bittiming_const_30X = { 1009 .name = KBUILD_MODNAME, 1010 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1011 .tseg1_max = 64, 1012 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1013 .tseg2_max = 16, 1014 .sjw_max = 16, 1015 .brp_min = 1, 1016 .brp_max = 1024, 1017 .brp_inc = 1, 1018 }; 1019 1020 static const struct can_bittiming_const m_can_data_bittiming_const_30X = { 1021 .name = KBUILD_MODNAME, 1022 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1023 .tseg1_max = 16, 1024 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1025 .tseg2_max = 8, 1026 .sjw_max = 4, 1027 .brp_min = 1, 1028 .brp_max = 32, 1029 .brp_inc = 1, 1030 }; 1031 1032 static const struct can_bittiming_const m_can_bittiming_const_31X = { 1033 .name = KBUILD_MODNAME, 1034 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ 1035 .tseg1_max = 256, 1036 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ 1037 .tseg2_max = 128, 1038 .sjw_max = 128, 1039 .brp_min = 1, 1040 .brp_max = 512, 1041 .brp_inc = 1, 1042 }; 1043 1044 static const struct can_bittiming_const m_can_data_bittiming_const_31X = { 1045 .name = KBUILD_MODNAME, 1046 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ 1047 .tseg1_max = 32, 1048 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ 1049 .tseg2_max = 16, 1050 .sjw_max = 16, 1051 .brp_min = 1, 1052 .brp_max = 32, 1053 .brp_inc = 1, 1054 }; 1055 1056 static int m_can_set_bittiming(struct net_device *dev) 1057 { 1058 struct m_can_classdev *cdev = netdev_priv(dev); 1059 const struct can_bittiming *bt = &cdev->can.bittiming; 1060 const struct can_bittiming *dbt = &cdev->can.data_bittiming; 1061 u16 brp, sjw, tseg1, tseg2; 1062 u32 reg_btp; 1063 1064 brp = bt->brp - 1; 1065 sjw = bt->sjw - 1; 1066 tseg1 = bt->prop_seg + bt->phase_seg1 - 1; 1067 tseg2 = bt->phase_seg2 - 1; 1068 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) | 1069 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT); 1070 m_can_write(cdev, M_CAN_NBTP, reg_btp); 1071 1072 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1073 reg_btp = 0; 1074 brp = dbt->brp - 1; 1075 sjw = dbt->sjw - 1; 1076 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; 1077 tseg2 = dbt->phase_seg2 - 1; 1078 1079 /* TDC is only needed for bitrates beyond 2.5 MBit/s. 1080 * This is mentioned in the "Bit Time Requirements for CAN FD" 1081 * paper presented at the International CAN Conference 2013 1082 */ 1083 if (dbt->bitrate > 2500000) { 1084 u32 tdco, ssp; 1085 1086 /* Use the same value of secondary sampling point 1087 * as the data sampling point 1088 */ 1089 ssp = dbt->sample_point; 1090 1091 /* Equation based on Bosch's M_CAN User Manual's 1092 * Transmitter Delay Compensation Section 1093 */ 1094 tdco = (cdev->can.clock.freq / 1000) * 1095 ssp / dbt->bitrate; 1096 1097 /* Max valid TDCO value is 127 */ 1098 if (tdco > 127) { 1099 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", 1100 tdco); 1101 tdco = 127; 1102 } 1103 1104 reg_btp |= DBTP_TDC; 1105 m_can_write(cdev, M_CAN_TDCR, 1106 tdco << TDCR_TDCO_SHIFT); 1107 } 1108 1109 reg_btp |= (brp << DBTP_DBRP_SHIFT) | 1110 (sjw << DBTP_DSJW_SHIFT) | 1111 (tseg1 << DBTP_DTSEG1_SHIFT) | 1112 (tseg2 << DBTP_DTSEG2_SHIFT); 1113 1114 m_can_write(cdev, M_CAN_DBTP, reg_btp); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* Configure M_CAN chip: 1121 * - set rx buffer/fifo element size 1122 * - configure rx fifo 1123 * - accept non-matching frame into fifo 0 1124 * - configure tx buffer 1125 * - >= v3.1.x: TX FIFO is used 1126 * - configure mode 1127 * - setup bittiming 1128 */ 1129 static void m_can_chip_config(struct net_device *dev) 1130 { 1131 struct m_can_classdev *cdev = netdev_priv(dev); 1132 u32 cccr, test; 1133 1134 m_can_config_endisable(cdev, true); 1135 1136 /* RX Buffer/FIFO Element Size 64 bytes data field */ 1137 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES); 1138 1139 /* Accept Non-matching Frames Into FIFO 0 */ 1140 m_can_write(cdev, M_CAN_GFC, 0x0); 1141 1142 if (cdev->version == 30) { 1143 /* only support one Tx Buffer currently */ 1144 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) | 1145 cdev->mcfg[MRAM_TXB].off); 1146 } else { 1147 /* TX FIFO is used for newer IP Core versions */ 1148 m_can_write(cdev, M_CAN_TXBC, 1149 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) | 1150 (cdev->mcfg[MRAM_TXB].off)); 1151 } 1152 1153 /* support 64 bytes payload */ 1154 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES); 1155 1156 /* TX Event FIFO */ 1157 if (cdev->version == 30) { 1158 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) | 1159 cdev->mcfg[MRAM_TXE].off); 1160 } else { 1161 /* Full TX Event FIFO is used */ 1162 m_can_write(cdev, M_CAN_TXEFC, 1163 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT) 1164 & TXEFC_EFS_MASK) | 1165 cdev->mcfg[MRAM_TXE].off); 1166 } 1167 1168 /* rx fifo configuration, blocking mode, fifo size 1 */ 1169 m_can_write(cdev, M_CAN_RXF0C, 1170 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) | 1171 cdev->mcfg[MRAM_RXF0].off); 1172 1173 m_can_write(cdev, M_CAN_RXF1C, 1174 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) | 1175 cdev->mcfg[MRAM_RXF1].off); 1176 1177 cccr = m_can_read(cdev, M_CAN_CCCR); 1178 test = m_can_read(cdev, M_CAN_TEST); 1179 test &= ~TEST_LBCK; 1180 if (cdev->version == 30) { 1181 /* Version 3.0.x */ 1182 1183 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | 1184 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | 1185 (CCCR_CME_MASK << CCCR_CME_SHIFT)); 1186 1187 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1188 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; 1189 1190 } else { 1191 /* Version 3.1.x or 3.2.x */ 1192 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | 1193 CCCR_NISO | CCCR_DAR); 1194 1195 /* Only 3.2.x has NISO Bit implemented */ 1196 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) 1197 cccr |= CCCR_NISO; 1198 1199 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) 1200 cccr |= (CCCR_BRSE | CCCR_FDOE); 1201 } 1202 1203 /* Loopback Mode */ 1204 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { 1205 cccr |= CCCR_TEST | CCCR_MON; 1206 test |= TEST_LBCK; 1207 } 1208 1209 /* Enable Monitoring (all versions) */ 1210 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 1211 cccr |= CCCR_MON; 1212 1213 /* Disable Auto Retransmission (all versions) */ 1214 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 1215 cccr |= CCCR_DAR; 1216 1217 /* Write config */ 1218 m_can_write(cdev, M_CAN_CCCR, cccr); 1219 m_can_write(cdev, M_CAN_TEST, test); 1220 1221 /* Enable interrupts */ 1222 m_can_write(cdev, M_CAN_IR, IR_ALL_INT); 1223 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) 1224 if (cdev->version == 30) 1225 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1226 ~(IR_ERR_LEC_30X)); 1227 else 1228 m_can_write(cdev, M_CAN_IE, IR_ALL_INT & 1229 ~(IR_ERR_LEC_31X)); 1230 else 1231 m_can_write(cdev, M_CAN_IE, IR_ALL_INT); 1232 1233 /* route all interrupts to INT0 */ 1234 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); 1235 1236 /* set bittiming params */ 1237 m_can_set_bittiming(dev); 1238 1239 m_can_config_endisable(cdev, false); 1240 1241 if (cdev->ops->init) 1242 cdev->ops->init(cdev); 1243 } 1244 1245 static void m_can_start(struct net_device *dev) 1246 { 1247 struct m_can_classdev *cdev = netdev_priv(dev); 1248 1249 /* basic m_can configuration */ 1250 m_can_chip_config(dev); 1251 1252 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1253 1254 m_can_enable_all_interrupts(cdev); 1255 } 1256 1257 static int m_can_set_mode(struct net_device *dev, enum can_mode mode) 1258 { 1259 switch (mode) { 1260 case CAN_MODE_START: 1261 m_can_clean(dev); 1262 m_can_start(dev); 1263 netif_wake_queue(dev); 1264 break; 1265 default: 1266 return -EOPNOTSUPP; 1267 } 1268 1269 return 0; 1270 } 1271 1272 /* Checks core release number of M_CAN 1273 * returns 0 if an unsupported device is detected 1274 * else it returns the release and step coded as: 1275 * return value = 10 * <release> + 1 * <step> 1276 */ 1277 static int m_can_check_core_release(struct m_can_classdev *cdev) 1278 { 1279 u32 crel_reg; 1280 u8 rel; 1281 u8 step; 1282 int res; 1283 1284 /* Read Core Release Version and split into version number 1285 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; 1286 */ 1287 crel_reg = m_can_read(cdev, M_CAN_CREL); 1288 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT); 1289 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT); 1290 1291 if (rel == 3) { 1292 /* M_CAN v3.x.y: create return value */ 1293 res = 30 + step; 1294 } else { 1295 /* Unsupported M_CAN version */ 1296 res = 0; 1297 } 1298 1299 return res; 1300 } 1301 1302 /* Selectable Non ISO support only in version 3.2.x 1303 * This function checks if the bit is writable. 1304 */ 1305 static bool m_can_niso_supported(struct m_can_classdev *cdev) 1306 { 1307 u32 cccr_reg, cccr_poll = 0; 1308 int niso_timeout = -ETIMEDOUT; 1309 int i; 1310 1311 m_can_config_endisable(cdev, true); 1312 cccr_reg = m_can_read(cdev, M_CAN_CCCR); 1313 cccr_reg |= CCCR_NISO; 1314 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1315 1316 for (i = 0; i <= 10; i++) { 1317 cccr_poll = m_can_read(cdev, M_CAN_CCCR); 1318 if (cccr_poll == cccr_reg) { 1319 niso_timeout = 0; 1320 break; 1321 } 1322 1323 usleep_range(1, 5); 1324 } 1325 1326 /* Clear NISO */ 1327 cccr_reg &= ~(CCCR_NISO); 1328 m_can_write(cdev, M_CAN_CCCR, cccr_reg); 1329 1330 m_can_config_endisable(cdev, false); 1331 1332 /* return false if time out (-ETIMEDOUT), else return true */ 1333 return !niso_timeout; 1334 } 1335 1336 static int m_can_dev_setup(struct m_can_classdev *m_can_dev) 1337 { 1338 struct net_device *dev = m_can_dev->net; 1339 int m_can_version; 1340 1341 m_can_version = m_can_check_core_release(m_can_dev); 1342 /* return if unsupported version */ 1343 if (!m_can_version) { 1344 dev_err(m_can_dev->dev, "Unsupported version number: %2d", 1345 m_can_version); 1346 return -EINVAL; 1347 } 1348 1349 if (!m_can_dev->is_peripheral) 1350 netif_napi_add(dev, &m_can_dev->napi, 1351 m_can_poll, M_CAN_NAPI_WEIGHT); 1352 1353 /* Shared properties of all M_CAN versions */ 1354 m_can_dev->version = m_can_version; 1355 m_can_dev->can.do_set_mode = m_can_set_mode; 1356 m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter; 1357 1358 /* Set M_CAN supported operations */ 1359 m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | 1360 CAN_CTRLMODE_LISTENONLY | 1361 CAN_CTRLMODE_BERR_REPORTING | 1362 CAN_CTRLMODE_FD | 1363 CAN_CTRLMODE_ONE_SHOT; 1364 1365 /* Set properties depending on M_CAN version */ 1366 switch (m_can_dev->version) { 1367 case 30: 1368 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ 1369 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1370 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1371 m_can_dev->bit_timing : &m_can_bittiming_const_30X; 1372 1373 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1374 m_can_dev->data_timing : 1375 &m_can_data_bittiming_const_30X; 1376 break; 1377 case 31: 1378 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ 1379 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); 1380 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1381 m_can_dev->bit_timing : &m_can_bittiming_const_31X; 1382 1383 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1384 m_can_dev->data_timing : 1385 &m_can_data_bittiming_const_31X; 1386 break; 1387 case 32: 1388 case 33: 1389 /* Support both MCAN version v3.2.x and v3.3.0 */ 1390 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? 1391 m_can_dev->bit_timing : &m_can_bittiming_const_31X; 1392 1393 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? 1394 m_can_dev->data_timing : 1395 &m_can_data_bittiming_const_31X; 1396 1397 m_can_dev->can.ctrlmode_supported |= 1398 (m_can_niso_supported(m_can_dev) 1399 ? CAN_CTRLMODE_FD_NON_ISO 1400 : 0); 1401 break; 1402 default: 1403 dev_err(m_can_dev->dev, "Unsupported version number: %2d", 1404 m_can_dev->version); 1405 return -EINVAL; 1406 } 1407 1408 if (m_can_dev->ops->init) 1409 m_can_dev->ops->init(m_can_dev); 1410 1411 return 0; 1412 } 1413 1414 static void m_can_stop(struct net_device *dev) 1415 { 1416 struct m_can_classdev *cdev = netdev_priv(dev); 1417 1418 /* disable all interrupts */ 1419 m_can_disable_all_interrupts(cdev); 1420 1421 /* Set init mode to disengage from the network */ 1422 m_can_config_endisable(cdev, true); 1423 1424 /* set the state as STOPPED */ 1425 cdev->can.state = CAN_STATE_STOPPED; 1426 } 1427 1428 static int m_can_close(struct net_device *dev) 1429 { 1430 struct m_can_classdev *cdev = netdev_priv(dev); 1431 1432 netif_stop_queue(dev); 1433 1434 if (!cdev->is_peripheral) 1435 napi_disable(&cdev->napi); 1436 1437 m_can_stop(dev); 1438 m_can_clk_stop(cdev); 1439 free_irq(dev->irq, dev); 1440 1441 if (cdev->is_peripheral) { 1442 cdev->tx_skb = NULL; 1443 destroy_workqueue(cdev->tx_wq); 1444 cdev->tx_wq = NULL; 1445 } 1446 1447 close_candev(dev); 1448 can_led_event(dev, CAN_LED_EVENT_STOP); 1449 1450 return 0; 1451 } 1452 1453 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) 1454 { 1455 struct m_can_classdev *cdev = netdev_priv(dev); 1456 /*get wrap around for loopback skb index */ 1457 unsigned int wrap = cdev->can.echo_skb_max; 1458 int next_idx; 1459 1460 /* calculate next index */ 1461 next_idx = (++putidx >= wrap ? 0 : putidx); 1462 1463 /* check if occupied */ 1464 return !!cdev->can.echo_skb[next_idx]; 1465 } 1466 1467 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) 1468 { 1469 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; 1470 struct net_device *dev = cdev->net; 1471 struct sk_buff *skb = cdev->tx_skb; 1472 u32 id, cccr, fdflags; 1473 int i; 1474 int putidx; 1475 1476 /* Generate ID field for TX buffer Element */ 1477 /* Common to all supported M_CAN versions */ 1478 if (cf->can_id & CAN_EFF_FLAG) { 1479 id = cf->can_id & CAN_EFF_MASK; 1480 id |= TX_BUF_XTD; 1481 } else { 1482 id = ((cf->can_id & CAN_SFF_MASK) << 18); 1483 } 1484 1485 if (cf->can_id & CAN_RTR_FLAG) 1486 id |= TX_BUF_RTR; 1487 1488 if (cdev->version == 30) { 1489 netif_stop_queue(dev); 1490 1491 /* message ram configuration */ 1492 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); 1493 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, 1494 can_len2dlc(cf->len) << 16); 1495 1496 for (i = 0; i < cf->len; i += 4) 1497 m_can_fifo_write(cdev, 0, 1498 M_CAN_FIFO_DATA(i / 4), 1499 *(u32 *)(cf->data + i)); 1500 1501 can_put_echo_skb(skb, dev, 0); 1502 1503 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { 1504 cccr = m_can_read(cdev, M_CAN_CCCR); 1505 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); 1506 if (can_is_canfd_skb(skb)) { 1507 if (cf->flags & CANFD_BRS) 1508 cccr |= CCCR_CMR_CANFD_BRS << 1509 CCCR_CMR_SHIFT; 1510 else 1511 cccr |= CCCR_CMR_CANFD << 1512 CCCR_CMR_SHIFT; 1513 } else { 1514 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; 1515 } 1516 m_can_write(cdev, M_CAN_CCCR, cccr); 1517 } 1518 m_can_write(cdev, M_CAN_TXBTIE, 0x1); 1519 m_can_write(cdev, M_CAN_TXBAR, 0x1); 1520 /* End of xmit function for version 3.0.x */ 1521 } else { 1522 /* Transmit routine for version >= v3.1.x */ 1523 1524 /* Check if FIFO full */ 1525 if (m_can_tx_fifo_full(cdev)) { 1526 /* This shouldn't happen */ 1527 netif_stop_queue(dev); 1528 netdev_warn(dev, 1529 "TX queue active although FIFO is full."); 1530 1531 if (cdev->is_peripheral) { 1532 kfree_skb(skb); 1533 dev->stats.tx_dropped++; 1534 return NETDEV_TX_OK; 1535 } else { 1536 return NETDEV_TX_BUSY; 1537 } 1538 } 1539 1540 /* get put index for frame */ 1541 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) 1542 >> TXFQS_TFQPI_SHIFT); 1543 /* Write ID Field to FIFO Element */ 1544 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); 1545 1546 /* get CAN FD configuration of frame */ 1547 fdflags = 0; 1548 if (can_is_canfd_skb(skb)) { 1549 fdflags |= TX_BUF_FDF; 1550 if (cf->flags & CANFD_BRS) 1551 fdflags |= TX_BUF_BRS; 1552 } 1553 1554 /* Construct DLC Field. Also contains CAN-FD configuration 1555 * use put index of fifo as message marker 1556 * it is used in TX interrupt for 1557 * sending the correct echo frame 1558 */ 1559 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, 1560 ((putidx << TX_BUF_MM_SHIFT) & 1561 TX_BUF_MM_MASK) | 1562 (can_len2dlc(cf->len) << 16) | 1563 fdflags | TX_BUF_EFC); 1564 1565 for (i = 0; i < cf->len; i += 4) 1566 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), 1567 *(u32 *)(cf->data + i)); 1568 1569 /* Push loopback echo. 1570 * Will be looped back on TX interrupt based on message marker 1571 */ 1572 can_put_echo_skb(skb, dev, putidx); 1573 1574 /* Enable TX FIFO element to start transfer */ 1575 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); 1576 1577 /* stop network queue if fifo full */ 1578 if (m_can_tx_fifo_full(cdev) || 1579 m_can_next_echo_skb_occupied(dev, putidx)) 1580 netif_stop_queue(dev); 1581 } 1582 1583 return NETDEV_TX_OK; 1584 } 1585 1586 static void m_can_tx_work_queue(struct work_struct *ws) 1587 { 1588 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, 1589 tx_work); 1590 1591 m_can_tx_handler(cdev); 1592 cdev->tx_skb = NULL; 1593 } 1594 1595 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, 1596 struct net_device *dev) 1597 { 1598 struct m_can_classdev *cdev = netdev_priv(dev); 1599 1600 if (can_dropped_invalid_skb(dev, skb)) 1601 return NETDEV_TX_OK; 1602 1603 if (cdev->is_peripheral) { 1604 if (cdev->tx_skb) { 1605 netdev_err(dev, "hard_xmit called while tx busy\n"); 1606 return NETDEV_TX_BUSY; 1607 } 1608 1609 if (cdev->can.state == CAN_STATE_BUS_OFF) { 1610 m_can_clean(dev); 1611 } else { 1612 /* Need to stop the queue to avoid numerous requests 1613 * from being sent. Suggested improvement is to create 1614 * a queueing mechanism that will queue the skbs and 1615 * process them in order. 1616 */ 1617 cdev->tx_skb = skb; 1618 netif_stop_queue(cdev->net); 1619 queue_work(cdev->tx_wq, &cdev->tx_work); 1620 } 1621 } else { 1622 cdev->tx_skb = skb; 1623 return m_can_tx_handler(cdev); 1624 } 1625 1626 return NETDEV_TX_OK; 1627 } 1628 1629 static int m_can_open(struct net_device *dev) 1630 { 1631 struct m_can_classdev *cdev = netdev_priv(dev); 1632 int err; 1633 1634 err = m_can_clk_start(cdev); 1635 if (err) 1636 return err; 1637 1638 /* open the can device */ 1639 err = open_candev(dev); 1640 if (err) { 1641 netdev_err(dev, "failed to open can device\n"); 1642 goto exit_disable_clks; 1643 } 1644 1645 /* register interrupt handler */ 1646 if (cdev->is_peripheral) { 1647 cdev->tx_skb = NULL; 1648 cdev->tx_wq = alloc_workqueue("mcan_wq", 1649 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); 1650 if (!cdev->tx_wq) { 1651 err = -ENOMEM; 1652 goto out_wq_fail; 1653 } 1654 1655 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); 1656 1657 err = request_threaded_irq(dev->irq, NULL, m_can_isr, 1658 IRQF_ONESHOT, 1659 dev->name, dev); 1660 } else { 1661 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, 1662 dev); 1663 } 1664 1665 if (err < 0) { 1666 netdev_err(dev, "failed to request interrupt\n"); 1667 goto exit_irq_fail; 1668 } 1669 1670 /* start the m_can controller */ 1671 m_can_start(dev); 1672 1673 can_led_event(dev, CAN_LED_EVENT_OPEN); 1674 1675 if (!cdev->is_peripheral) 1676 napi_enable(&cdev->napi); 1677 1678 netif_start_queue(dev); 1679 1680 return 0; 1681 1682 exit_irq_fail: 1683 if (cdev->is_peripheral) 1684 destroy_workqueue(cdev->tx_wq); 1685 out_wq_fail: 1686 close_candev(dev); 1687 exit_disable_clks: 1688 m_can_clk_stop(cdev); 1689 return err; 1690 } 1691 1692 static const struct net_device_ops m_can_netdev_ops = { 1693 .ndo_open = m_can_open, 1694 .ndo_stop = m_can_close, 1695 .ndo_start_xmit = m_can_start_xmit, 1696 .ndo_change_mtu = can_change_mtu, 1697 }; 1698 1699 static int register_m_can_dev(struct net_device *dev) 1700 { 1701 dev->flags |= IFF_ECHO; /* we support local echo */ 1702 dev->netdev_ops = &m_can_netdev_ops; 1703 1704 return register_candev(dev); 1705 } 1706 1707 static void m_can_of_parse_mram(struct m_can_classdev *cdev, 1708 const u32 *mram_config_vals) 1709 { 1710 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; 1711 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; 1712 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + 1713 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; 1714 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; 1715 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + 1716 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; 1717 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & 1718 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1719 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + 1720 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; 1721 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & 1722 (RXFC_FS_MASK >> RXFC_FS_SHIFT); 1723 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + 1724 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; 1725 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; 1726 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + 1727 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; 1728 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; 1729 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + 1730 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; 1731 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & 1732 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT); 1733 1734 dev_dbg(cdev->dev, 1735 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", 1736 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, 1737 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, 1738 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, 1739 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, 1740 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, 1741 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, 1742 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); 1743 } 1744 1745 void m_can_init_ram(struct m_can_classdev *cdev) 1746 { 1747 int end, i, start; 1748 1749 /* initialize the entire Message RAM in use to avoid possible 1750 * ECC/parity checksum errors when reading an uninitialized buffer 1751 */ 1752 start = cdev->mcfg[MRAM_SIDF].off; 1753 end = cdev->mcfg[MRAM_TXB].off + 1754 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; 1755 1756 for (i = start; i < end; i += 4) 1757 m_can_fifo_write_no_off(cdev, i, 0x0); 1758 } 1759 EXPORT_SYMBOL_GPL(m_can_init_ram); 1760 1761 int m_can_class_get_clocks(struct m_can_classdev *m_can_dev) 1762 { 1763 int ret = 0; 1764 1765 m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk"); 1766 m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk"); 1767 1768 if (IS_ERR(m_can_dev->cclk)) { 1769 dev_err(m_can_dev->dev, "no clock found\n"); 1770 ret = -ENODEV; 1771 } 1772 1773 return ret; 1774 } 1775 EXPORT_SYMBOL_GPL(m_can_class_get_clocks); 1776 1777 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev) 1778 { 1779 struct m_can_classdev *class_dev = NULL; 1780 u32 mram_config_vals[MRAM_CFG_LEN]; 1781 struct net_device *net_dev; 1782 u32 tx_fifo_size; 1783 int ret; 1784 1785 ret = fwnode_property_read_u32_array(dev_fwnode(dev), 1786 "bosch,mram-cfg", 1787 mram_config_vals, 1788 sizeof(mram_config_vals) / 4); 1789 if (ret) { 1790 dev_err(dev, "Could not get Message RAM configuration."); 1791 goto out; 1792 } 1793 1794 /* Get TX FIFO size 1795 * Defines the total amount of echo buffers for loopback 1796 */ 1797 tx_fifo_size = mram_config_vals[7]; 1798 1799 /* allocate the m_can device */ 1800 net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size); 1801 if (!net_dev) { 1802 dev_err(dev, "Failed to allocate CAN device"); 1803 goto out; 1804 } 1805 1806 class_dev = netdev_priv(net_dev); 1807 if (!class_dev) { 1808 dev_err(dev, "Failed to init netdev cdevate"); 1809 goto out; 1810 } 1811 1812 class_dev->net = net_dev; 1813 class_dev->dev = dev; 1814 SET_NETDEV_DEV(net_dev, dev); 1815 1816 m_can_of_parse_mram(class_dev, mram_config_vals); 1817 out: 1818 return class_dev; 1819 } 1820 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); 1821 1822 void m_can_class_free_dev(struct net_device *net) 1823 { 1824 free_candev(net); 1825 } 1826 EXPORT_SYMBOL_GPL(m_can_class_free_dev); 1827 1828 int m_can_class_register(struct m_can_classdev *m_can_dev) 1829 { 1830 int ret; 1831 1832 if (m_can_dev->pm_clock_support) { 1833 pm_runtime_enable(m_can_dev->dev); 1834 ret = m_can_clk_start(m_can_dev); 1835 if (ret) 1836 goto pm_runtime_fail; 1837 } 1838 1839 ret = m_can_dev_setup(m_can_dev); 1840 if (ret) 1841 goto clk_disable; 1842 1843 ret = register_m_can_dev(m_can_dev->net); 1844 if (ret) { 1845 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n", 1846 m_can_dev->net->name, ret); 1847 goto clk_disable; 1848 } 1849 1850 devm_can_led_init(m_can_dev->net); 1851 1852 of_can_transceiver(m_can_dev->net); 1853 1854 dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n", 1855 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version); 1856 1857 /* Probe finished 1858 * Stop clocks. They will be reactivated once the M_CAN device is opened 1859 */ 1860 clk_disable: 1861 m_can_clk_stop(m_can_dev); 1862 pm_runtime_fail: 1863 if (ret) { 1864 if (m_can_dev->pm_clock_support) 1865 pm_runtime_disable(m_can_dev->dev); 1866 } 1867 1868 return ret; 1869 } 1870 EXPORT_SYMBOL_GPL(m_can_class_register); 1871 1872 int m_can_class_suspend(struct device *dev) 1873 { 1874 struct net_device *ndev = dev_get_drvdata(dev); 1875 struct m_can_classdev *cdev = netdev_priv(ndev); 1876 1877 if (netif_running(ndev)) { 1878 netif_stop_queue(ndev); 1879 netif_device_detach(ndev); 1880 m_can_stop(ndev); 1881 m_can_clk_stop(cdev); 1882 } 1883 1884 pinctrl_pm_select_sleep_state(dev); 1885 1886 cdev->can.state = CAN_STATE_SLEEPING; 1887 1888 return 0; 1889 } 1890 EXPORT_SYMBOL_GPL(m_can_class_suspend); 1891 1892 int m_can_class_resume(struct device *dev) 1893 { 1894 struct net_device *ndev = dev_get_drvdata(dev); 1895 struct m_can_classdev *cdev = netdev_priv(ndev); 1896 1897 pinctrl_pm_select_default_state(dev); 1898 1899 cdev->can.state = CAN_STATE_ERROR_ACTIVE; 1900 1901 if (netif_running(ndev)) { 1902 int ret; 1903 1904 ret = m_can_clk_start(cdev); 1905 if (ret) 1906 return ret; 1907 1908 m_can_init_ram(cdev); 1909 m_can_start(ndev); 1910 netif_device_attach(ndev); 1911 netif_start_queue(ndev); 1912 } 1913 1914 return 0; 1915 } 1916 EXPORT_SYMBOL_GPL(m_can_class_resume); 1917 1918 void m_can_class_unregister(struct m_can_classdev *m_can_dev) 1919 { 1920 unregister_candev(m_can_dev->net); 1921 1922 m_can_clk_stop(m_can_dev); 1923 } 1924 EXPORT_SYMBOL_GPL(m_can_class_unregister); 1925 1926 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); 1927 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); 1928 MODULE_LICENSE("GPL v2"); 1929 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); 1930