xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/phy/phy.h>
25 
26 #include "m_can.h"
27 
28 /* registers definition */
29 enum m_can_reg {
30 	M_CAN_CREL	= 0x0,
31 	M_CAN_ENDN	= 0x4,
32 	M_CAN_CUST	= 0x8,
33 	M_CAN_DBTP	= 0xc,
34 	M_CAN_TEST	= 0x10,
35 	M_CAN_RWD	= 0x14,
36 	M_CAN_CCCR	= 0x18,
37 	M_CAN_NBTP	= 0x1c,
38 	M_CAN_TSCC	= 0x20,
39 	M_CAN_TSCV	= 0x24,
40 	M_CAN_TOCC	= 0x28,
41 	M_CAN_TOCV	= 0x2c,
42 	M_CAN_ECR	= 0x40,
43 	M_CAN_PSR	= 0x44,
44 	/* TDCR Register only available for version >=3.1.x */
45 	M_CAN_TDCR	= 0x48,
46 	M_CAN_IR	= 0x50,
47 	M_CAN_IE	= 0x54,
48 	M_CAN_ILS	= 0x58,
49 	M_CAN_ILE	= 0x5c,
50 	M_CAN_GFC	= 0x80,
51 	M_CAN_SIDFC	= 0x84,
52 	M_CAN_XIDFC	= 0x88,
53 	M_CAN_XIDAM	= 0x90,
54 	M_CAN_HPMS	= 0x94,
55 	M_CAN_NDAT1	= 0x98,
56 	M_CAN_NDAT2	= 0x9c,
57 	M_CAN_RXF0C	= 0xa0,
58 	M_CAN_RXF0S	= 0xa4,
59 	M_CAN_RXF0A	= 0xa8,
60 	M_CAN_RXBC	= 0xac,
61 	M_CAN_RXF1C	= 0xb0,
62 	M_CAN_RXF1S	= 0xb4,
63 	M_CAN_RXF1A	= 0xb8,
64 	M_CAN_RXESC	= 0xbc,
65 	M_CAN_TXBC	= 0xc0,
66 	M_CAN_TXFQS	= 0xc4,
67 	M_CAN_TXESC	= 0xc8,
68 	M_CAN_TXBRP	= 0xcc,
69 	M_CAN_TXBAR	= 0xd0,
70 	M_CAN_TXBCR	= 0xd4,
71 	M_CAN_TXBTO	= 0xd8,
72 	M_CAN_TXBCF	= 0xdc,
73 	M_CAN_TXBTIE	= 0xe0,
74 	M_CAN_TXBCIE	= 0xe4,
75 	M_CAN_TXEFC	= 0xf0,
76 	M_CAN_TXEFS	= 0xf4,
77 	M_CAN_TXEFA	= 0xf8,
78 };
79 
80 /* napi related */
81 #define M_CAN_NAPI_WEIGHT	64
82 
83 /* message ram configuration data length */
84 #define MRAM_CFG_LEN	8
85 
86 /* Core Release Register (CREL) */
87 #define CREL_REL_MASK		GENMASK(31, 28)
88 #define CREL_STEP_MASK		GENMASK(27, 24)
89 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
90 
91 /* Data Bit Timing & Prescaler Register (DBTP) */
92 #define DBTP_TDC		BIT(23)
93 #define DBTP_DBRP_MASK		GENMASK(20, 16)
94 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
95 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
96 #define DBTP_DSJW_MASK		GENMASK(3, 0)
97 
98 /* Transmitter Delay Compensation Register (TDCR) */
99 #define TDCR_TDCO_MASK		GENMASK(14, 8)
100 #define TDCR_TDCF_MASK		GENMASK(6, 0)
101 
102 /* Test Register (TEST) */
103 #define TEST_LBCK		BIT(4)
104 
105 /* CC Control Register (CCCR) */
106 #define CCCR_TXP		BIT(14)
107 #define CCCR_TEST		BIT(7)
108 #define CCCR_DAR		BIT(6)
109 #define CCCR_MON		BIT(5)
110 #define CCCR_CSR		BIT(4)
111 #define CCCR_CSA		BIT(3)
112 #define CCCR_ASM		BIT(2)
113 #define CCCR_CCE		BIT(1)
114 #define CCCR_INIT		BIT(0)
115 /* for version 3.0.x */
116 #define CCCR_CMR_MASK		GENMASK(11, 10)
117 #define CCCR_CMR_CANFD		0x1
118 #define CCCR_CMR_CANFD_BRS	0x2
119 #define CCCR_CMR_CAN		0x3
120 #define CCCR_CME_MASK		GENMASK(9, 8)
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 /* for version >=3.1.x */
125 #define CCCR_EFBI		BIT(13)
126 #define CCCR_PXHD		BIT(12)
127 #define CCCR_BRSE		BIT(9)
128 #define CCCR_FDOE		BIT(8)
129 /* for version >=3.2.x */
130 #define CCCR_NISO		BIT(15)
131 /* for version >=3.3.x */
132 #define CCCR_WMM		BIT(11)
133 #define CCCR_UTSU		BIT(10)
134 
135 /* Nominal Bit Timing & Prescaler Register (NBTP) */
136 #define NBTP_NSJW_MASK		GENMASK(31, 25)
137 #define NBTP_NBRP_MASK		GENMASK(24, 16)
138 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
139 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
140 
141 /* Timestamp Counter Configuration Register (TSCC) */
142 #define TSCC_TCP_MASK		GENMASK(19, 16)
143 #define TSCC_TSS_MASK		GENMASK(1, 0)
144 #define TSCC_TSS_DISABLE	0x0
145 #define TSCC_TSS_INTERNAL	0x1
146 #define TSCC_TSS_EXTERNAL	0x2
147 
148 /* Timestamp Counter Value Register (TSCV) */
149 #define TSCV_TSC_MASK		GENMASK(15, 0)
150 
151 /* Error Counter Register (ECR) */
152 #define ECR_RP			BIT(15)
153 #define ECR_REC_MASK		GENMASK(14, 8)
154 #define ECR_TEC_MASK		GENMASK(7, 0)
155 
156 /* Protocol Status Register (PSR) */
157 #define PSR_BO		BIT(7)
158 #define PSR_EW		BIT(6)
159 #define PSR_EP		BIT(5)
160 #define PSR_LEC_MASK	GENMASK(2, 0)
161 
162 /* Interrupt Register (IR) */
163 #define IR_ALL_INT	0xffffffff
164 
165 /* Renamed bits for versions > 3.1.x */
166 #define IR_ARA		BIT(29)
167 #define IR_PED		BIT(28)
168 #define IR_PEA		BIT(27)
169 
170 /* Bits for version 3.0.x */
171 #define IR_STE		BIT(31)
172 #define IR_FOE		BIT(30)
173 #define IR_ACKE		BIT(29)
174 #define IR_BE		BIT(28)
175 #define IR_CRCE		BIT(27)
176 #define IR_WDI		BIT(26)
177 #define IR_BO		BIT(25)
178 #define IR_EW		BIT(24)
179 #define IR_EP		BIT(23)
180 #define IR_ELO		BIT(22)
181 #define IR_BEU		BIT(21)
182 #define IR_BEC		BIT(20)
183 #define IR_DRX		BIT(19)
184 #define IR_TOO		BIT(18)
185 #define IR_MRAF		BIT(17)
186 #define IR_TSW		BIT(16)
187 #define IR_TEFL		BIT(15)
188 #define IR_TEFF		BIT(14)
189 #define IR_TEFW		BIT(13)
190 #define IR_TEFN		BIT(12)
191 #define IR_TFE		BIT(11)
192 #define IR_TCF		BIT(10)
193 #define IR_TC		BIT(9)
194 #define IR_HPM		BIT(8)
195 #define IR_RF1L		BIT(7)
196 #define IR_RF1F		BIT(6)
197 #define IR_RF1W		BIT(5)
198 #define IR_RF1N		BIT(4)
199 #define IR_RF0L		BIT(3)
200 #define IR_RF0F		BIT(2)
201 #define IR_RF0W		BIT(1)
202 #define IR_RF0N		BIT(0)
203 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
204 
205 /* Interrupts for version 3.0.x */
206 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
207 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
208 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
209 			 IR_RF0L)
210 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
211 
212 /* Interrupts for version >= 3.1.x */
213 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
214 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
215 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
216 			 IR_RF0L)
217 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
218 
219 /* Interrupt Line Select (ILS) */
220 #define ILS_ALL_INT0	0x0
221 #define ILS_ALL_INT1	0xFFFFFFFF
222 
223 /* Interrupt Line Enable (ILE) */
224 #define ILE_EINT1	BIT(1)
225 #define ILE_EINT0	BIT(0)
226 
227 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
228 #define RXFC_FWM_MASK	GENMASK(30, 24)
229 #define RXFC_FS_MASK	GENMASK(22, 16)
230 
231 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
232 #define RXFS_RFL	BIT(25)
233 #define RXFS_FF		BIT(24)
234 #define RXFS_FPI_MASK	GENMASK(21, 16)
235 #define RXFS_FGI_MASK	GENMASK(13, 8)
236 #define RXFS_FFL_MASK	GENMASK(6, 0)
237 
238 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
239 #define RXESC_RBDS_MASK		GENMASK(10, 8)
240 #define RXESC_F1DS_MASK		GENMASK(6, 4)
241 #define RXESC_F0DS_MASK		GENMASK(2, 0)
242 #define RXESC_64B		0x7
243 
244 /* Tx Buffer Configuration (TXBC) */
245 #define TXBC_TFQS_MASK		GENMASK(29, 24)
246 #define TXBC_NDTB_MASK		GENMASK(21, 16)
247 
248 /* Tx FIFO/Queue Status (TXFQS) */
249 #define TXFQS_TFQF		BIT(21)
250 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
251 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
252 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
253 
254 /* Tx Buffer Element Size Configuration (TXESC) */
255 #define TXESC_TBDS_MASK		GENMASK(2, 0)
256 #define TXESC_TBDS_64B		0x7
257 
258 /* Tx Event FIFO Configuration (TXEFC) */
259 #define TXEFC_EFS_MASK		GENMASK(21, 16)
260 
261 /* Tx Event FIFO Status (TXEFS) */
262 #define TXEFS_TEFL		BIT(25)
263 #define TXEFS_EFF		BIT(24)
264 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
265 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
266 
267 /* Tx Event FIFO Acknowledge (TXEFA) */
268 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
269 
270 /* Message RAM Configuration (in bytes) */
271 #define SIDF_ELEMENT_SIZE	4
272 #define XIDF_ELEMENT_SIZE	8
273 #define RXF0_ELEMENT_SIZE	72
274 #define RXF1_ELEMENT_SIZE	72
275 #define RXB_ELEMENT_SIZE	72
276 #define TXE_ELEMENT_SIZE	8
277 #define TXB_ELEMENT_SIZE	72
278 
279 /* Message RAM Elements */
280 #define M_CAN_FIFO_ID		0x0
281 #define M_CAN_FIFO_DLC		0x4
282 #define M_CAN_FIFO_DATA		0x8
283 
284 /* Rx Buffer Element */
285 /* R0 */
286 #define RX_BUF_ESI		BIT(31)
287 #define RX_BUF_XTD		BIT(30)
288 #define RX_BUF_RTR		BIT(29)
289 /* R1 */
290 #define RX_BUF_ANMF		BIT(31)
291 #define RX_BUF_FDF		BIT(21)
292 #define RX_BUF_BRS		BIT(20)
293 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
294 
295 /* Tx Buffer Element */
296 /* T0 */
297 #define TX_BUF_ESI		BIT(31)
298 #define TX_BUF_XTD		BIT(30)
299 #define TX_BUF_RTR		BIT(29)
300 /* T1 */
301 #define TX_BUF_EFC		BIT(23)
302 #define TX_BUF_FDF		BIT(21)
303 #define TX_BUF_BRS		BIT(20)
304 #define TX_BUF_MM_MASK		GENMASK(31, 24)
305 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
306 
307 /* Tx event FIFO Element */
308 /* E1 */
309 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
310 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
311 
312 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
313  * and we can save a (potentially slow) bus round trip by combining
314  * reads and writes to them.
315  */
316 struct id_and_dlc {
317 	u32 id;
318 	u32 dlc;
319 };
320 
321 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
322 {
323 	return cdev->ops->read_reg(cdev, reg);
324 }
325 
326 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
327 			       u32 val)
328 {
329 	cdev->ops->write_reg(cdev, reg, val);
330 }
331 
332 static int
333 m_can_fifo_read(struct m_can_classdev *cdev,
334 		u32 fgi, unsigned int offset, void *val, size_t val_count)
335 {
336 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
337 		offset;
338 
339 	if (val_count == 0)
340 		return 0;
341 
342 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
343 }
344 
345 static int
346 m_can_fifo_write(struct m_can_classdev *cdev,
347 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
348 {
349 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
350 		offset;
351 
352 	if (val_count == 0)
353 		return 0;
354 
355 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
356 }
357 
358 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
359 					  u32 fpi, u32 val)
360 {
361 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
362 }
363 
364 static int
365 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
366 {
367 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
368 		offset;
369 
370 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
371 }
372 
373 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
374 {
375 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
376 }
377 
378 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
379 {
380 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
381 	u32 timeout = 10;
382 	u32 val = 0;
383 
384 	/* Clear the Clock stop request if it was set */
385 	if (cccr & CCCR_CSR)
386 		cccr &= ~CCCR_CSR;
387 
388 	if (enable) {
389 		/* enable m_can configuration */
390 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
391 		udelay(5);
392 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
393 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
394 	} else {
395 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
396 	}
397 
398 	/* there's a delay for module initialization */
399 	if (enable)
400 		val = CCCR_INIT | CCCR_CCE;
401 
402 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
403 		if (timeout == 0) {
404 			netdev_warn(cdev->net, "Failed to init module\n");
405 			return;
406 		}
407 		timeout--;
408 		udelay(1);
409 	}
410 }
411 
412 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
413 {
414 	/* Only interrupt line 0 is used in this driver */
415 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
416 }
417 
418 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
419 {
420 	m_can_write(cdev, M_CAN_ILE, 0x0);
421 }
422 
423 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
424  * width.
425  */
426 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
427 {
428 	u32 tscv;
429 	u32 tsc;
430 
431 	tscv = m_can_read(cdev, M_CAN_TSCV);
432 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
433 
434 	return (tsc << 16);
435 }
436 
437 static void m_can_clean(struct net_device *net)
438 {
439 	struct m_can_classdev *cdev = netdev_priv(net);
440 
441 	if (cdev->tx_skb) {
442 		int putidx = 0;
443 
444 		net->stats.tx_errors++;
445 		if (cdev->version > 30)
446 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
447 					   m_can_read(cdev, M_CAN_TXFQS));
448 
449 		can_free_echo_skb(cdev->net, putidx, NULL);
450 		cdev->tx_skb = NULL;
451 	}
452 }
453 
454 /* For peripherals, pass skb to rx-offload, which will push skb from
455  * napi. For non-peripherals, RX is done in napi already, so push
456  * directly. timestamp is used to ensure good skb ordering in
457  * rx-offload and is ignored for non-peripherals.
458  */
459 static void m_can_receive_skb(struct m_can_classdev *cdev,
460 			      struct sk_buff *skb,
461 			      u32 timestamp)
462 {
463 	if (cdev->is_peripheral) {
464 		struct net_device_stats *stats = &cdev->net->stats;
465 		int err;
466 
467 		err = can_rx_offload_queue_sorted(&cdev->offload, skb,
468 						  timestamp);
469 		if (err)
470 			stats->rx_fifo_errors++;
471 	} else {
472 		netif_receive_skb(skb);
473 	}
474 }
475 
476 static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
477 {
478 	struct net_device_stats *stats = &dev->stats;
479 	struct m_can_classdev *cdev = netdev_priv(dev);
480 	struct canfd_frame *cf;
481 	struct sk_buff *skb;
482 	struct id_and_dlc fifo_header;
483 	u32 fgi;
484 	u32 timestamp = 0;
485 	int err;
486 
487 	/* calculate the fifo get index for where to read data */
488 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
489 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
490 	if (err)
491 		goto out_fail;
492 
493 	if (fifo_header.dlc & RX_BUF_FDF)
494 		skb = alloc_canfd_skb(dev, &cf);
495 	else
496 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
497 	if (!skb) {
498 		stats->rx_dropped++;
499 		return 0;
500 	}
501 
502 	if (fifo_header.dlc & RX_BUF_FDF)
503 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
504 	else
505 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
506 
507 	if (fifo_header.id & RX_BUF_XTD)
508 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
509 	else
510 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
511 
512 	if (fifo_header.id & RX_BUF_ESI) {
513 		cf->flags |= CANFD_ESI;
514 		netdev_dbg(dev, "ESI Error\n");
515 	}
516 
517 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
518 		cf->can_id |= CAN_RTR_FLAG;
519 	} else {
520 		if (fifo_header.dlc & RX_BUF_BRS)
521 			cf->flags |= CANFD_BRS;
522 
523 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
524 				      cf->data, DIV_ROUND_UP(cf->len, 4));
525 		if (err)
526 			goto out_free_skb;
527 
528 		stats->rx_bytes += cf->len;
529 	}
530 	stats->rx_packets++;
531 
532 	/* acknowledge rx fifo 0 */
533 	m_can_write(cdev, M_CAN_RXF0A, fgi);
534 
535 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc);
536 
537 	m_can_receive_skb(cdev, skb, timestamp);
538 
539 	return 0;
540 
541 out_free_skb:
542 	kfree_skb(skb);
543 out_fail:
544 	netdev_err(dev, "FIFO read returned %d\n", err);
545 	return err;
546 }
547 
548 static int m_can_do_rx_poll(struct net_device *dev, int quota)
549 {
550 	struct m_can_classdev *cdev = netdev_priv(dev);
551 	u32 pkts = 0;
552 	u32 rxfs;
553 	int err;
554 
555 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
556 	if (!(rxfs & RXFS_FFL_MASK)) {
557 		netdev_dbg(dev, "no messages in fifo0\n");
558 		return 0;
559 	}
560 
561 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
562 		err = m_can_read_fifo(dev, rxfs);
563 		if (err)
564 			return err;
565 
566 		quota--;
567 		pkts++;
568 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
569 	}
570 
571 	if (pkts)
572 		can_led_event(dev, CAN_LED_EVENT_RX);
573 
574 	return pkts;
575 }
576 
577 static int m_can_handle_lost_msg(struct net_device *dev)
578 {
579 	struct m_can_classdev *cdev = netdev_priv(dev);
580 	struct net_device_stats *stats = &dev->stats;
581 	struct sk_buff *skb;
582 	struct can_frame *frame;
583 	u32 timestamp = 0;
584 
585 	netdev_err(dev, "msg lost in rxf0\n");
586 
587 	stats->rx_errors++;
588 	stats->rx_over_errors++;
589 
590 	skb = alloc_can_err_skb(dev, &frame);
591 	if (unlikely(!skb))
592 		return 0;
593 
594 	frame->can_id |= CAN_ERR_CRTL;
595 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
596 
597 	if (cdev->is_peripheral)
598 		timestamp = m_can_get_timestamp(cdev);
599 
600 	m_can_receive_skb(cdev, skb, timestamp);
601 
602 	return 1;
603 }
604 
605 static int m_can_handle_lec_err(struct net_device *dev,
606 				enum m_can_lec_type lec_type)
607 {
608 	struct m_can_classdev *cdev = netdev_priv(dev);
609 	struct net_device_stats *stats = &dev->stats;
610 	struct can_frame *cf;
611 	struct sk_buff *skb;
612 	u32 timestamp = 0;
613 
614 	cdev->can.can_stats.bus_error++;
615 	stats->rx_errors++;
616 
617 	/* propagate the error condition to the CAN stack */
618 	skb = alloc_can_err_skb(dev, &cf);
619 	if (unlikely(!skb))
620 		return 0;
621 
622 	/* check for 'last error code' which tells us the
623 	 * type of the last error to occur on the CAN bus
624 	 */
625 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
626 
627 	switch (lec_type) {
628 	case LEC_STUFF_ERROR:
629 		netdev_dbg(dev, "stuff error\n");
630 		cf->data[2] |= CAN_ERR_PROT_STUFF;
631 		break;
632 	case LEC_FORM_ERROR:
633 		netdev_dbg(dev, "form error\n");
634 		cf->data[2] |= CAN_ERR_PROT_FORM;
635 		break;
636 	case LEC_ACK_ERROR:
637 		netdev_dbg(dev, "ack error\n");
638 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
639 		break;
640 	case LEC_BIT1_ERROR:
641 		netdev_dbg(dev, "bit1 error\n");
642 		cf->data[2] |= CAN_ERR_PROT_BIT1;
643 		break;
644 	case LEC_BIT0_ERROR:
645 		netdev_dbg(dev, "bit0 error\n");
646 		cf->data[2] |= CAN_ERR_PROT_BIT0;
647 		break;
648 	case LEC_CRC_ERROR:
649 		netdev_dbg(dev, "CRC error\n");
650 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
651 		break;
652 	default:
653 		break;
654 	}
655 
656 	if (cdev->is_peripheral)
657 		timestamp = m_can_get_timestamp(cdev);
658 
659 	m_can_receive_skb(cdev, skb, timestamp);
660 
661 	return 1;
662 }
663 
664 static int __m_can_get_berr_counter(const struct net_device *dev,
665 				    struct can_berr_counter *bec)
666 {
667 	struct m_can_classdev *cdev = netdev_priv(dev);
668 	unsigned int ecr;
669 
670 	ecr = m_can_read(cdev, M_CAN_ECR);
671 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
672 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
673 
674 	return 0;
675 }
676 
677 static int m_can_clk_start(struct m_can_classdev *cdev)
678 {
679 	if (cdev->pm_clock_support == 0)
680 		return 0;
681 
682 	return pm_runtime_resume_and_get(cdev->dev);
683 }
684 
685 static void m_can_clk_stop(struct m_can_classdev *cdev)
686 {
687 	if (cdev->pm_clock_support)
688 		pm_runtime_put_sync(cdev->dev);
689 }
690 
691 static int m_can_get_berr_counter(const struct net_device *dev,
692 				  struct can_berr_counter *bec)
693 {
694 	struct m_can_classdev *cdev = netdev_priv(dev);
695 	int err;
696 
697 	err = m_can_clk_start(cdev);
698 	if (err)
699 		return err;
700 
701 	__m_can_get_berr_counter(dev, bec);
702 
703 	m_can_clk_stop(cdev);
704 
705 	return 0;
706 }
707 
708 static int m_can_handle_state_change(struct net_device *dev,
709 				     enum can_state new_state)
710 {
711 	struct m_can_classdev *cdev = netdev_priv(dev);
712 	struct can_frame *cf;
713 	struct sk_buff *skb;
714 	struct can_berr_counter bec;
715 	unsigned int ecr;
716 	u32 timestamp = 0;
717 
718 	switch (new_state) {
719 	case CAN_STATE_ERROR_WARNING:
720 		/* error warning state */
721 		cdev->can.can_stats.error_warning++;
722 		cdev->can.state = CAN_STATE_ERROR_WARNING;
723 		break;
724 	case CAN_STATE_ERROR_PASSIVE:
725 		/* error passive state */
726 		cdev->can.can_stats.error_passive++;
727 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
728 		break;
729 	case CAN_STATE_BUS_OFF:
730 		/* bus-off state */
731 		cdev->can.state = CAN_STATE_BUS_OFF;
732 		m_can_disable_all_interrupts(cdev);
733 		cdev->can.can_stats.bus_off++;
734 		can_bus_off(dev);
735 		break;
736 	default:
737 		break;
738 	}
739 
740 	/* propagate the error condition to the CAN stack */
741 	skb = alloc_can_err_skb(dev, &cf);
742 	if (unlikely(!skb))
743 		return 0;
744 
745 	__m_can_get_berr_counter(dev, &bec);
746 
747 	switch (new_state) {
748 	case CAN_STATE_ERROR_WARNING:
749 		/* error warning state */
750 		cf->can_id |= CAN_ERR_CRTL;
751 		cf->data[1] = (bec.txerr > bec.rxerr) ?
752 			CAN_ERR_CRTL_TX_WARNING :
753 			CAN_ERR_CRTL_RX_WARNING;
754 		cf->data[6] = bec.txerr;
755 		cf->data[7] = bec.rxerr;
756 		break;
757 	case CAN_STATE_ERROR_PASSIVE:
758 		/* error passive state */
759 		cf->can_id |= CAN_ERR_CRTL;
760 		ecr = m_can_read(cdev, M_CAN_ECR);
761 		if (ecr & ECR_RP)
762 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
763 		if (bec.txerr > 127)
764 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
765 		cf->data[6] = bec.txerr;
766 		cf->data[7] = bec.rxerr;
767 		break;
768 	case CAN_STATE_BUS_OFF:
769 		/* bus-off state */
770 		cf->can_id |= CAN_ERR_BUSOFF;
771 		break;
772 	default:
773 		break;
774 	}
775 
776 	if (cdev->is_peripheral)
777 		timestamp = m_can_get_timestamp(cdev);
778 
779 	m_can_receive_skb(cdev, skb, timestamp);
780 
781 	return 1;
782 }
783 
784 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
785 {
786 	struct m_can_classdev *cdev = netdev_priv(dev);
787 	int work_done = 0;
788 
789 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
790 		netdev_dbg(dev, "entered error warning state\n");
791 		work_done += m_can_handle_state_change(dev,
792 						       CAN_STATE_ERROR_WARNING);
793 	}
794 
795 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
796 		netdev_dbg(dev, "entered error passive state\n");
797 		work_done += m_can_handle_state_change(dev,
798 						       CAN_STATE_ERROR_PASSIVE);
799 	}
800 
801 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
802 		netdev_dbg(dev, "entered error bus off state\n");
803 		work_done += m_can_handle_state_change(dev,
804 						       CAN_STATE_BUS_OFF);
805 	}
806 
807 	return work_done;
808 }
809 
810 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
811 {
812 	if (irqstatus & IR_WDI)
813 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
814 	if (irqstatus & IR_BEU)
815 		netdev_err(dev, "Bit Error Uncorrected\n");
816 	if (irqstatus & IR_BEC)
817 		netdev_err(dev, "Bit Error Corrected\n");
818 	if (irqstatus & IR_TOO)
819 		netdev_err(dev, "Timeout reached\n");
820 	if (irqstatus & IR_MRAF)
821 		netdev_err(dev, "Message RAM access failure occurred\n");
822 }
823 
824 static inline bool is_lec_err(u32 psr)
825 {
826 	psr &= LEC_UNUSED;
827 
828 	return psr && (psr != LEC_UNUSED);
829 }
830 
831 static inline bool m_can_is_protocol_err(u32 irqstatus)
832 {
833 	return irqstatus & IR_ERR_LEC_31X;
834 }
835 
836 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
837 {
838 	struct net_device_stats *stats = &dev->stats;
839 	struct m_can_classdev *cdev = netdev_priv(dev);
840 	struct can_frame *cf;
841 	struct sk_buff *skb;
842 	u32 timestamp = 0;
843 
844 	/* propagate the error condition to the CAN stack */
845 	skb = alloc_can_err_skb(dev, &cf);
846 
847 	/* update tx error stats since there is protocol error */
848 	stats->tx_errors++;
849 
850 	/* update arbitration lost status */
851 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
852 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
853 		cdev->can.can_stats.arbitration_lost++;
854 		if (skb) {
855 			cf->can_id |= CAN_ERR_LOSTARB;
856 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
857 		}
858 	}
859 
860 	if (unlikely(!skb)) {
861 		netdev_dbg(dev, "allocation of skb failed\n");
862 		return 0;
863 	}
864 
865 	if (cdev->is_peripheral)
866 		timestamp = m_can_get_timestamp(cdev);
867 
868 	m_can_receive_skb(cdev, skb, timestamp);
869 
870 	return 1;
871 }
872 
873 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
874 				   u32 psr)
875 {
876 	struct m_can_classdev *cdev = netdev_priv(dev);
877 	int work_done = 0;
878 
879 	if (irqstatus & IR_RF0L)
880 		work_done += m_can_handle_lost_msg(dev);
881 
882 	/* handle lec errors on the bus */
883 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
884 	    is_lec_err(psr))
885 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
886 
887 	/* handle protocol errors in arbitration phase */
888 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
889 	    m_can_is_protocol_err(irqstatus))
890 		work_done += m_can_handle_protocol_error(dev, irqstatus);
891 
892 	/* other unproccessed error interrupts */
893 	m_can_handle_other_err(dev, irqstatus);
894 
895 	return work_done;
896 }
897 
898 static int m_can_rx_handler(struct net_device *dev, int quota)
899 {
900 	struct m_can_classdev *cdev = netdev_priv(dev);
901 	int rx_work_or_err;
902 	int work_done = 0;
903 	u32 irqstatus, psr;
904 
905 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
906 	if (!irqstatus)
907 		goto end;
908 
909 	/* Errata workaround for issue "Needless activation of MRAF irq"
910 	 * During frame reception while the MCAN is in Error Passive state
911 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
912 	 * it may happen that MCAN_IR.MRAF is set although there was no
913 	 * Message RAM access failure.
914 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
915 	 * The Message RAM Access Failure interrupt routine needs to check
916 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
917 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
918 	 */
919 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
920 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
921 		struct can_berr_counter bec;
922 
923 		__m_can_get_berr_counter(dev, &bec);
924 		if (bec.rxerr == 127) {
925 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
926 			irqstatus &= ~IR_MRAF;
927 		}
928 	}
929 
930 	psr = m_can_read(cdev, M_CAN_PSR);
931 
932 	if (irqstatus & IR_ERR_STATE)
933 		work_done += m_can_handle_state_errors(dev, psr);
934 
935 	if (irqstatus & IR_ERR_BUS_30X)
936 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
937 
938 	if (irqstatus & IR_RF0N) {
939 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
940 		if (rx_work_or_err < 0)
941 			return rx_work_or_err;
942 
943 		work_done += rx_work_or_err;
944 	}
945 end:
946 	return work_done;
947 }
948 
949 static int m_can_rx_peripheral(struct net_device *dev)
950 {
951 	struct m_can_classdev *cdev = netdev_priv(dev);
952 	int work_done;
953 
954 	work_done = m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
955 
956 	/* Don't re-enable interrupts if the driver had a fatal error
957 	 * (e.g., FIFO read failure).
958 	 */
959 	if (work_done >= 0)
960 		m_can_enable_all_interrupts(cdev);
961 
962 	return work_done;
963 }
964 
965 static int m_can_poll(struct napi_struct *napi, int quota)
966 {
967 	struct net_device *dev = napi->dev;
968 	struct m_can_classdev *cdev = netdev_priv(dev);
969 	int work_done;
970 
971 	work_done = m_can_rx_handler(dev, quota);
972 
973 	/* Don't re-enable interrupts if the driver had a fatal error
974 	 * (e.g., FIFO read failure).
975 	 */
976 	if (work_done >= 0 && work_done < quota) {
977 		napi_complete_done(napi, work_done);
978 		m_can_enable_all_interrupts(cdev);
979 	}
980 
981 	return work_done;
982 }
983 
984 /* Echo tx skb and update net stats. Peripherals use rx-offload for
985  * echo. timestamp is used for peripherals to ensure correct ordering
986  * by rx-offload, and is ignored for non-peripherals.
987  */
988 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
989 				  unsigned int msg_mark,
990 				  u32 timestamp)
991 {
992 	struct net_device *dev = cdev->net;
993 	struct net_device_stats *stats = &dev->stats;
994 
995 	if (cdev->is_peripheral)
996 		stats->tx_bytes +=
997 			can_rx_offload_get_echo_skb(&cdev->offload,
998 						    msg_mark,
999 						    timestamp,
1000 						    NULL);
1001 	else
1002 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1003 
1004 	stats->tx_packets++;
1005 }
1006 
1007 static int m_can_echo_tx_event(struct net_device *dev)
1008 {
1009 	u32 txe_count = 0;
1010 	u32 m_can_txefs;
1011 	u32 fgi = 0;
1012 	int i = 0;
1013 	unsigned int msg_mark;
1014 
1015 	struct m_can_classdev *cdev = netdev_priv(dev);
1016 
1017 	/* read tx event fifo status */
1018 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1019 
1020 	/* Get Tx Event fifo element count */
1021 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1022 
1023 	/* Get and process all sent elements */
1024 	for (i = 0; i < txe_count; i++) {
1025 		u32 txe, timestamp = 0;
1026 		int err;
1027 
1028 		/* retrieve get index */
1029 		fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1030 
1031 		/* get message marker, timestamp */
1032 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1033 		if (err) {
1034 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1035 			return err;
1036 		}
1037 
1038 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1039 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe);
1040 
1041 		/* ack txe element */
1042 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1043 							  fgi));
1044 
1045 		/* update stats */
1046 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static irqreturn_t m_can_isr(int irq, void *dev_id)
1053 {
1054 	struct net_device *dev = (struct net_device *)dev_id;
1055 	struct m_can_classdev *cdev = netdev_priv(dev);
1056 	u32 ir;
1057 
1058 	if (pm_runtime_suspended(cdev->dev))
1059 		return IRQ_NONE;
1060 	ir = m_can_read(cdev, M_CAN_IR);
1061 	if (!ir)
1062 		return IRQ_NONE;
1063 
1064 	/* ACK all irqs */
1065 	if (ir & IR_ALL_INT)
1066 		m_can_write(cdev, M_CAN_IR, ir);
1067 
1068 	if (cdev->ops->clear_interrupts)
1069 		cdev->ops->clear_interrupts(cdev);
1070 
1071 	/* schedule NAPI in case of
1072 	 * - rx IRQ
1073 	 * - state change IRQ
1074 	 * - bus error IRQ and bus error reporting
1075 	 */
1076 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1077 		cdev->irqstatus = ir;
1078 		m_can_disable_all_interrupts(cdev);
1079 		if (!cdev->is_peripheral)
1080 			napi_schedule(&cdev->napi);
1081 		else if (m_can_rx_peripheral(dev) < 0)
1082 			goto out_fail;
1083 	}
1084 
1085 	if (cdev->version == 30) {
1086 		if (ir & IR_TC) {
1087 			/* Transmission Complete Interrupt*/
1088 			u32 timestamp = 0;
1089 
1090 			if (cdev->is_peripheral)
1091 				timestamp = m_can_get_timestamp(cdev);
1092 			m_can_tx_update_stats(cdev, 0, timestamp);
1093 
1094 			can_led_event(dev, CAN_LED_EVENT_TX);
1095 			netif_wake_queue(dev);
1096 		}
1097 	} else  {
1098 		if (ir & IR_TEFN) {
1099 			/* New TX FIFO Element arrived */
1100 			if (m_can_echo_tx_event(dev) != 0)
1101 				goto out_fail;
1102 
1103 			can_led_event(dev, CAN_LED_EVENT_TX);
1104 			if (netif_queue_stopped(dev) &&
1105 			    !m_can_tx_fifo_full(cdev))
1106 				netif_wake_queue(dev);
1107 		}
1108 	}
1109 
1110 	if (cdev->is_peripheral)
1111 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1112 
1113 	return IRQ_HANDLED;
1114 
1115 out_fail:
1116 	m_can_disable_all_interrupts(cdev);
1117 	return IRQ_HANDLED;
1118 }
1119 
1120 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1121 	.name = KBUILD_MODNAME,
1122 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1123 	.tseg1_max = 64,
1124 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1125 	.tseg2_max = 16,
1126 	.sjw_max = 16,
1127 	.brp_min = 1,
1128 	.brp_max = 1024,
1129 	.brp_inc = 1,
1130 };
1131 
1132 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1133 	.name = KBUILD_MODNAME,
1134 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1135 	.tseg1_max = 16,
1136 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1137 	.tseg2_max = 8,
1138 	.sjw_max = 4,
1139 	.brp_min = 1,
1140 	.brp_max = 32,
1141 	.brp_inc = 1,
1142 };
1143 
1144 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1145 	.name = KBUILD_MODNAME,
1146 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1147 	.tseg1_max = 256,
1148 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1149 	.tseg2_max = 128,
1150 	.sjw_max = 128,
1151 	.brp_min = 1,
1152 	.brp_max = 512,
1153 	.brp_inc = 1,
1154 };
1155 
1156 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1157 	.name = KBUILD_MODNAME,
1158 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1159 	.tseg1_max = 32,
1160 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1161 	.tseg2_max = 16,
1162 	.sjw_max = 16,
1163 	.brp_min = 1,
1164 	.brp_max = 32,
1165 	.brp_inc = 1,
1166 };
1167 
1168 static int m_can_set_bittiming(struct net_device *dev)
1169 {
1170 	struct m_can_classdev *cdev = netdev_priv(dev);
1171 	const struct can_bittiming *bt = &cdev->can.bittiming;
1172 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1173 	u16 brp, sjw, tseg1, tseg2;
1174 	u32 reg_btp;
1175 
1176 	brp = bt->brp - 1;
1177 	sjw = bt->sjw - 1;
1178 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1179 	tseg2 = bt->phase_seg2 - 1;
1180 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1181 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1182 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1183 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1184 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1185 
1186 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1187 		reg_btp = 0;
1188 		brp = dbt->brp - 1;
1189 		sjw = dbt->sjw - 1;
1190 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1191 		tseg2 = dbt->phase_seg2 - 1;
1192 
1193 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1194 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1195 		 * paper presented at the International CAN Conference 2013
1196 		 */
1197 		if (dbt->bitrate > 2500000) {
1198 			u32 tdco, ssp;
1199 
1200 			/* Use the same value of secondary sampling point
1201 			 * as the data sampling point
1202 			 */
1203 			ssp = dbt->sample_point;
1204 
1205 			/* Equation based on Bosch's M_CAN User Manual's
1206 			 * Transmitter Delay Compensation Section
1207 			 */
1208 			tdco = (cdev->can.clock.freq / 1000) *
1209 				ssp / dbt->bitrate;
1210 
1211 			/* Max valid TDCO value is 127 */
1212 			if (tdco > 127) {
1213 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1214 					    tdco);
1215 				tdco = 127;
1216 			}
1217 
1218 			reg_btp |= DBTP_TDC;
1219 			m_can_write(cdev, M_CAN_TDCR,
1220 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1221 		}
1222 
1223 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1224 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1225 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1226 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1227 
1228 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 /* Configure M_CAN chip:
1235  * - set rx buffer/fifo element size
1236  * - configure rx fifo
1237  * - accept non-matching frame into fifo 0
1238  * - configure tx buffer
1239  *		- >= v3.1.x: TX FIFO is used
1240  * - configure mode
1241  * - setup bittiming
1242  * - configure timestamp generation
1243  */
1244 static void m_can_chip_config(struct net_device *dev)
1245 {
1246 	struct m_can_classdev *cdev = netdev_priv(dev);
1247 	u32 cccr, test;
1248 
1249 	m_can_config_endisable(cdev, true);
1250 
1251 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1252 	m_can_write(cdev, M_CAN_RXESC,
1253 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1254 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1255 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1256 
1257 	/* Accept Non-matching Frames Into FIFO 0 */
1258 	m_can_write(cdev, M_CAN_GFC, 0x0);
1259 
1260 	if (cdev->version == 30) {
1261 		/* only support one Tx Buffer currently */
1262 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1263 			    cdev->mcfg[MRAM_TXB].off);
1264 	} else {
1265 		/* TX FIFO is used for newer IP Core versions */
1266 		m_can_write(cdev, M_CAN_TXBC,
1267 			    FIELD_PREP(TXBC_TFQS_MASK,
1268 				       cdev->mcfg[MRAM_TXB].num) |
1269 			    cdev->mcfg[MRAM_TXB].off);
1270 	}
1271 
1272 	/* support 64 bytes payload */
1273 	m_can_write(cdev, M_CAN_TXESC,
1274 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1275 
1276 	/* TX Event FIFO */
1277 	if (cdev->version == 30) {
1278 		m_can_write(cdev, M_CAN_TXEFC,
1279 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1280 			    cdev->mcfg[MRAM_TXE].off);
1281 	} else {
1282 		/* Full TX Event FIFO is used */
1283 		m_can_write(cdev, M_CAN_TXEFC,
1284 			    FIELD_PREP(TXEFC_EFS_MASK,
1285 				       cdev->mcfg[MRAM_TXE].num) |
1286 			    cdev->mcfg[MRAM_TXE].off);
1287 	}
1288 
1289 	/* rx fifo configuration, blocking mode, fifo size 1 */
1290 	m_can_write(cdev, M_CAN_RXF0C,
1291 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1292 		    cdev->mcfg[MRAM_RXF0].off);
1293 
1294 	m_can_write(cdev, M_CAN_RXF1C,
1295 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1296 		    cdev->mcfg[MRAM_RXF1].off);
1297 
1298 	cccr = m_can_read(cdev, M_CAN_CCCR);
1299 	test = m_can_read(cdev, M_CAN_TEST);
1300 	test &= ~TEST_LBCK;
1301 	if (cdev->version == 30) {
1302 		/* Version 3.0.x */
1303 
1304 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1305 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1306 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1307 
1308 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1309 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1310 
1311 	} else {
1312 		/* Version 3.1.x or 3.2.x */
1313 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1314 			  CCCR_NISO | CCCR_DAR);
1315 
1316 		/* Only 3.2.x has NISO Bit implemented */
1317 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1318 			cccr |= CCCR_NISO;
1319 
1320 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1321 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1322 	}
1323 
1324 	/* Loopback Mode */
1325 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1326 		cccr |= CCCR_TEST | CCCR_MON;
1327 		test |= TEST_LBCK;
1328 	}
1329 
1330 	/* Enable Monitoring (all versions) */
1331 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1332 		cccr |= CCCR_MON;
1333 
1334 	/* Disable Auto Retransmission (all versions) */
1335 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1336 		cccr |= CCCR_DAR;
1337 
1338 	/* Write config */
1339 	m_can_write(cdev, M_CAN_CCCR, cccr);
1340 	m_can_write(cdev, M_CAN_TEST, test);
1341 
1342 	/* Enable interrupts */
1343 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1344 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1345 		if (cdev->version == 30)
1346 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1347 				    ~(IR_ERR_LEC_30X));
1348 		else
1349 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1350 				    ~(IR_ERR_LEC_31X));
1351 	else
1352 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1353 
1354 	/* route all interrupts to INT0 */
1355 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1356 
1357 	/* set bittiming params */
1358 	m_can_set_bittiming(dev);
1359 
1360 	/* enable internal timestamp generation, with a prescalar of 16. The
1361 	 * prescalar is applied to the nominal bit timing
1362 	 */
1363 	m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf));
1364 
1365 	m_can_config_endisable(cdev, false);
1366 
1367 	if (cdev->ops->init)
1368 		cdev->ops->init(cdev);
1369 }
1370 
1371 static void m_can_start(struct net_device *dev)
1372 {
1373 	struct m_can_classdev *cdev = netdev_priv(dev);
1374 
1375 	/* basic m_can configuration */
1376 	m_can_chip_config(dev);
1377 
1378 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1379 
1380 	m_can_enable_all_interrupts(cdev);
1381 }
1382 
1383 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1384 {
1385 	switch (mode) {
1386 	case CAN_MODE_START:
1387 		m_can_clean(dev);
1388 		m_can_start(dev);
1389 		netif_wake_queue(dev);
1390 		break;
1391 	default:
1392 		return -EOPNOTSUPP;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /* Checks core release number of M_CAN
1399  * returns 0 if an unsupported device is detected
1400  * else it returns the release and step coded as:
1401  * return value = 10 * <release> + 1 * <step>
1402  */
1403 static int m_can_check_core_release(struct m_can_classdev *cdev)
1404 {
1405 	u32 crel_reg;
1406 	u8 rel;
1407 	u8 step;
1408 	int res;
1409 
1410 	/* Read Core Release Version and split into version number
1411 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1412 	 */
1413 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1414 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1415 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1416 
1417 	if (rel == 3) {
1418 		/* M_CAN v3.x.y: create return value */
1419 		res = 30 + step;
1420 	} else {
1421 		/* Unsupported M_CAN version */
1422 		res = 0;
1423 	}
1424 
1425 	return res;
1426 }
1427 
1428 /* Selectable Non ISO support only in version 3.2.x
1429  * This function checks if the bit is writable.
1430  */
1431 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1432 {
1433 	u32 cccr_reg, cccr_poll = 0;
1434 	int niso_timeout = -ETIMEDOUT;
1435 	int i;
1436 
1437 	m_can_config_endisable(cdev, true);
1438 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1439 	cccr_reg |= CCCR_NISO;
1440 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1441 
1442 	for (i = 0; i <= 10; i++) {
1443 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1444 		if (cccr_poll == cccr_reg) {
1445 			niso_timeout = 0;
1446 			break;
1447 		}
1448 
1449 		usleep_range(1, 5);
1450 	}
1451 
1452 	/* Clear NISO */
1453 	cccr_reg &= ~(CCCR_NISO);
1454 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1455 
1456 	m_can_config_endisable(cdev, false);
1457 
1458 	/* return false if time out (-ETIMEDOUT), else return true */
1459 	return !niso_timeout;
1460 }
1461 
1462 static int m_can_dev_setup(struct m_can_classdev *cdev)
1463 {
1464 	struct net_device *dev = cdev->net;
1465 	int m_can_version, err;
1466 
1467 	m_can_version = m_can_check_core_release(cdev);
1468 	/* return if unsupported version */
1469 	if (!m_can_version) {
1470 		dev_err(cdev->dev, "Unsupported version number: %2d",
1471 			m_can_version);
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (!cdev->is_peripheral)
1476 		netif_napi_add(dev, &cdev->napi,
1477 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1478 
1479 	/* Shared properties of all M_CAN versions */
1480 	cdev->version = m_can_version;
1481 	cdev->can.do_set_mode = m_can_set_mode;
1482 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1483 
1484 	/* Set M_CAN supported operations */
1485 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1486 		CAN_CTRLMODE_LISTENONLY |
1487 		CAN_CTRLMODE_BERR_REPORTING |
1488 		CAN_CTRLMODE_FD |
1489 		CAN_CTRLMODE_ONE_SHOT;
1490 
1491 	/* Set properties depending on M_CAN version */
1492 	switch (cdev->version) {
1493 	case 30:
1494 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1495 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1496 		if (err)
1497 			return err;
1498 		cdev->can.bittiming_const = cdev->bit_timing ?
1499 			cdev->bit_timing : &m_can_bittiming_const_30X;
1500 
1501 		cdev->can.data_bittiming_const = cdev->data_timing ?
1502 			cdev->data_timing :
1503 			&m_can_data_bittiming_const_30X;
1504 		break;
1505 	case 31:
1506 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1507 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1508 		if (err)
1509 			return err;
1510 		cdev->can.bittiming_const = cdev->bit_timing ?
1511 			cdev->bit_timing : &m_can_bittiming_const_31X;
1512 
1513 		cdev->can.data_bittiming_const = cdev->data_timing ?
1514 			cdev->data_timing :
1515 			&m_can_data_bittiming_const_31X;
1516 		break;
1517 	case 32:
1518 	case 33:
1519 		/* Support both MCAN version v3.2.x and v3.3.0 */
1520 		cdev->can.bittiming_const = cdev->bit_timing ?
1521 			cdev->bit_timing : &m_can_bittiming_const_31X;
1522 
1523 		cdev->can.data_bittiming_const = cdev->data_timing ?
1524 			cdev->data_timing :
1525 			&m_can_data_bittiming_const_31X;
1526 
1527 		cdev->can.ctrlmode_supported |=
1528 			(m_can_niso_supported(cdev) ?
1529 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1530 		break;
1531 	default:
1532 		dev_err(cdev->dev, "Unsupported version number: %2d",
1533 			cdev->version);
1534 		return -EINVAL;
1535 	}
1536 
1537 	if (cdev->ops->init)
1538 		cdev->ops->init(cdev);
1539 
1540 	return 0;
1541 }
1542 
1543 static void m_can_stop(struct net_device *dev)
1544 {
1545 	struct m_can_classdev *cdev = netdev_priv(dev);
1546 
1547 	/* disable all interrupts */
1548 	m_can_disable_all_interrupts(cdev);
1549 
1550 	/* Set init mode to disengage from the network */
1551 	m_can_config_endisable(cdev, true);
1552 
1553 	/* set the state as STOPPED */
1554 	cdev->can.state = CAN_STATE_STOPPED;
1555 }
1556 
1557 static int m_can_close(struct net_device *dev)
1558 {
1559 	struct m_can_classdev *cdev = netdev_priv(dev);
1560 
1561 	netif_stop_queue(dev);
1562 
1563 	if (!cdev->is_peripheral)
1564 		napi_disable(&cdev->napi);
1565 
1566 	m_can_stop(dev);
1567 	m_can_clk_stop(cdev);
1568 	free_irq(dev->irq, dev);
1569 
1570 	if (cdev->is_peripheral) {
1571 		cdev->tx_skb = NULL;
1572 		destroy_workqueue(cdev->tx_wq);
1573 		cdev->tx_wq = NULL;
1574 	}
1575 
1576 	if (cdev->is_peripheral)
1577 		can_rx_offload_disable(&cdev->offload);
1578 
1579 	close_candev(dev);
1580 	can_led_event(dev, CAN_LED_EVENT_STOP);
1581 
1582 	phy_power_off(cdev->transceiver);
1583 
1584 	return 0;
1585 }
1586 
1587 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1588 {
1589 	struct m_can_classdev *cdev = netdev_priv(dev);
1590 	/*get wrap around for loopback skb index */
1591 	unsigned int wrap = cdev->can.echo_skb_max;
1592 	int next_idx;
1593 
1594 	/* calculate next index */
1595 	next_idx = (++putidx >= wrap ? 0 : putidx);
1596 
1597 	/* check if occupied */
1598 	return !!cdev->can.echo_skb[next_idx];
1599 }
1600 
1601 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1602 {
1603 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1604 	struct net_device *dev = cdev->net;
1605 	struct sk_buff *skb = cdev->tx_skb;
1606 	struct id_and_dlc fifo_header;
1607 	u32 cccr, fdflags;
1608 	int err;
1609 	int putidx;
1610 
1611 	cdev->tx_skb = NULL;
1612 
1613 	/* Generate ID field for TX buffer Element */
1614 	/* Common to all supported M_CAN versions */
1615 	if (cf->can_id & CAN_EFF_FLAG) {
1616 		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1617 		fifo_header.id |= TX_BUF_XTD;
1618 	} else {
1619 		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1620 	}
1621 
1622 	if (cf->can_id & CAN_RTR_FLAG)
1623 		fifo_header.id |= TX_BUF_RTR;
1624 
1625 	if (cdev->version == 30) {
1626 		netif_stop_queue(dev);
1627 
1628 		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1629 
1630 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1631 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1632 		if (err)
1633 			goto out_fail;
1634 
1635 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1636 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1637 		if (err)
1638 			goto out_fail;
1639 
1640 		can_put_echo_skb(skb, dev, 0, 0);
1641 
1642 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1643 			cccr = m_can_read(cdev, M_CAN_CCCR);
1644 			cccr &= ~CCCR_CMR_MASK;
1645 			if (can_is_canfd_skb(skb)) {
1646 				if (cf->flags & CANFD_BRS)
1647 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1648 							   CCCR_CMR_CANFD_BRS);
1649 				else
1650 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1651 							   CCCR_CMR_CANFD);
1652 			} else {
1653 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1654 			}
1655 			m_can_write(cdev, M_CAN_CCCR, cccr);
1656 		}
1657 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1658 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1659 		/* End of xmit function for version 3.0.x */
1660 	} else {
1661 		/* Transmit routine for version >= v3.1.x */
1662 
1663 		/* Check if FIFO full */
1664 		if (m_can_tx_fifo_full(cdev)) {
1665 			/* This shouldn't happen */
1666 			netif_stop_queue(dev);
1667 			netdev_warn(dev,
1668 				    "TX queue active although FIFO is full.");
1669 
1670 			if (cdev->is_peripheral) {
1671 				kfree_skb(skb);
1672 				dev->stats.tx_dropped++;
1673 				return NETDEV_TX_OK;
1674 			} else {
1675 				return NETDEV_TX_BUSY;
1676 			}
1677 		}
1678 
1679 		/* get put index for frame */
1680 		putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1681 				   m_can_read(cdev, M_CAN_TXFQS));
1682 
1683 		/* Construct DLC Field, with CAN-FD configuration.
1684 		 * Use the put index of the fifo as the message marker,
1685 		 * used in the TX interrupt for sending the correct echo frame.
1686 		 */
1687 
1688 		/* get CAN FD configuration of frame */
1689 		fdflags = 0;
1690 		if (can_is_canfd_skb(skb)) {
1691 			fdflags |= TX_BUF_FDF;
1692 			if (cf->flags & CANFD_BRS)
1693 				fdflags |= TX_BUF_BRS;
1694 		}
1695 
1696 		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1697 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1698 			fdflags | TX_BUF_EFC;
1699 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1700 		if (err)
1701 			goto out_fail;
1702 
1703 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1704 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1705 		if (err)
1706 			goto out_fail;
1707 
1708 		/* Push loopback echo.
1709 		 * Will be looped back on TX interrupt based on message marker
1710 		 */
1711 		can_put_echo_skb(skb, dev, putidx, 0);
1712 
1713 		/* Enable TX FIFO element to start transfer  */
1714 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1715 
1716 		/* stop network queue if fifo full */
1717 		if (m_can_tx_fifo_full(cdev) ||
1718 		    m_can_next_echo_skb_occupied(dev, putidx))
1719 			netif_stop_queue(dev);
1720 	}
1721 
1722 	return NETDEV_TX_OK;
1723 
1724 out_fail:
1725 	netdev_err(dev, "FIFO write returned %d\n", err);
1726 	m_can_disable_all_interrupts(cdev);
1727 	return NETDEV_TX_BUSY;
1728 }
1729 
1730 static void m_can_tx_work_queue(struct work_struct *ws)
1731 {
1732 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1733 						   tx_work);
1734 
1735 	m_can_tx_handler(cdev);
1736 }
1737 
1738 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1739 				    struct net_device *dev)
1740 {
1741 	struct m_can_classdev *cdev = netdev_priv(dev);
1742 
1743 	if (can_dropped_invalid_skb(dev, skb))
1744 		return NETDEV_TX_OK;
1745 
1746 	if (cdev->is_peripheral) {
1747 		if (cdev->tx_skb) {
1748 			netdev_err(dev, "hard_xmit called while tx busy\n");
1749 			return NETDEV_TX_BUSY;
1750 		}
1751 
1752 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1753 			m_can_clean(dev);
1754 		} else {
1755 			/* Need to stop the queue to avoid numerous requests
1756 			 * from being sent.  Suggested improvement is to create
1757 			 * a queueing mechanism that will queue the skbs and
1758 			 * process them in order.
1759 			 */
1760 			cdev->tx_skb = skb;
1761 			netif_stop_queue(cdev->net);
1762 			queue_work(cdev->tx_wq, &cdev->tx_work);
1763 		}
1764 	} else {
1765 		cdev->tx_skb = skb;
1766 		return m_can_tx_handler(cdev);
1767 	}
1768 
1769 	return NETDEV_TX_OK;
1770 }
1771 
1772 static int m_can_open(struct net_device *dev)
1773 {
1774 	struct m_can_classdev *cdev = netdev_priv(dev);
1775 	int err;
1776 
1777 	err = phy_power_on(cdev->transceiver);
1778 	if (err)
1779 		return err;
1780 
1781 	err = m_can_clk_start(cdev);
1782 	if (err)
1783 		goto out_phy_power_off;
1784 
1785 	/* open the can device */
1786 	err = open_candev(dev);
1787 	if (err) {
1788 		netdev_err(dev, "failed to open can device\n");
1789 		goto exit_disable_clks;
1790 	}
1791 
1792 	if (cdev->is_peripheral)
1793 		can_rx_offload_enable(&cdev->offload);
1794 
1795 	/* register interrupt handler */
1796 	if (cdev->is_peripheral) {
1797 		cdev->tx_skb = NULL;
1798 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1799 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1800 		if (!cdev->tx_wq) {
1801 			err = -ENOMEM;
1802 			goto out_wq_fail;
1803 		}
1804 
1805 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1806 
1807 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1808 					   IRQF_ONESHOT,
1809 					   dev->name, dev);
1810 	} else {
1811 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1812 				  dev);
1813 	}
1814 
1815 	if (err < 0) {
1816 		netdev_err(dev, "failed to request interrupt\n");
1817 		goto exit_irq_fail;
1818 	}
1819 
1820 	/* start the m_can controller */
1821 	m_can_start(dev);
1822 
1823 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1824 
1825 	if (!cdev->is_peripheral)
1826 		napi_enable(&cdev->napi);
1827 
1828 	netif_start_queue(dev);
1829 
1830 	return 0;
1831 
1832 exit_irq_fail:
1833 	if (cdev->is_peripheral)
1834 		destroy_workqueue(cdev->tx_wq);
1835 out_wq_fail:
1836 	if (cdev->is_peripheral)
1837 		can_rx_offload_disable(&cdev->offload);
1838 	close_candev(dev);
1839 exit_disable_clks:
1840 	m_can_clk_stop(cdev);
1841 out_phy_power_off:
1842 	phy_power_off(cdev->transceiver);
1843 	return err;
1844 }
1845 
1846 static const struct net_device_ops m_can_netdev_ops = {
1847 	.ndo_open = m_can_open,
1848 	.ndo_stop = m_can_close,
1849 	.ndo_start_xmit = m_can_start_xmit,
1850 	.ndo_change_mtu = can_change_mtu,
1851 };
1852 
1853 static int register_m_can_dev(struct net_device *dev)
1854 {
1855 	dev->flags |= IFF_ECHO;	/* we support local echo */
1856 	dev->netdev_ops = &m_can_netdev_ops;
1857 
1858 	return register_candev(dev);
1859 }
1860 
1861 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1862 				const u32 *mram_config_vals)
1863 {
1864 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1865 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1866 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1867 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1868 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1869 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1870 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1871 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1872 		FIELD_MAX(RXFC_FS_MASK);
1873 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1874 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1875 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1876 		FIELD_MAX(RXFC_FS_MASK);
1877 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1878 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1879 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1880 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1881 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1882 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1883 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1884 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1885 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1886 		FIELD_MAX(TXBC_NDTB_MASK);
1887 
1888 	dev_dbg(cdev->dev,
1889 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1890 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1891 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1892 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1893 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1894 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1895 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1896 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1897 }
1898 
1899 int m_can_init_ram(struct m_can_classdev *cdev)
1900 {
1901 	int end, i, start;
1902 	int err = 0;
1903 
1904 	/* initialize the entire Message RAM in use to avoid possible
1905 	 * ECC/parity checksum errors when reading an uninitialized buffer
1906 	 */
1907 	start = cdev->mcfg[MRAM_SIDF].off;
1908 	end = cdev->mcfg[MRAM_TXB].off +
1909 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1910 
1911 	for (i = start; i < end; i += 4) {
1912 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
1913 		if (err)
1914 			break;
1915 	}
1916 
1917 	return err;
1918 }
1919 EXPORT_SYMBOL_GPL(m_can_init_ram);
1920 
1921 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1922 {
1923 	int ret = 0;
1924 
1925 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1926 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1927 
1928 	if (IS_ERR(cdev->cclk)) {
1929 		dev_err(cdev->dev, "no clock found\n");
1930 		ret = -ENODEV;
1931 	}
1932 
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1936 
1937 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1938 						int sizeof_priv)
1939 {
1940 	struct m_can_classdev *class_dev = NULL;
1941 	u32 mram_config_vals[MRAM_CFG_LEN];
1942 	struct net_device *net_dev;
1943 	u32 tx_fifo_size;
1944 	int ret;
1945 
1946 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1947 					     "bosch,mram-cfg",
1948 					     mram_config_vals,
1949 					     sizeof(mram_config_vals) / 4);
1950 	if (ret) {
1951 		dev_err(dev, "Could not get Message RAM configuration.");
1952 		goto out;
1953 	}
1954 
1955 	/* Get TX FIFO size
1956 	 * Defines the total amount of echo buffers for loopback
1957 	 */
1958 	tx_fifo_size = mram_config_vals[7];
1959 
1960 	/* allocate the m_can device */
1961 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1962 	if (!net_dev) {
1963 		dev_err(dev, "Failed to allocate CAN device");
1964 		goto out;
1965 	}
1966 
1967 	class_dev = netdev_priv(net_dev);
1968 	class_dev->net = net_dev;
1969 	class_dev->dev = dev;
1970 	SET_NETDEV_DEV(net_dev, dev);
1971 
1972 	m_can_of_parse_mram(class_dev, mram_config_vals);
1973 out:
1974 	return class_dev;
1975 }
1976 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1977 
1978 void m_can_class_free_dev(struct net_device *net)
1979 {
1980 	free_candev(net);
1981 }
1982 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1983 
1984 int m_can_class_register(struct m_can_classdev *cdev)
1985 {
1986 	int ret;
1987 
1988 	if (cdev->pm_clock_support) {
1989 		ret = m_can_clk_start(cdev);
1990 		if (ret)
1991 			return ret;
1992 	}
1993 
1994 	if (cdev->is_peripheral) {
1995 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1996 						M_CAN_NAPI_WEIGHT);
1997 		if (ret)
1998 			goto clk_disable;
1999 	}
2000 
2001 	ret = m_can_dev_setup(cdev);
2002 	if (ret)
2003 		goto rx_offload_del;
2004 
2005 	ret = register_m_can_dev(cdev->net);
2006 	if (ret) {
2007 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2008 			cdev->net->name, ret);
2009 		goto rx_offload_del;
2010 	}
2011 
2012 	devm_can_led_init(cdev->net);
2013 
2014 	of_can_transceiver(cdev->net);
2015 
2016 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2017 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2018 
2019 	/* Probe finished
2020 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2021 	 */
2022 	m_can_clk_stop(cdev);
2023 
2024 	return 0;
2025 
2026 rx_offload_del:
2027 	if (cdev->is_peripheral)
2028 		can_rx_offload_del(&cdev->offload);
2029 clk_disable:
2030 	m_can_clk_stop(cdev);
2031 
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(m_can_class_register);
2035 
2036 void m_can_class_unregister(struct m_can_classdev *cdev)
2037 {
2038 	if (cdev->is_peripheral)
2039 		can_rx_offload_del(&cdev->offload);
2040 	unregister_candev(cdev->net);
2041 }
2042 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2043 
2044 int m_can_class_suspend(struct device *dev)
2045 {
2046 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2047 	struct net_device *ndev = cdev->net;
2048 
2049 	if (netif_running(ndev)) {
2050 		netif_stop_queue(ndev);
2051 		netif_device_detach(ndev);
2052 		m_can_stop(ndev);
2053 		m_can_clk_stop(cdev);
2054 	}
2055 
2056 	pinctrl_pm_select_sleep_state(dev);
2057 
2058 	cdev->can.state = CAN_STATE_SLEEPING;
2059 
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2063 
2064 int m_can_class_resume(struct device *dev)
2065 {
2066 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2067 	struct net_device *ndev = cdev->net;
2068 
2069 	pinctrl_pm_select_default_state(dev);
2070 
2071 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2072 
2073 	if (netif_running(ndev)) {
2074 		int ret;
2075 
2076 		ret = m_can_clk_start(cdev);
2077 		if (ret)
2078 			return ret;
2079 
2080 		m_can_init_ram(cdev);
2081 		m_can_start(ndev);
2082 		netif_device_attach(ndev);
2083 		netif_start_queue(ndev);
2084 	}
2085 
2086 	return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(m_can_class_resume);
2089 
2090 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2091 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2092 MODULE_LICENSE("GPL v2");
2093 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2094