xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/phy/phy.h>
25 
26 #include "m_can.h"
27 
28 /* registers definition */
29 enum m_can_reg {
30 	M_CAN_CREL	= 0x0,
31 	M_CAN_ENDN	= 0x4,
32 	M_CAN_CUST	= 0x8,
33 	M_CAN_DBTP	= 0xc,
34 	M_CAN_TEST	= 0x10,
35 	M_CAN_RWD	= 0x14,
36 	M_CAN_CCCR	= 0x18,
37 	M_CAN_NBTP	= 0x1c,
38 	M_CAN_TSCC	= 0x20,
39 	M_CAN_TSCV	= 0x24,
40 	M_CAN_TOCC	= 0x28,
41 	M_CAN_TOCV	= 0x2c,
42 	M_CAN_ECR	= 0x40,
43 	M_CAN_PSR	= 0x44,
44 	/* TDCR Register only available for version >=3.1.x */
45 	M_CAN_TDCR	= 0x48,
46 	M_CAN_IR	= 0x50,
47 	M_CAN_IE	= 0x54,
48 	M_CAN_ILS	= 0x58,
49 	M_CAN_ILE	= 0x5c,
50 	M_CAN_GFC	= 0x80,
51 	M_CAN_SIDFC	= 0x84,
52 	M_CAN_XIDFC	= 0x88,
53 	M_CAN_XIDAM	= 0x90,
54 	M_CAN_HPMS	= 0x94,
55 	M_CAN_NDAT1	= 0x98,
56 	M_CAN_NDAT2	= 0x9c,
57 	M_CAN_RXF0C	= 0xa0,
58 	M_CAN_RXF0S	= 0xa4,
59 	M_CAN_RXF0A	= 0xa8,
60 	M_CAN_RXBC	= 0xac,
61 	M_CAN_RXF1C	= 0xb0,
62 	M_CAN_RXF1S	= 0xb4,
63 	M_CAN_RXF1A	= 0xb8,
64 	M_CAN_RXESC	= 0xbc,
65 	M_CAN_TXBC	= 0xc0,
66 	M_CAN_TXFQS	= 0xc4,
67 	M_CAN_TXESC	= 0xc8,
68 	M_CAN_TXBRP	= 0xcc,
69 	M_CAN_TXBAR	= 0xd0,
70 	M_CAN_TXBCR	= 0xd4,
71 	M_CAN_TXBTO	= 0xd8,
72 	M_CAN_TXBCF	= 0xdc,
73 	M_CAN_TXBTIE	= 0xe0,
74 	M_CAN_TXBCIE	= 0xe4,
75 	M_CAN_TXEFC	= 0xf0,
76 	M_CAN_TXEFS	= 0xf4,
77 	M_CAN_TXEFA	= 0xf8,
78 };
79 
80 /* napi related */
81 #define M_CAN_NAPI_WEIGHT	64
82 
83 /* message ram configuration data length */
84 #define MRAM_CFG_LEN	8
85 
86 /* Core Release Register (CREL) */
87 #define CREL_REL_MASK		GENMASK(31, 28)
88 #define CREL_STEP_MASK		GENMASK(27, 24)
89 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
90 
91 /* Data Bit Timing & Prescaler Register (DBTP) */
92 #define DBTP_TDC		BIT(23)
93 #define DBTP_DBRP_MASK		GENMASK(20, 16)
94 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
95 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
96 #define DBTP_DSJW_MASK		GENMASK(3, 0)
97 
98 /* Transmitter Delay Compensation Register (TDCR) */
99 #define TDCR_TDCO_MASK		GENMASK(14, 8)
100 #define TDCR_TDCF_MASK		GENMASK(6, 0)
101 
102 /* Test Register (TEST) */
103 #define TEST_LBCK		BIT(4)
104 
105 /* CC Control Register (CCCR) */
106 #define CCCR_TXP		BIT(14)
107 #define CCCR_TEST		BIT(7)
108 #define CCCR_DAR		BIT(6)
109 #define CCCR_MON		BIT(5)
110 #define CCCR_CSR		BIT(4)
111 #define CCCR_CSA		BIT(3)
112 #define CCCR_ASM		BIT(2)
113 #define CCCR_CCE		BIT(1)
114 #define CCCR_INIT		BIT(0)
115 /* for version 3.0.x */
116 #define CCCR_CMR_MASK		GENMASK(11, 10)
117 #define CCCR_CMR_CANFD		0x1
118 #define CCCR_CMR_CANFD_BRS	0x2
119 #define CCCR_CMR_CAN		0x3
120 #define CCCR_CME_MASK		GENMASK(9, 8)
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 /* for version >=3.1.x */
125 #define CCCR_EFBI		BIT(13)
126 #define CCCR_PXHD		BIT(12)
127 #define CCCR_BRSE		BIT(9)
128 #define CCCR_FDOE		BIT(8)
129 /* for version >=3.2.x */
130 #define CCCR_NISO		BIT(15)
131 /* for version >=3.3.x */
132 #define CCCR_WMM		BIT(11)
133 #define CCCR_UTSU		BIT(10)
134 
135 /* Nominal Bit Timing & Prescaler Register (NBTP) */
136 #define NBTP_NSJW_MASK		GENMASK(31, 25)
137 #define NBTP_NBRP_MASK		GENMASK(24, 16)
138 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
139 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
140 
141 /* Timestamp Counter Configuration Register (TSCC) */
142 #define TSCC_TCP_MASK		GENMASK(19, 16)
143 #define TSCC_TSS_MASK		GENMASK(1, 0)
144 #define TSCC_TSS_DISABLE	0x0
145 #define TSCC_TSS_INTERNAL	0x1
146 #define TSCC_TSS_EXTERNAL	0x2
147 
148 /* Timestamp Counter Value Register (TSCV) */
149 #define TSCV_TSC_MASK		GENMASK(15, 0)
150 
151 /* Error Counter Register (ECR) */
152 #define ECR_RP			BIT(15)
153 #define ECR_REC_MASK		GENMASK(14, 8)
154 #define ECR_TEC_MASK		GENMASK(7, 0)
155 
156 /* Protocol Status Register (PSR) */
157 #define PSR_BO		BIT(7)
158 #define PSR_EW		BIT(6)
159 #define PSR_EP		BIT(5)
160 #define PSR_LEC_MASK	GENMASK(2, 0)
161 
162 /* Interrupt Register (IR) */
163 #define IR_ALL_INT	0xffffffff
164 
165 /* Renamed bits for versions > 3.1.x */
166 #define IR_ARA		BIT(29)
167 #define IR_PED		BIT(28)
168 #define IR_PEA		BIT(27)
169 
170 /* Bits for version 3.0.x */
171 #define IR_STE		BIT(31)
172 #define IR_FOE		BIT(30)
173 #define IR_ACKE		BIT(29)
174 #define IR_BE		BIT(28)
175 #define IR_CRCE		BIT(27)
176 #define IR_WDI		BIT(26)
177 #define IR_BO		BIT(25)
178 #define IR_EW		BIT(24)
179 #define IR_EP		BIT(23)
180 #define IR_ELO		BIT(22)
181 #define IR_BEU		BIT(21)
182 #define IR_BEC		BIT(20)
183 #define IR_DRX		BIT(19)
184 #define IR_TOO		BIT(18)
185 #define IR_MRAF		BIT(17)
186 #define IR_TSW		BIT(16)
187 #define IR_TEFL		BIT(15)
188 #define IR_TEFF		BIT(14)
189 #define IR_TEFW		BIT(13)
190 #define IR_TEFN		BIT(12)
191 #define IR_TFE		BIT(11)
192 #define IR_TCF		BIT(10)
193 #define IR_TC		BIT(9)
194 #define IR_HPM		BIT(8)
195 #define IR_RF1L		BIT(7)
196 #define IR_RF1F		BIT(6)
197 #define IR_RF1W		BIT(5)
198 #define IR_RF1N		BIT(4)
199 #define IR_RF0L		BIT(3)
200 #define IR_RF0F		BIT(2)
201 #define IR_RF0W		BIT(1)
202 #define IR_RF0N		BIT(0)
203 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
204 
205 /* Interrupts for version 3.0.x */
206 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
207 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
208 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
209 			 IR_RF0L)
210 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
211 
212 /* Interrupts for version >= 3.1.x */
213 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
214 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
215 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
216 			 IR_RF0L)
217 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
218 
219 /* Interrupt Line Select (ILS) */
220 #define ILS_ALL_INT0	0x0
221 #define ILS_ALL_INT1	0xFFFFFFFF
222 
223 /* Interrupt Line Enable (ILE) */
224 #define ILE_EINT1	BIT(1)
225 #define ILE_EINT0	BIT(0)
226 
227 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
228 #define RXFC_FWM_MASK	GENMASK(30, 24)
229 #define RXFC_FS_MASK	GENMASK(22, 16)
230 
231 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
232 #define RXFS_RFL	BIT(25)
233 #define RXFS_FF		BIT(24)
234 #define RXFS_FPI_MASK	GENMASK(21, 16)
235 #define RXFS_FGI_MASK	GENMASK(13, 8)
236 #define RXFS_FFL_MASK	GENMASK(6, 0)
237 
238 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
239 #define RXESC_RBDS_MASK		GENMASK(10, 8)
240 #define RXESC_F1DS_MASK		GENMASK(6, 4)
241 #define RXESC_F0DS_MASK		GENMASK(2, 0)
242 #define RXESC_64B		0x7
243 
244 /* Tx Buffer Configuration (TXBC) */
245 #define TXBC_TFQS_MASK		GENMASK(29, 24)
246 #define TXBC_NDTB_MASK		GENMASK(21, 16)
247 
248 /* Tx FIFO/Queue Status (TXFQS) */
249 #define TXFQS_TFQF		BIT(21)
250 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
251 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
252 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
253 
254 /* Tx Buffer Element Size Configuration (TXESC) */
255 #define TXESC_TBDS_MASK		GENMASK(2, 0)
256 #define TXESC_TBDS_64B		0x7
257 
258 /* Tx Event FIFO Configuration (TXEFC) */
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
313  * and we can save a (potentially slow) bus round trip by combining
314  * reads and writes to them.
315  */
316 struct id_and_dlc {
317 	u32 id;
318 	u32 dlc;
319 };
320 
321 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
322 {
323 	return cdev->ops->read_reg(cdev, reg);
324 }
325 
326 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
327 			       u32 val)
328 {
329 	cdev->ops->write_reg(cdev, reg, val);
330 }
331 
332 static int
333 m_can_fifo_read(struct m_can_classdev *cdev,
334 		u32 fgi, unsigned int offset, void *val, size_t val_count)
335 {
336 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
337 		offset;
338 
339 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
340 }
341 
342 static int
343 m_can_fifo_write(struct m_can_classdev *cdev,
344 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
345 {
346 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
347 		offset;
348 
349 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
350 }
351 
352 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
353 					  u32 fpi, u32 val)
354 {
355 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
356 }
357 
358 static int
359 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
360 {
361 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362 		offset;
363 
364 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
365 }
366 
367 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368 {
369 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370 }
371 
372 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373 {
374 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375 	u32 timeout = 10;
376 	u32 val = 0;
377 
378 	/* Clear the Clock stop request if it was set */
379 	if (cccr & CCCR_CSR)
380 		cccr &= ~CCCR_CSR;
381 
382 	if (enable) {
383 		/* enable m_can configuration */
384 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
385 		udelay(5);
386 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
387 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
388 	} else {
389 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
390 	}
391 
392 	/* there's a delay for module initialization */
393 	if (enable)
394 		val = CCCR_INIT | CCCR_CCE;
395 
396 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
397 		if (timeout == 0) {
398 			netdev_warn(cdev->net, "Failed to init module\n");
399 			return;
400 		}
401 		timeout--;
402 		udelay(1);
403 	}
404 }
405 
406 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
407 {
408 	/* Only interrupt line 0 is used in this driver */
409 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
410 }
411 
412 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
413 {
414 	m_can_write(cdev, M_CAN_ILE, 0x0);
415 }
416 
417 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
418  * width.
419  */
420 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
421 {
422 	u32 tscv;
423 	u32 tsc;
424 
425 	tscv = m_can_read(cdev, M_CAN_TSCV);
426 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
427 
428 	return (tsc << 16);
429 }
430 
431 static void m_can_clean(struct net_device *net)
432 {
433 	struct m_can_classdev *cdev = netdev_priv(net);
434 
435 	if (cdev->tx_skb) {
436 		int putidx = 0;
437 
438 		net->stats.tx_errors++;
439 		if (cdev->version > 30)
440 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
441 					   m_can_read(cdev, M_CAN_TXFQS));
442 
443 		can_free_echo_skb(cdev->net, putidx, NULL);
444 		cdev->tx_skb = NULL;
445 	}
446 }
447 
448 /* For peripherals, pass skb to rx-offload, which will push skb from
449  * napi. For non-peripherals, RX is done in napi already, so push
450  * directly. timestamp is used to ensure good skb ordering in
451  * rx-offload and is ignored for non-peripherals.
452  */
453 static void m_can_receive_skb(struct m_can_classdev *cdev,
454 			      struct sk_buff *skb,
455 			      u32 timestamp)
456 {
457 	if (cdev->is_peripheral) {
458 		struct net_device_stats *stats = &cdev->net->stats;
459 		int err;
460 
461 		err = can_rx_offload_queue_sorted(&cdev->offload, skb,
462 						  timestamp);
463 		if (err)
464 			stats->rx_fifo_errors++;
465 	} else {
466 		netif_receive_skb(skb);
467 	}
468 }
469 
470 static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
471 {
472 	struct net_device_stats *stats = &dev->stats;
473 	struct m_can_classdev *cdev = netdev_priv(dev);
474 	struct canfd_frame *cf;
475 	struct sk_buff *skb;
476 	struct id_and_dlc fifo_header;
477 	u32 fgi;
478 	u32 timestamp = 0;
479 	int err;
480 
481 	/* calculate the fifo get index for where to read data */
482 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
483 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
484 	if (err)
485 		goto out_fail;
486 
487 	if (fifo_header.dlc & RX_BUF_FDF)
488 		skb = alloc_canfd_skb(dev, &cf);
489 	else
490 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
491 	if (!skb) {
492 		stats->rx_dropped++;
493 		return 0;
494 	}
495 
496 	if (fifo_header.dlc & RX_BUF_FDF)
497 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
498 	else
499 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
500 
501 	if (fifo_header.id & RX_BUF_XTD)
502 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
503 	else
504 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
505 
506 	if (fifo_header.id & RX_BUF_ESI) {
507 		cf->flags |= CANFD_ESI;
508 		netdev_dbg(dev, "ESI Error\n");
509 	}
510 
511 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
512 		cf->can_id |= CAN_RTR_FLAG;
513 	} else {
514 		if (fifo_header.dlc & RX_BUF_BRS)
515 			cf->flags |= CANFD_BRS;
516 
517 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
518 				      cf->data, DIV_ROUND_UP(cf->len, 4));
519 		if (err)
520 			goto out_free_skb;
521 	}
522 
523 	/* acknowledge rx fifo 0 */
524 	m_can_write(cdev, M_CAN_RXF0A, fgi);
525 
526 	stats->rx_packets++;
527 	stats->rx_bytes += cf->len;
528 
529 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc);
530 
531 	m_can_receive_skb(cdev, skb, timestamp);
532 
533 	return 0;
534 
535 out_free_skb:
536 	kfree_skb(skb);
537 out_fail:
538 	netdev_err(dev, "FIFO read returned %d\n", err);
539 	return err;
540 }
541 
542 static int m_can_do_rx_poll(struct net_device *dev, int quota)
543 {
544 	struct m_can_classdev *cdev = netdev_priv(dev);
545 	u32 pkts = 0;
546 	u32 rxfs;
547 	int err;
548 
549 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
550 	if (!(rxfs & RXFS_FFL_MASK)) {
551 		netdev_dbg(dev, "no messages in fifo0\n");
552 		return 0;
553 	}
554 
555 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
556 		err = m_can_read_fifo(dev, rxfs);
557 		if (err)
558 			return err;
559 
560 		quota--;
561 		pkts++;
562 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
563 	}
564 
565 	if (pkts)
566 		can_led_event(dev, CAN_LED_EVENT_RX);
567 
568 	return pkts;
569 }
570 
571 static int m_can_handle_lost_msg(struct net_device *dev)
572 {
573 	struct m_can_classdev *cdev = netdev_priv(dev);
574 	struct net_device_stats *stats = &dev->stats;
575 	struct sk_buff *skb;
576 	struct can_frame *frame;
577 	u32 timestamp = 0;
578 
579 	netdev_err(dev, "msg lost in rxf0\n");
580 
581 	stats->rx_errors++;
582 	stats->rx_over_errors++;
583 
584 	skb = alloc_can_err_skb(dev, &frame);
585 	if (unlikely(!skb))
586 		return 0;
587 
588 	frame->can_id |= CAN_ERR_CRTL;
589 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
590 
591 	if (cdev->is_peripheral)
592 		timestamp = m_can_get_timestamp(cdev);
593 
594 	m_can_receive_skb(cdev, skb, timestamp);
595 
596 	return 1;
597 }
598 
599 static int m_can_handle_lec_err(struct net_device *dev,
600 				enum m_can_lec_type lec_type)
601 {
602 	struct m_can_classdev *cdev = netdev_priv(dev);
603 	struct net_device_stats *stats = &dev->stats;
604 	struct can_frame *cf;
605 	struct sk_buff *skb;
606 	u32 timestamp = 0;
607 
608 	cdev->can.can_stats.bus_error++;
609 	stats->rx_errors++;
610 
611 	/* propagate the error condition to the CAN stack */
612 	skb = alloc_can_err_skb(dev, &cf);
613 	if (unlikely(!skb))
614 		return 0;
615 
616 	/* check for 'last error code' which tells us the
617 	 * type of the last error to occur on the CAN bus
618 	 */
619 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
620 
621 	switch (lec_type) {
622 	case LEC_STUFF_ERROR:
623 		netdev_dbg(dev, "stuff error\n");
624 		cf->data[2] |= CAN_ERR_PROT_STUFF;
625 		break;
626 	case LEC_FORM_ERROR:
627 		netdev_dbg(dev, "form error\n");
628 		cf->data[2] |= CAN_ERR_PROT_FORM;
629 		break;
630 	case LEC_ACK_ERROR:
631 		netdev_dbg(dev, "ack error\n");
632 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
633 		break;
634 	case LEC_BIT1_ERROR:
635 		netdev_dbg(dev, "bit1 error\n");
636 		cf->data[2] |= CAN_ERR_PROT_BIT1;
637 		break;
638 	case LEC_BIT0_ERROR:
639 		netdev_dbg(dev, "bit0 error\n");
640 		cf->data[2] |= CAN_ERR_PROT_BIT0;
641 		break;
642 	case LEC_CRC_ERROR:
643 		netdev_dbg(dev, "CRC error\n");
644 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
645 		break;
646 	default:
647 		break;
648 	}
649 
650 	stats->rx_packets++;
651 	stats->rx_bytes += cf->len;
652 
653 	if (cdev->is_peripheral)
654 		timestamp = m_can_get_timestamp(cdev);
655 
656 	m_can_receive_skb(cdev, skb, timestamp);
657 
658 	return 1;
659 }
660 
661 static int __m_can_get_berr_counter(const struct net_device *dev,
662 				    struct can_berr_counter *bec)
663 {
664 	struct m_can_classdev *cdev = netdev_priv(dev);
665 	unsigned int ecr;
666 
667 	ecr = m_can_read(cdev, M_CAN_ECR);
668 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
669 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
670 
671 	return 0;
672 }
673 
674 static int m_can_clk_start(struct m_can_classdev *cdev)
675 {
676 	if (cdev->pm_clock_support == 0)
677 		return 0;
678 
679 	return pm_runtime_resume_and_get(cdev->dev);
680 }
681 
682 static void m_can_clk_stop(struct m_can_classdev *cdev)
683 {
684 	if (cdev->pm_clock_support)
685 		pm_runtime_put_sync(cdev->dev);
686 }
687 
688 static int m_can_get_berr_counter(const struct net_device *dev,
689 				  struct can_berr_counter *bec)
690 {
691 	struct m_can_classdev *cdev = netdev_priv(dev);
692 	int err;
693 
694 	err = m_can_clk_start(cdev);
695 	if (err)
696 		return err;
697 
698 	__m_can_get_berr_counter(dev, bec);
699 
700 	m_can_clk_stop(cdev);
701 
702 	return 0;
703 }
704 
705 static int m_can_handle_state_change(struct net_device *dev,
706 				     enum can_state new_state)
707 {
708 	struct m_can_classdev *cdev = netdev_priv(dev);
709 	struct net_device_stats *stats = &dev->stats;
710 	struct can_frame *cf;
711 	struct sk_buff *skb;
712 	struct can_berr_counter bec;
713 	unsigned int ecr;
714 	u32 timestamp = 0;
715 
716 	switch (new_state) {
717 	case CAN_STATE_ERROR_WARNING:
718 		/* error warning state */
719 		cdev->can.can_stats.error_warning++;
720 		cdev->can.state = CAN_STATE_ERROR_WARNING;
721 		break;
722 	case CAN_STATE_ERROR_PASSIVE:
723 		/* error passive state */
724 		cdev->can.can_stats.error_passive++;
725 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
726 		break;
727 	case CAN_STATE_BUS_OFF:
728 		/* bus-off state */
729 		cdev->can.state = CAN_STATE_BUS_OFF;
730 		m_can_disable_all_interrupts(cdev);
731 		cdev->can.can_stats.bus_off++;
732 		can_bus_off(dev);
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	/* propagate the error condition to the CAN stack */
739 	skb = alloc_can_err_skb(dev, &cf);
740 	if (unlikely(!skb))
741 		return 0;
742 
743 	__m_can_get_berr_counter(dev, &bec);
744 
745 	switch (new_state) {
746 	case CAN_STATE_ERROR_WARNING:
747 		/* error warning state */
748 		cf->can_id |= CAN_ERR_CRTL;
749 		cf->data[1] = (bec.txerr > bec.rxerr) ?
750 			CAN_ERR_CRTL_TX_WARNING :
751 			CAN_ERR_CRTL_RX_WARNING;
752 		cf->data[6] = bec.txerr;
753 		cf->data[7] = bec.rxerr;
754 		break;
755 	case CAN_STATE_ERROR_PASSIVE:
756 		/* error passive state */
757 		cf->can_id |= CAN_ERR_CRTL;
758 		ecr = m_can_read(cdev, M_CAN_ECR);
759 		if (ecr & ECR_RP)
760 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
761 		if (bec.txerr > 127)
762 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
763 		cf->data[6] = bec.txerr;
764 		cf->data[7] = bec.rxerr;
765 		break;
766 	case CAN_STATE_BUS_OFF:
767 		/* bus-off state */
768 		cf->can_id |= CAN_ERR_BUSOFF;
769 		break;
770 	default:
771 		break;
772 	}
773 
774 	stats->rx_packets++;
775 	stats->rx_bytes += cf->len;
776 
777 	if (cdev->is_peripheral)
778 		timestamp = m_can_get_timestamp(cdev);
779 
780 	m_can_receive_skb(cdev, skb, timestamp);
781 
782 	return 1;
783 }
784 
785 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
786 {
787 	struct m_can_classdev *cdev = netdev_priv(dev);
788 	int work_done = 0;
789 
790 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
791 		netdev_dbg(dev, "entered error warning state\n");
792 		work_done += m_can_handle_state_change(dev,
793 						       CAN_STATE_ERROR_WARNING);
794 	}
795 
796 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
797 		netdev_dbg(dev, "entered error passive state\n");
798 		work_done += m_can_handle_state_change(dev,
799 						       CAN_STATE_ERROR_PASSIVE);
800 	}
801 
802 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
803 		netdev_dbg(dev, "entered error bus off state\n");
804 		work_done += m_can_handle_state_change(dev,
805 						       CAN_STATE_BUS_OFF);
806 	}
807 
808 	return work_done;
809 }
810 
811 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
812 {
813 	if (irqstatus & IR_WDI)
814 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
815 	if (irqstatus & IR_BEU)
816 		netdev_err(dev, "Bit Error Uncorrected\n");
817 	if (irqstatus & IR_BEC)
818 		netdev_err(dev, "Bit Error Corrected\n");
819 	if (irqstatus & IR_TOO)
820 		netdev_err(dev, "Timeout reached\n");
821 	if (irqstatus & IR_MRAF)
822 		netdev_err(dev, "Message RAM access failure occurred\n");
823 }
824 
825 static inline bool is_lec_err(u32 psr)
826 {
827 	psr &= LEC_UNUSED;
828 
829 	return psr && (psr != LEC_UNUSED);
830 }
831 
832 static inline bool m_can_is_protocol_err(u32 irqstatus)
833 {
834 	return irqstatus & IR_ERR_LEC_31X;
835 }
836 
837 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
838 {
839 	struct net_device_stats *stats = &dev->stats;
840 	struct m_can_classdev *cdev = netdev_priv(dev);
841 	struct can_frame *cf;
842 	struct sk_buff *skb;
843 	u32 timestamp = 0;
844 
845 	/* propagate the error condition to the CAN stack */
846 	skb = alloc_can_err_skb(dev, &cf);
847 
848 	/* update tx error stats since there is protocol error */
849 	stats->tx_errors++;
850 
851 	/* update arbitration lost status */
852 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
853 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
854 		cdev->can.can_stats.arbitration_lost++;
855 		if (skb) {
856 			cf->can_id |= CAN_ERR_LOSTARB;
857 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
858 		}
859 	}
860 
861 	if (unlikely(!skb)) {
862 		netdev_dbg(dev, "allocation of skb failed\n");
863 		return 0;
864 	}
865 
866 	if (cdev->is_peripheral)
867 		timestamp = m_can_get_timestamp(cdev);
868 
869 	m_can_receive_skb(cdev, skb, timestamp);
870 
871 	return 1;
872 }
873 
874 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
875 				   u32 psr)
876 {
877 	struct m_can_classdev *cdev = netdev_priv(dev);
878 	int work_done = 0;
879 
880 	if (irqstatus & IR_RF0L)
881 		work_done += m_can_handle_lost_msg(dev);
882 
883 	/* handle lec errors on the bus */
884 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
885 	    is_lec_err(psr))
886 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
887 
888 	/* handle protocol errors in arbitration phase */
889 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
890 	    m_can_is_protocol_err(irqstatus))
891 		work_done += m_can_handle_protocol_error(dev, irqstatus);
892 
893 	/* other unproccessed error interrupts */
894 	m_can_handle_other_err(dev, irqstatus);
895 
896 	return work_done;
897 }
898 
899 static int m_can_rx_handler(struct net_device *dev, int quota)
900 {
901 	struct m_can_classdev *cdev = netdev_priv(dev);
902 	int rx_work_or_err;
903 	int work_done = 0;
904 	u32 irqstatus, psr;
905 
906 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
907 	if (!irqstatus)
908 		goto end;
909 
910 	/* Errata workaround for issue "Needless activation of MRAF irq"
911 	 * During frame reception while the MCAN is in Error Passive state
912 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
913 	 * it may happen that MCAN_IR.MRAF is set although there was no
914 	 * Message RAM access failure.
915 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
916 	 * The Message RAM Access Failure interrupt routine needs to check
917 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
918 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
919 	 */
920 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
921 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
922 		struct can_berr_counter bec;
923 
924 		__m_can_get_berr_counter(dev, &bec);
925 		if (bec.rxerr == 127) {
926 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
927 			irqstatus &= ~IR_MRAF;
928 		}
929 	}
930 
931 	psr = m_can_read(cdev, M_CAN_PSR);
932 
933 	if (irqstatus & IR_ERR_STATE)
934 		work_done += m_can_handle_state_errors(dev, psr);
935 
936 	if (irqstatus & IR_ERR_BUS_30X)
937 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
938 
939 	if (irqstatus & IR_RF0N) {
940 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
941 		if (rx_work_or_err < 0)
942 			return rx_work_or_err;
943 
944 		work_done += rx_work_or_err;
945 	}
946 end:
947 	return work_done;
948 }
949 
950 static int m_can_rx_peripheral(struct net_device *dev)
951 {
952 	struct m_can_classdev *cdev = netdev_priv(dev);
953 	int work_done;
954 
955 	work_done = m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
956 
957 	/* Don't re-enable interrupts if the driver had a fatal error
958 	 * (e.g., FIFO read failure).
959 	 */
960 	if (work_done >= 0)
961 		m_can_enable_all_interrupts(cdev);
962 
963 	return work_done;
964 }
965 
966 static int m_can_poll(struct napi_struct *napi, int quota)
967 {
968 	struct net_device *dev = napi->dev;
969 	struct m_can_classdev *cdev = netdev_priv(dev);
970 	int work_done;
971 
972 	work_done = m_can_rx_handler(dev, quota);
973 
974 	/* Don't re-enable interrupts if the driver had a fatal error
975 	 * (e.g., FIFO read failure).
976 	 */
977 	if (work_done >= 0 && work_done < quota) {
978 		napi_complete_done(napi, work_done);
979 		m_can_enable_all_interrupts(cdev);
980 	}
981 
982 	return work_done;
983 }
984 
985 /* Echo tx skb and update net stats. Peripherals use rx-offload for
986  * echo. timestamp is used for peripherals to ensure correct ordering
987  * by rx-offload, and is ignored for non-peripherals.
988  */
989 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
990 				  unsigned int msg_mark,
991 				  u32 timestamp)
992 {
993 	struct net_device *dev = cdev->net;
994 	struct net_device_stats *stats = &dev->stats;
995 
996 	if (cdev->is_peripheral)
997 		stats->tx_bytes +=
998 			can_rx_offload_get_echo_skb(&cdev->offload,
999 						    msg_mark,
1000 						    timestamp,
1001 						    NULL);
1002 	else
1003 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1004 
1005 	stats->tx_packets++;
1006 }
1007 
1008 static int m_can_echo_tx_event(struct net_device *dev)
1009 {
1010 	u32 txe_count = 0;
1011 	u32 m_can_txefs;
1012 	u32 fgi = 0;
1013 	int i = 0;
1014 	unsigned int msg_mark;
1015 
1016 	struct m_can_classdev *cdev = netdev_priv(dev);
1017 
1018 	/* read tx event fifo status */
1019 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1020 
1021 	/* Get Tx Event fifo element count */
1022 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1023 
1024 	/* Get and process all sent elements */
1025 	for (i = 0; i < txe_count; i++) {
1026 		u32 txe, timestamp = 0;
1027 		int err;
1028 
1029 		/* retrieve get index */
1030 		fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1031 
1032 		/* get message marker, timestamp */
1033 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1034 		if (err) {
1035 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1036 			return err;
1037 		}
1038 
1039 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1040 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe);
1041 
1042 		/* ack txe element */
1043 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1044 							  fgi));
1045 
1046 		/* update stats */
1047 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static irqreturn_t m_can_isr(int irq, void *dev_id)
1054 {
1055 	struct net_device *dev = (struct net_device *)dev_id;
1056 	struct m_can_classdev *cdev = netdev_priv(dev);
1057 	u32 ir;
1058 
1059 	if (pm_runtime_suspended(cdev->dev))
1060 		return IRQ_NONE;
1061 	ir = m_can_read(cdev, M_CAN_IR);
1062 	if (!ir)
1063 		return IRQ_NONE;
1064 
1065 	/* ACK all irqs */
1066 	if (ir & IR_ALL_INT)
1067 		m_can_write(cdev, M_CAN_IR, ir);
1068 
1069 	if (cdev->ops->clear_interrupts)
1070 		cdev->ops->clear_interrupts(cdev);
1071 
1072 	/* schedule NAPI in case of
1073 	 * - rx IRQ
1074 	 * - state change IRQ
1075 	 * - bus error IRQ and bus error reporting
1076 	 */
1077 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1078 		cdev->irqstatus = ir;
1079 		m_can_disable_all_interrupts(cdev);
1080 		if (!cdev->is_peripheral)
1081 			napi_schedule(&cdev->napi);
1082 		else if (m_can_rx_peripheral(dev) < 0)
1083 			goto out_fail;
1084 	}
1085 
1086 	if (cdev->version == 30) {
1087 		if (ir & IR_TC) {
1088 			/* Transmission Complete Interrupt*/
1089 			u32 timestamp = 0;
1090 
1091 			if (cdev->is_peripheral)
1092 				timestamp = m_can_get_timestamp(cdev);
1093 			m_can_tx_update_stats(cdev, 0, timestamp);
1094 
1095 			can_led_event(dev, CAN_LED_EVENT_TX);
1096 			netif_wake_queue(dev);
1097 		}
1098 	} else  {
1099 		if (ir & IR_TEFN) {
1100 			/* New TX FIFO Element arrived */
1101 			if (m_can_echo_tx_event(dev) != 0)
1102 				goto out_fail;
1103 
1104 			can_led_event(dev, CAN_LED_EVENT_TX);
1105 			if (netif_queue_stopped(dev) &&
1106 			    !m_can_tx_fifo_full(cdev))
1107 				netif_wake_queue(dev);
1108 		}
1109 	}
1110 
1111 	if (cdev->is_peripheral)
1112 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1113 
1114 	return IRQ_HANDLED;
1115 
1116 out_fail:
1117 	m_can_disable_all_interrupts(cdev);
1118 	return IRQ_HANDLED;
1119 }
1120 
1121 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1122 	.name = KBUILD_MODNAME,
1123 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1124 	.tseg1_max = 64,
1125 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1126 	.tseg2_max = 16,
1127 	.sjw_max = 16,
1128 	.brp_min = 1,
1129 	.brp_max = 1024,
1130 	.brp_inc = 1,
1131 };
1132 
1133 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1134 	.name = KBUILD_MODNAME,
1135 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1136 	.tseg1_max = 16,
1137 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1138 	.tseg2_max = 8,
1139 	.sjw_max = 4,
1140 	.brp_min = 1,
1141 	.brp_max = 32,
1142 	.brp_inc = 1,
1143 };
1144 
1145 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1146 	.name = KBUILD_MODNAME,
1147 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1148 	.tseg1_max = 256,
1149 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1150 	.tseg2_max = 128,
1151 	.sjw_max = 128,
1152 	.brp_min = 1,
1153 	.brp_max = 512,
1154 	.brp_inc = 1,
1155 };
1156 
1157 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1158 	.name = KBUILD_MODNAME,
1159 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1160 	.tseg1_max = 32,
1161 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1162 	.tseg2_max = 16,
1163 	.sjw_max = 16,
1164 	.brp_min = 1,
1165 	.brp_max = 32,
1166 	.brp_inc = 1,
1167 };
1168 
1169 static int m_can_set_bittiming(struct net_device *dev)
1170 {
1171 	struct m_can_classdev *cdev = netdev_priv(dev);
1172 	const struct can_bittiming *bt = &cdev->can.bittiming;
1173 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1174 	u16 brp, sjw, tseg1, tseg2;
1175 	u32 reg_btp;
1176 
1177 	brp = bt->brp - 1;
1178 	sjw = bt->sjw - 1;
1179 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1180 	tseg2 = bt->phase_seg2 - 1;
1181 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1182 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1183 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1184 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1185 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1186 
1187 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1188 		reg_btp = 0;
1189 		brp = dbt->brp - 1;
1190 		sjw = dbt->sjw - 1;
1191 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1192 		tseg2 = dbt->phase_seg2 - 1;
1193 
1194 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1195 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1196 		 * paper presented at the International CAN Conference 2013
1197 		 */
1198 		if (dbt->bitrate > 2500000) {
1199 			u32 tdco, ssp;
1200 
1201 			/* Use the same value of secondary sampling point
1202 			 * as the data sampling point
1203 			 */
1204 			ssp = dbt->sample_point;
1205 
1206 			/* Equation based on Bosch's M_CAN User Manual's
1207 			 * Transmitter Delay Compensation Section
1208 			 */
1209 			tdco = (cdev->can.clock.freq / 1000) *
1210 				ssp / dbt->bitrate;
1211 
1212 			/* Max valid TDCO value is 127 */
1213 			if (tdco > 127) {
1214 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1215 					    tdco);
1216 				tdco = 127;
1217 			}
1218 
1219 			reg_btp |= DBTP_TDC;
1220 			m_can_write(cdev, M_CAN_TDCR,
1221 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1222 		}
1223 
1224 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1225 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1226 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1227 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1228 
1229 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /* Configure M_CAN chip:
1236  * - set rx buffer/fifo element size
1237  * - configure rx fifo
1238  * - accept non-matching frame into fifo 0
1239  * - configure tx buffer
1240  *		- >= v3.1.x: TX FIFO is used
1241  * - configure mode
1242  * - setup bittiming
1243  * - configure timestamp generation
1244  */
1245 static void m_can_chip_config(struct net_device *dev)
1246 {
1247 	struct m_can_classdev *cdev = netdev_priv(dev);
1248 	u32 cccr, test;
1249 
1250 	m_can_config_endisable(cdev, true);
1251 
1252 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1253 	m_can_write(cdev, M_CAN_RXESC,
1254 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1255 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1256 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1257 
1258 	/* Accept Non-matching Frames Into FIFO 0 */
1259 	m_can_write(cdev, M_CAN_GFC, 0x0);
1260 
1261 	if (cdev->version == 30) {
1262 		/* only support one Tx Buffer currently */
1263 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1264 			    cdev->mcfg[MRAM_TXB].off);
1265 	} else {
1266 		/* TX FIFO is used for newer IP Core versions */
1267 		m_can_write(cdev, M_CAN_TXBC,
1268 			    FIELD_PREP(TXBC_TFQS_MASK,
1269 				       cdev->mcfg[MRAM_TXB].num) |
1270 			    cdev->mcfg[MRAM_TXB].off);
1271 	}
1272 
1273 	/* support 64 bytes payload */
1274 	m_can_write(cdev, M_CAN_TXESC,
1275 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1276 
1277 	/* TX Event FIFO */
1278 	if (cdev->version == 30) {
1279 		m_can_write(cdev, M_CAN_TXEFC,
1280 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1281 			    cdev->mcfg[MRAM_TXE].off);
1282 	} else {
1283 		/* Full TX Event FIFO is used */
1284 		m_can_write(cdev, M_CAN_TXEFC,
1285 			    FIELD_PREP(TXEFC_EFS_MASK,
1286 				       cdev->mcfg[MRAM_TXE].num) |
1287 			    cdev->mcfg[MRAM_TXE].off);
1288 	}
1289 
1290 	/* rx fifo configuration, blocking mode, fifo size 1 */
1291 	m_can_write(cdev, M_CAN_RXF0C,
1292 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1293 		    cdev->mcfg[MRAM_RXF0].off);
1294 
1295 	m_can_write(cdev, M_CAN_RXF1C,
1296 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1297 		    cdev->mcfg[MRAM_RXF1].off);
1298 
1299 	cccr = m_can_read(cdev, M_CAN_CCCR);
1300 	test = m_can_read(cdev, M_CAN_TEST);
1301 	test &= ~TEST_LBCK;
1302 	if (cdev->version == 30) {
1303 		/* Version 3.0.x */
1304 
1305 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1306 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1307 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1308 
1309 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1310 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1311 
1312 	} else {
1313 		/* Version 3.1.x or 3.2.x */
1314 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1315 			  CCCR_NISO | CCCR_DAR);
1316 
1317 		/* Only 3.2.x has NISO Bit implemented */
1318 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1319 			cccr |= CCCR_NISO;
1320 
1321 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1322 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1323 	}
1324 
1325 	/* Loopback Mode */
1326 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1327 		cccr |= CCCR_TEST | CCCR_MON;
1328 		test |= TEST_LBCK;
1329 	}
1330 
1331 	/* Enable Monitoring (all versions) */
1332 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1333 		cccr |= CCCR_MON;
1334 
1335 	/* Disable Auto Retransmission (all versions) */
1336 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1337 		cccr |= CCCR_DAR;
1338 
1339 	/* Write config */
1340 	m_can_write(cdev, M_CAN_CCCR, cccr);
1341 	m_can_write(cdev, M_CAN_TEST, test);
1342 
1343 	/* Enable interrupts */
1344 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1345 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1346 		if (cdev->version == 30)
1347 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1348 				    ~(IR_ERR_LEC_30X));
1349 		else
1350 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1351 				    ~(IR_ERR_LEC_31X));
1352 	else
1353 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1354 
1355 	/* route all interrupts to INT0 */
1356 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1357 
1358 	/* set bittiming params */
1359 	m_can_set_bittiming(dev);
1360 
1361 	/* enable internal timestamp generation, with a prescalar of 16. The
1362 	 * prescalar is applied to the nominal bit timing
1363 	 */
1364 	m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf));
1365 
1366 	m_can_config_endisable(cdev, false);
1367 
1368 	if (cdev->ops->init)
1369 		cdev->ops->init(cdev);
1370 }
1371 
1372 static void m_can_start(struct net_device *dev)
1373 {
1374 	struct m_can_classdev *cdev = netdev_priv(dev);
1375 
1376 	/* basic m_can configuration */
1377 	m_can_chip_config(dev);
1378 
1379 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1380 
1381 	m_can_enable_all_interrupts(cdev);
1382 }
1383 
1384 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1385 {
1386 	switch (mode) {
1387 	case CAN_MODE_START:
1388 		m_can_clean(dev);
1389 		m_can_start(dev);
1390 		netif_wake_queue(dev);
1391 		break;
1392 	default:
1393 		return -EOPNOTSUPP;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /* Checks core release number of M_CAN
1400  * returns 0 if an unsupported device is detected
1401  * else it returns the release and step coded as:
1402  * return value = 10 * <release> + 1 * <step>
1403  */
1404 static int m_can_check_core_release(struct m_can_classdev *cdev)
1405 {
1406 	u32 crel_reg;
1407 	u8 rel;
1408 	u8 step;
1409 	int res;
1410 
1411 	/* Read Core Release Version and split into version number
1412 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1413 	 */
1414 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1415 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1416 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1417 
1418 	if (rel == 3) {
1419 		/* M_CAN v3.x.y: create return value */
1420 		res = 30 + step;
1421 	} else {
1422 		/* Unsupported M_CAN version */
1423 		res = 0;
1424 	}
1425 
1426 	return res;
1427 }
1428 
1429 /* Selectable Non ISO support only in version 3.2.x
1430  * This function checks if the bit is writable.
1431  */
1432 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1433 {
1434 	u32 cccr_reg, cccr_poll = 0;
1435 	int niso_timeout = -ETIMEDOUT;
1436 	int i;
1437 
1438 	m_can_config_endisable(cdev, true);
1439 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1440 	cccr_reg |= CCCR_NISO;
1441 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1442 
1443 	for (i = 0; i <= 10; i++) {
1444 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1445 		if (cccr_poll == cccr_reg) {
1446 			niso_timeout = 0;
1447 			break;
1448 		}
1449 
1450 		usleep_range(1, 5);
1451 	}
1452 
1453 	/* Clear NISO */
1454 	cccr_reg &= ~(CCCR_NISO);
1455 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1456 
1457 	m_can_config_endisable(cdev, false);
1458 
1459 	/* return false if time out (-ETIMEDOUT), else return true */
1460 	return !niso_timeout;
1461 }
1462 
1463 static int m_can_dev_setup(struct m_can_classdev *cdev)
1464 {
1465 	struct net_device *dev = cdev->net;
1466 	int m_can_version;
1467 
1468 	m_can_version = m_can_check_core_release(cdev);
1469 	/* return if unsupported version */
1470 	if (!m_can_version) {
1471 		dev_err(cdev->dev, "Unsupported version number: %2d",
1472 			m_can_version);
1473 		return -EINVAL;
1474 	}
1475 
1476 	if (!cdev->is_peripheral)
1477 		netif_napi_add(dev, &cdev->napi,
1478 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1479 
1480 	/* Shared properties of all M_CAN versions */
1481 	cdev->version = m_can_version;
1482 	cdev->can.do_set_mode = m_can_set_mode;
1483 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1484 
1485 	/* Set M_CAN supported operations */
1486 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1487 		CAN_CTRLMODE_LISTENONLY |
1488 		CAN_CTRLMODE_BERR_REPORTING |
1489 		CAN_CTRLMODE_FD |
1490 		CAN_CTRLMODE_ONE_SHOT;
1491 
1492 	/* Set properties depending on M_CAN version */
1493 	switch (cdev->version) {
1494 	case 30:
1495 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1496 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1497 		cdev->can.bittiming_const = cdev->bit_timing ?
1498 			cdev->bit_timing : &m_can_bittiming_const_30X;
1499 
1500 		cdev->can.data_bittiming_const = cdev->data_timing ?
1501 			cdev->data_timing :
1502 			&m_can_data_bittiming_const_30X;
1503 		break;
1504 	case 31:
1505 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1506 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1507 		cdev->can.bittiming_const = cdev->bit_timing ?
1508 			cdev->bit_timing : &m_can_bittiming_const_31X;
1509 
1510 		cdev->can.data_bittiming_const = cdev->data_timing ?
1511 			cdev->data_timing :
1512 			&m_can_data_bittiming_const_31X;
1513 		break;
1514 	case 32:
1515 	case 33:
1516 		/* Support both MCAN version v3.2.x and v3.3.0 */
1517 		cdev->can.bittiming_const = cdev->bit_timing ?
1518 			cdev->bit_timing : &m_can_bittiming_const_31X;
1519 
1520 		cdev->can.data_bittiming_const = cdev->data_timing ?
1521 			cdev->data_timing :
1522 			&m_can_data_bittiming_const_31X;
1523 
1524 		cdev->can.ctrlmode_supported |=
1525 			(m_can_niso_supported(cdev) ?
1526 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1527 		break;
1528 	default:
1529 		dev_err(cdev->dev, "Unsupported version number: %2d",
1530 			cdev->version);
1531 		return -EINVAL;
1532 	}
1533 
1534 	if (cdev->ops->init)
1535 		cdev->ops->init(cdev);
1536 
1537 	return 0;
1538 }
1539 
1540 static void m_can_stop(struct net_device *dev)
1541 {
1542 	struct m_can_classdev *cdev = netdev_priv(dev);
1543 
1544 	/* disable all interrupts */
1545 	m_can_disable_all_interrupts(cdev);
1546 
1547 	/* Set init mode to disengage from the network */
1548 	m_can_config_endisable(cdev, true);
1549 
1550 	/* set the state as STOPPED */
1551 	cdev->can.state = CAN_STATE_STOPPED;
1552 }
1553 
1554 static int m_can_close(struct net_device *dev)
1555 {
1556 	struct m_can_classdev *cdev = netdev_priv(dev);
1557 
1558 	netif_stop_queue(dev);
1559 
1560 	if (!cdev->is_peripheral)
1561 		napi_disable(&cdev->napi);
1562 
1563 	m_can_stop(dev);
1564 	m_can_clk_stop(cdev);
1565 	free_irq(dev->irq, dev);
1566 
1567 	if (cdev->is_peripheral) {
1568 		cdev->tx_skb = NULL;
1569 		destroy_workqueue(cdev->tx_wq);
1570 		cdev->tx_wq = NULL;
1571 	}
1572 
1573 	if (cdev->is_peripheral)
1574 		can_rx_offload_disable(&cdev->offload);
1575 
1576 	close_candev(dev);
1577 	can_led_event(dev, CAN_LED_EVENT_STOP);
1578 
1579 	phy_power_off(cdev->transceiver);
1580 
1581 	return 0;
1582 }
1583 
1584 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1585 {
1586 	struct m_can_classdev *cdev = netdev_priv(dev);
1587 	/*get wrap around for loopback skb index */
1588 	unsigned int wrap = cdev->can.echo_skb_max;
1589 	int next_idx;
1590 
1591 	/* calculate next index */
1592 	next_idx = (++putidx >= wrap ? 0 : putidx);
1593 
1594 	/* check if occupied */
1595 	return !!cdev->can.echo_skb[next_idx];
1596 }
1597 
1598 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1599 {
1600 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1601 	struct net_device *dev = cdev->net;
1602 	struct sk_buff *skb = cdev->tx_skb;
1603 	struct id_and_dlc fifo_header;
1604 	u32 cccr, fdflags;
1605 	int err;
1606 	int putidx;
1607 
1608 	cdev->tx_skb = NULL;
1609 
1610 	/* Generate ID field for TX buffer Element */
1611 	/* Common to all supported M_CAN versions */
1612 	if (cf->can_id & CAN_EFF_FLAG) {
1613 		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1614 		fifo_header.id |= TX_BUF_XTD;
1615 	} else {
1616 		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1617 	}
1618 
1619 	if (cf->can_id & CAN_RTR_FLAG)
1620 		fifo_header.id |= TX_BUF_RTR;
1621 
1622 	if (cdev->version == 30) {
1623 		netif_stop_queue(dev);
1624 
1625 		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1626 
1627 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1628 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1629 		if (err)
1630 			goto out_fail;
1631 
1632 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1633 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1634 		if (err)
1635 			goto out_fail;
1636 
1637 		can_put_echo_skb(skb, dev, 0, 0);
1638 
1639 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1640 			cccr = m_can_read(cdev, M_CAN_CCCR);
1641 			cccr &= ~CCCR_CMR_MASK;
1642 			if (can_is_canfd_skb(skb)) {
1643 				if (cf->flags & CANFD_BRS)
1644 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1645 							   CCCR_CMR_CANFD_BRS);
1646 				else
1647 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1648 							   CCCR_CMR_CANFD);
1649 			} else {
1650 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1651 			}
1652 			m_can_write(cdev, M_CAN_CCCR, cccr);
1653 		}
1654 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1655 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1656 		/* End of xmit function for version 3.0.x */
1657 	} else {
1658 		/* Transmit routine for version >= v3.1.x */
1659 
1660 		/* Check if FIFO full */
1661 		if (m_can_tx_fifo_full(cdev)) {
1662 			/* This shouldn't happen */
1663 			netif_stop_queue(dev);
1664 			netdev_warn(dev,
1665 				    "TX queue active although FIFO is full.");
1666 
1667 			if (cdev->is_peripheral) {
1668 				kfree_skb(skb);
1669 				dev->stats.tx_dropped++;
1670 				return NETDEV_TX_OK;
1671 			} else {
1672 				return NETDEV_TX_BUSY;
1673 			}
1674 		}
1675 
1676 		/* get put index for frame */
1677 		putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1678 				   m_can_read(cdev, M_CAN_TXFQS));
1679 
1680 		/* Construct DLC Field, with CAN-FD configuration.
1681 		 * Use the put index of the fifo as the message marker,
1682 		 * used in the TX interrupt for sending the correct echo frame.
1683 		 */
1684 
1685 		/* get CAN FD configuration of frame */
1686 		fdflags = 0;
1687 		if (can_is_canfd_skb(skb)) {
1688 			fdflags |= TX_BUF_FDF;
1689 			if (cf->flags & CANFD_BRS)
1690 				fdflags |= TX_BUF_BRS;
1691 		}
1692 
1693 		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1694 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1695 			fdflags | TX_BUF_EFC;
1696 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1697 		if (err)
1698 			goto out_fail;
1699 
1700 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1701 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1702 		if (err)
1703 			goto out_fail;
1704 
1705 		/* Push loopback echo.
1706 		 * Will be looped back on TX interrupt based on message marker
1707 		 */
1708 		can_put_echo_skb(skb, dev, putidx, 0);
1709 
1710 		/* Enable TX FIFO element to start transfer  */
1711 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1712 
1713 		/* stop network queue if fifo full */
1714 		if (m_can_tx_fifo_full(cdev) ||
1715 		    m_can_next_echo_skb_occupied(dev, putidx))
1716 			netif_stop_queue(dev);
1717 	}
1718 
1719 	return NETDEV_TX_OK;
1720 
1721 out_fail:
1722 	netdev_err(dev, "FIFO write returned %d\n", err);
1723 	m_can_disable_all_interrupts(cdev);
1724 	return NETDEV_TX_BUSY;
1725 }
1726 
1727 static void m_can_tx_work_queue(struct work_struct *ws)
1728 {
1729 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1730 						   tx_work);
1731 
1732 	m_can_tx_handler(cdev);
1733 }
1734 
1735 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1736 				    struct net_device *dev)
1737 {
1738 	struct m_can_classdev *cdev = netdev_priv(dev);
1739 
1740 	if (can_dropped_invalid_skb(dev, skb))
1741 		return NETDEV_TX_OK;
1742 
1743 	if (cdev->is_peripheral) {
1744 		if (cdev->tx_skb) {
1745 			netdev_err(dev, "hard_xmit called while tx busy\n");
1746 			return NETDEV_TX_BUSY;
1747 		}
1748 
1749 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1750 			m_can_clean(dev);
1751 		} else {
1752 			/* Need to stop the queue to avoid numerous requests
1753 			 * from being sent.  Suggested improvement is to create
1754 			 * a queueing mechanism that will queue the skbs and
1755 			 * process them in order.
1756 			 */
1757 			cdev->tx_skb = skb;
1758 			netif_stop_queue(cdev->net);
1759 			queue_work(cdev->tx_wq, &cdev->tx_work);
1760 		}
1761 	} else {
1762 		cdev->tx_skb = skb;
1763 		return m_can_tx_handler(cdev);
1764 	}
1765 
1766 	return NETDEV_TX_OK;
1767 }
1768 
1769 static int m_can_open(struct net_device *dev)
1770 {
1771 	struct m_can_classdev *cdev = netdev_priv(dev);
1772 	int err;
1773 
1774 	err = phy_power_on(cdev->transceiver);
1775 	if (err)
1776 		return err;
1777 
1778 	err = m_can_clk_start(cdev);
1779 	if (err)
1780 		goto out_phy_power_off;
1781 
1782 	/* open the can device */
1783 	err = open_candev(dev);
1784 	if (err) {
1785 		netdev_err(dev, "failed to open can device\n");
1786 		goto exit_disable_clks;
1787 	}
1788 
1789 	if (cdev->is_peripheral)
1790 		can_rx_offload_enable(&cdev->offload);
1791 
1792 	/* register interrupt handler */
1793 	if (cdev->is_peripheral) {
1794 		cdev->tx_skb = NULL;
1795 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1796 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1797 		if (!cdev->tx_wq) {
1798 			err = -ENOMEM;
1799 			goto out_wq_fail;
1800 		}
1801 
1802 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1803 
1804 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1805 					   IRQF_ONESHOT,
1806 					   dev->name, dev);
1807 	} else {
1808 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1809 				  dev);
1810 	}
1811 
1812 	if (err < 0) {
1813 		netdev_err(dev, "failed to request interrupt\n");
1814 		goto exit_irq_fail;
1815 	}
1816 
1817 	/* start the m_can controller */
1818 	m_can_start(dev);
1819 
1820 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1821 
1822 	if (!cdev->is_peripheral)
1823 		napi_enable(&cdev->napi);
1824 
1825 	netif_start_queue(dev);
1826 
1827 	return 0;
1828 
1829 exit_irq_fail:
1830 	if (cdev->is_peripheral)
1831 		destroy_workqueue(cdev->tx_wq);
1832 out_wq_fail:
1833 	if (cdev->is_peripheral)
1834 		can_rx_offload_disable(&cdev->offload);
1835 	close_candev(dev);
1836 exit_disable_clks:
1837 	m_can_clk_stop(cdev);
1838 out_phy_power_off:
1839 	phy_power_off(cdev->transceiver);
1840 	return err;
1841 }
1842 
1843 static const struct net_device_ops m_can_netdev_ops = {
1844 	.ndo_open = m_can_open,
1845 	.ndo_stop = m_can_close,
1846 	.ndo_start_xmit = m_can_start_xmit,
1847 	.ndo_change_mtu = can_change_mtu,
1848 };
1849 
1850 static int register_m_can_dev(struct net_device *dev)
1851 {
1852 	dev->flags |= IFF_ECHO;	/* we support local echo */
1853 	dev->netdev_ops = &m_can_netdev_ops;
1854 
1855 	return register_candev(dev);
1856 }
1857 
1858 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1859 				const u32 *mram_config_vals)
1860 {
1861 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1862 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1863 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1864 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1865 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1866 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1867 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1868 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1869 		FIELD_MAX(RXFC_FS_MASK);
1870 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1871 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1872 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1873 		FIELD_MAX(RXFC_FS_MASK);
1874 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1875 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1876 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1877 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1878 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1879 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1880 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1881 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1882 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1883 		FIELD_MAX(TXBC_NDTB_MASK);
1884 
1885 	dev_dbg(cdev->dev,
1886 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1887 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1888 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1889 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1890 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1891 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1892 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1893 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1894 }
1895 
1896 int m_can_init_ram(struct m_can_classdev *cdev)
1897 {
1898 	int end, i, start;
1899 	int err = 0;
1900 
1901 	/* initialize the entire Message RAM in use to avoid possible
1902 	 * ECC/parity checksum errors when reading an uninitialized buffer
1903 	 */
1904 	start = cdev->mcfg[MRAM_SIDF].off;
1905 	end = cdev->mcfg[MRAM_TXB].off +
1906 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1907 
1908 	for (i = start; i < end; i += 4) {
1909 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
1910 		if (err)
1911 			break;
1912 	}
1913 
1914 	return err;
1915 }
1916 EXPORT_SYMBOL_GPL(m_can_init_ram);
1917 
1918 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1919 {
1920 	int ret = 0;
1921 
1922 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1923 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1924 
1925 	if (IS_ERR(cdev->cclk)) {
1926 		dev_err(cdev->dev, "no clock found\n");
1927 		ret = -ENODEV;
1928 	}
1929 
1930 	return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1933 
1934 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1935 						int sizeof_priv)
1936 {
1937 	struct m_can_classdev *class_dev = NULL;
1938 	u32 mram_config_vals[MRAM_CFG_LEN];
1939 	struct net_device *net_dev;
1940 	u32 tx_fifo_size;
1941 	int ret;
1942 
1943 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1944 					     "bosch,mram-cfg",
1945 					     mram_config_vals,
1946 					     sizeof(mram_config_vals) / 4);
1947 	if (ret) {
1948 		dev_err(dev, "Could not get Message RAM configuration.");
1949 		goto out;
1950 	}
1951 
1952 	/* Get TX FIFO size
1953 	 * Defines the total amount of echo buffers for loopback
1954 	 */
1955 	tx_fifo_size = mram_config_vals[7];
1956 
1957 	/* allocate the m_can device */
1958 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1959 	if (!net_dev) {
1960 		dev_err(dev, "Failed to allocate CAN device");
1961 		goto out;
1962 	}
1963 
1964 	class_dev = netdev_priv(net_dev);
1965 	class_dev->net = net_dev;
1966 	class_dev->dev = dev;
1967 	SET_NETDEV_DEV(net_dev, dev);
1968 
1969 	m_can_of_parse_mram(class_dev, mram_config_vals);
1970 out:
1971 	return class_dev;
1972 }
1973 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1974 
1975 void m_can_class_free_dev(struct net_device *net)
1976 {
1977 	free_candev(net);
1978 }
1979 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1980 
1981 int m_can_class_register(struct m_can_classdev *cdev)
1982 {
1983 	int ret;
1984 
1985 	if (cdev->pm_clock_support) {
1986 		ret = m_can_clk_start(cdev);
1987 		if (ret)
1988 			return ret;
1989 	}
1990 
1991 	if (cdev->is_peripheral) {
1992 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1993 						M_CAN_NAPI_WEIGHT);
1994 		if (ret)
1995 			goto clk_disable;
1996 	}
1997 
1998 	ret = m_can_dev_setup(cdev);
1999 	if (ret)
2000 		goto rx_offload_del;
2001 
2002 	ret = register_m_can_dev(cdev->net);
2003 	if (ret) {
2004 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2005 			cdev->net->name, ret);
2006 		goto rx_offload_del;
2007 	}
2008 
2009 	devm_can_led_init(cdev->net);
2010 
2011 	of_can_transceiver(cdev->net);
2012 
2013 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2014 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2015 
2016 	/* Probe finished
2017 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2018 	 */
2019 	m_can_clk_stop(cdev);
2020 
2021 	return 0;
2022 
2023 rx_offload_del:
2024 	if (cdev->is_peripheral)
2025 		can_rx_offload_del(&cdev->offload);
2026 clk_disable:
2027 	m_can_clk_stop(cdev);
2028 
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(m_can_class_register);
2032 
2033 void m_can_class_unregister(struct m_can_classdev *cdev)
2034 {
2035 	if (cdev->is_peripheral)
2036 		can_rx_offload_del(&cdev->offload);
2037 	unregister_candev(cdev->net);
2038 }
2039 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2040 
2041 int m_can_class_suspend(struct device *dev)
2042 {
2043 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2044 	struct net_device *ndev = cdev->net;
2045 
2046 	if (netif_running(ndev)) {
2047 		netif_stop_queue(ndev);
2048 		netif_device_detach(ndev);
2049 		m_can_stop(ndev);
2050 		m_can_clk_stop(cdev);
2051 	}
2052 
2053 	pinctrl_pm_select_sleep_state(dev);
2054 
2055 	cdev->can.state = CAN_STATE_SLEEPING;
2056 
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2060 
2061 int m_can_class_resume(struct device *dev)
2062 {
2063 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2064 	struct net_device *ndev = cdev->net;
2065 
2066 	pinctrl_pm_select_default_state(dev);
2067 
2068 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2069 
2070 	if (netif_running(ndev)) {
2071 		int ret;
2072 
2073 		ret = m_can_clk_start(cdev);
2074 		if (ret)
2075 			return ret;
2076 
2077 		m_can_init_ram(cdev);
2078 		m_can_start(ndev);
2079 		netif_device_attach(ndev);
2080 		netif_start_queue(ndev);
2081 	}
2082 
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(m_can_class_resume);
2086 
2087 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2088 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2089 MODULE_LICENSE("GPL v2");
2090 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2091