xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision c7685190)
1 /*
2  * CAN bus driver for Bosch M_CAN controller
3  *
4  * Copyright (C) 2014 Freescale Semiconductor, Inc.
5  *	Dong Aisheng <b29396@freescale.com>
6  *
7  * Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/iopoll.h>
28 #include <linux/can/dev.h>
29 
30 /* napi related */
31 #define M_CAN_NAPI_WEIGHT	64
32 
33 /* message ram configuration data length */
34 #define MRAM_CFG_LEN	8
35 
36 /* registers definition */
37 enum m_can_reg {
38 	M_CAN_CREL	= 0x0,
39 	M_CAN_ENDN	= 0x4,
40 	M_CAN_CUST	= 0x8,
41 	M_CAN_DBTP	= 0xc,
42 	M_CAN_TEST	= 0x10,
43 	M_CAN_RWD	= 0x14,
44 	M_CAN_CCCR	= 0x18,
45 	M_CAN_NBTP	= 0x1c,
46 	M_CAN_TSCC	= 0x20,
47 	M_CAN_TSCV	= 0x24,
48 	M_CAN_TOCC	= 0x28,
49 	M_CAN_TOCV	= 0x2c,
50 	M_CAN_ECR	= 0x40,
51 	M_CAN_PSR	= 0x44,
52 /* TDCR Register only available for version >=3.1.x */
53 	M_CAN_TDCR	= 0x48,
54 	M_CAN_IR	= 0x50,
55 	M_CAN_IE	= 0x54,
56 	M_CAN_ILS	= 0x58,
57 	M_CAN_ILE	= 0x5c,
58 	M_CAN_GFC	= 0x80,
59 	M_CAN_SIDFC	= 0x84,
60 	M_CAN_XIDFC	= 0x88,
61 	M_CAN_XIDAM	= 0x90,
62 	M_CAN_HPMS	= 0x94,
63 	M_CAN_NDAT1	= 0x98,
64 	M_CAN_NDAT2	= 0x9c,
65 	M_CAN_RXF0C	= 0xa0,
66 	M_CAN_RXF0S	= 0xa4,
67 	M_CAN_RXF0A	= 0xa8,
68 	M_CAN_RXBC	= 0xac,
69 	M_CAN_RXF1C	= 0xb0,
70 	M_CAN_RXF1S	= 0xb4,
71 	M_CAN_RXF1A	= 0xb8,
72 	M_CAN_RXESC	= 0xbc,
73 	M_CAN_TXBC	= 0xc0,
74 	M_CAN_TXFQS	= 0xc4,
75 	M_CAN_TXESC	= 0xc8,
76 	M_CAN_TXBRP	= 0xcc,
77 	M_CAN_TXBAR	= 0xd0,
78 	M_CAN_TXBCR	= 0xd4,
79 	M_CAN_TXBTO	= 0xd8,
80 	M_CAN_TXBCF	= 0xdc,
81 	M_CAN_TXBTIE	= 0xe0,
82 	M_CAN_TXBCIE	= 0xe4,
83 	M_CAN_TXEFC	= 0xf0,
84 	M_CAN_TXEFS	= 0xf4,
85 	M_CAN_TXEFA	= 0xf8,
86 };
87 
88 /* m_can lec values */
89 enum m_can_lec_type {
90 	LEC_NO_ERROR = 0,
91 	LEC_STUFF_ERROR,
92 	LEC_FORM_ERROR,
93 	LEC_ACK_ERROR,
94 	LEC_BIT1_ERROR,
95 	LEC_BIT0_ERROR,
96 	LEC_CRC_ERROR,
97 	LEC_UNUSED,
98 };
99 
100 enum m_can_mram_cfg {
101 	MRAM_SIDF = 0,
102 	MRAM_XIDF,
103 	MRAM_RXF0,
104 	MRAM_RXF1,
105 	MRAM_RXB,
106 	MRAM_TXE,
107 	MRAM_TXB,
108 	MRAM_CFG_NUM,
109 };
110 
111 /* Core Release Register (CREL) */
112 #define CREL_REL_SHIFT		28
113 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
114 #define CREL_STEP_SHIFT		24
115 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
116 #define CREL_SUBSTEP_SHIFT	20
117 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
118 
119 /* Data Bit Timing & Prescaler Register (DBTP) */
120 #define DBTP_TDC		BIT(23)
121 #define DBTP_DBRP_SHIFT		16
122 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
123 #define DBTP_DTSEG1_SHIFT	8
124 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
125 #define DBTP_DTSEG2_SHIFT	4
126 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
127 #define DBTP_DSJW_SHIFT		0
128 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
129 
130 /* Transmitter Delay Compensation Register (TDCR) */
131 #define TDCR_TDCO_SHIFT		8
132 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
133 #define TDCR_TDCF_SHIFT		0
134 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
135 
136 /* Test Register (TEST) */
137 #define TEST_LBCK		BIT(4)
138 
139 /* CC Control Register(CCCR) */
140 #define CCCR_CMR_MASK		0x3
141 #define CCCR_CMR_SHIFT		10
142 #define CCCR_CMR_CANFD		0x1
143 #define CCCR_CMR_CANFD_BRS	0x2
144 #define CCCR_CMR_CAN		0x3
145 #define CCCR_CME_MASK		0x3
146 #define CCCR_CME_SHIFT		8
147 #define CCCR_CME_CAN		0
148 #define CCCR_CME_CANFD		0x1
149 #define CCCR_CME_CANFD_BRS	0x2
150 #define CCCR_TXP		BIT(14)
151 #define CCCR_TEST		BIT(7)
152 #define CCCR_MON		BIT(5)
153 #define CCCR_CSR		BIT(4)
154 #define CCCR_CSA		BIT(3)
155 #define CCCR_ASM		BIT(2)
156 #define CCCR_CCE		BIT(1)
157 #define CCCR_INIT		BIT(0)
158 #define CCCR_CANFD		0x10
159 /* for version >=3.1.x */
160 #define CCCR_EFBI		BIT(13)
161 #define CCCR_PXHD		BIT(12)
162 #define CCCR_BRSE		BIT(9)
163 #define CCCR_FDOE		BIT(8)
164 /* only for version >=3.2.x */
165 #define CCCR_NISO		BIT(15)
166 
167 /* Nominal Bit Timing & Prescaler Register (NBTP) */
168 #define NBTP_NSJW_SHIFT		25
169 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
170 #define NBTP_NBRP_SHIFT		16
171 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
172 #define NBTP_NTSEG1_SHIFT	8
173 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
174 #define NBTP_NTSEG2_SHIFT	0
175 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
176 
177 /* Error Counter Register(ECR) */
178 #define ECR_RP			BIT(15)
179 #define ECR_REC_SHIFT		8
180 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
181 #define ECR_TEC_SHIFT		0
182 #define ECR_TEC_MASK		0xff
183 
184 /* Protocol Status Register(PSR) */
185 #define PSR_BO		BIT(7)
186 #define PSR_EW		BIT(6)
187 #define PSR_EP		BIT(5)
188 #define PSR_LEC_MASK	0x7
189 
190 /* Interrupt Register(IR) */
191 #define IR_ALL_INT	0xffffffff
192 
193 /* Renamed bits for versions > 3.1.x */
194 #define IR_ARA		BIT(29)
195 #define IR_PED		BIT(28)
196 #define IR_PEA		BIT(27)
197 
198 /* Bits for version 3.0.x */
199 #define IR_STE		BIT(31)
200 #define IR_FOE		BIT(30)
201 #define IR_ACKE		BIT(29)
202 #define IR_BE		BIT(28)
203 #define IR_CRCE		BIT(27)
204 #define IR_WDI		BIT(26)
205 #define IR_BO		BIT(25)
206 #define IR_EW		BIT(24)
207 #define IR_EP		BIT(23)
208 #define IR_ELO		BIT(22)
209 #define IR_BEU		BIT(21)
210 #define IR_BEC		BIT(20)
211 #define IR_DRX		BIT(19)
212 #define IR_TOO		BIT(18)
213 #define IR_MRAF		BIT(17)
214 #define IR_TSW		BIT(16)
215 #define IR_TEFL		BIT(15)
216 #define IR_TEFF		BIT(14)
217 #define IR_TEFW		BIT(13)
218 #define IR_TEFN		BIT(12)
219 #define IR_TFE		BIT(11)
220 #define IR_TCF		BIT(10)
221 #define IR_TC		BIT(9)
222 #define IR_HPM		BIT(8)
223 #define IR_RF1L		BIT(7)
224 #define IR_RF1F		BIT(6)
225 #define IR_RF1W		BIT(5)
226 #define IR_RF1N		BIT(4)
227 #define IR_RF0L		BIT(3)
228 #define IR_RF0F		BIT(2)
229 #define IR_RF0W		BIT(1)
230 #define IR_RF0N		BIT(0)
231 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
232 
233 /* Interrupts for version 3.0.x */
234 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
235 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
236 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
237 			 IR_RF1L | IR_RF0L)
238 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
239 /* Interrupts for version >= 3.1.x */
240 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
241 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
242 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
243 			 IR_RF1L | IR_RF0L)
244 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
245 
246 /* Interrupt Line Select (ILS) */
247 #define ILS_ALL_INT0	0x0
248 #define ILS_ALL_INT1	0xFFFFFFFF
249 
250 /* Interrupt Line Enable (ILE) */
251 #define ILE_EINT1	BIT(1)
252 #define ILE_EINT0	BIT(0)
253 
254 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
255 #define RXFC_FWM_SHIFT	24
256 #define RXFC_FWM_MASK	(0x7f < RXFC_FWM_SHIFT)
257 #define RXFC_FS_SHIFT	16
258 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
259 
260 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
261 #define RXFS_RFL	BIT(25)
262 #define RXFS_FF		BIT(24)
263 #define RXFS_FPI_SHIFT	16
264 #define RXFS_FPI_MASK	0x3f0000
265 #define RXFS_FGI_SHIFT	8
266 #define RXFS_FGI_MASK	0x3f00
267 #define RXFS_FFL_MASK	0x7f
268 
269 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
270 #define M_CAN_RXESC_8BYTES	0x0
271 #define M_CAN_RXESC_64BYTES	0x777
272 
273 /* Tx Buffer Configuration(TXBC) */
274 #define TXBC_NDTB_SHIFT		16
275 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
276 #define TXBC_TFQS_SHIFT		24
277 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
278 
279 /* Tx FIFO/Queue Status (TXFQS) */
280 #define TXFQS_TFQF		BIT(21)
281 #define TXFQS_TFQPI_SHIFT	16
282 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
283 #define TXFQS_TFGI_SHIFT	8
284 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
285 #define TXFQS_TFFL_SHIFT	0
286 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
287 
288 /* Tx Buffer Element Size Configuration(TXESC) */
289 #define TXESC_TBDS_8BYTES	0x0
290 #define TXESC_TBDS_64BYTES	0x7
291 
292 /* Tx Event FIFO Configuration (TXEFC) */
293 #define TXEFC_EFS_SHIFT		16
294 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
295 
296 /* Tx Event FIFO Status (TXEFS) */
297 #define TXEFS_TEFL		BIT(25)
298 #define TXEFS_EFF		BIT(24)
299 #define TXEFS_EFGI_SHIFT	8
300 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
301 #define TXEFS_EFFL_SHIFT	0
302 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
303 
304 /* Tx Event FIFO Acknowledge (TXEFA) */
305 #define TXEFA_EFAI_SHIFT	0
306 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
307 
308 /* Message RAM Configuration (in bytes) */
309 #define SIDF_ELEMENT_SIZE	4
310 #define XIDF_ELEMENT_SIZE	8
311 #define RXF0_ELEMENT_SIZE	72
312 #define RXF1_ELEMENT_SIZE	72
313 #define RXB_ELEMENT_SIZE	72
314 #define TXE_ELEMENT_SIZE	8
315 #define TXB_ELEMENT_SIZE	72
316 
317 /* Message RAM Elements */
318 #define M_CAN_FIFO_ID		0x0
319 #define M_CAN_FIFO_DLC		0x4
320 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
321 
322 /* Rx Buffer Element */
323 /* R0 */
324 #define RX_BUF_ESI		BIT(31)
325 #define RX_BUF_XTD		BIT(30)
326 #define RX_BUF_RTR		BIT(29)
327 /* R1 */
328 #define RX_BUF_ANMF		BIT(31)
329 #define RX_BUF_FDF		BIT(21)
330 #define RX_BUF_BRS		BIT(20)
331 
332 /* Tx Buffer Element */
333 /* T0 */
334 #define TX_BUF_ESI		BIT(31)
335 #define TX_BUF_XTD		BIT(30)
336 #define TX_BUF_RTR		BIT(29)
337 /* T1 */
338 #define TX_BUF_EFC		BIT(23)
339 #define TX_BUF_FDF		BIT(21)
340 #define TX_BUF_BRS		BIT(20)
341 #define TX_BUF_MM_SHIFT		24
342 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
343 
344 /* Tx event FIFO Element */
345 /* E1 */
346 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
347 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
348 
349 /* address offset and element number for each FIFO/Buffer in the Message RAM */
350 struct mram_cfg {
351 	u16 off;
352 	u8  num;
353 };
354 
355 /* m_can private data structure */
356 struct m_can_priv {
357 	struct can_priv can;	/* must be the first member */
358 	struct napi_struct napi;
359 	struct net_device *dev;
360 	struct device *device;
361 	struct clk *hclk;
362 	struct clk *cclk;
363 	void __iomem *base;
364 	u32 irqstatus;
365 	int version;
366 
367 	/* message ram configuration */
368 	void __iomem *mram_base;
369 	struct mram_cfg mcfg[MRAM_CFG_NUM];
370 };
371 
372 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
373 {
374 	return readl(priv->base + reg);
375 }
376 
377 static inline void m_can_write(const struct m_can_priv *priv,
378 			       enum m_can_reg reg, u32 val)
379 {
380 	writel(val, priv->base + reg);
381 }
382 
383 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
384 				  u32 fgi, unsigned int offset)
385 {
386 	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
387 		     fgi * RXF0_ELEMENT_SIZE + offset);
388 }
389 
390 static inline void m_can_fifo_write(const struct m_can_priv *priv,
391 				    u32 fpi, unsigned int offset, u32 val)
392 {
393 	writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
394 	       fpi * TXB_ELEMENT_SIZE + offset);
395 }
396 
397 static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
398 				      u32 fgi,
399 				      u32 offset) {
400 	return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
401 			fgi * TXE_ELEMENT_SIZE + offset);
402 }
403 
404 static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
405 {
406 		return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
407 }
408 
409 static inline void m_can_config_endisable(const struct m_can_priv *priv,
410 					  bool enable)
411 {
412 	u32 cccr = m_can_read(priv, M_CAN_CCCR);
413 	u32 timeout = 10;
414 	u32 val = 0;
415 
416 	if (enable) {
417 		/* enable m_can configuration */
418 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
419 		udelay(5);
420 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
421 		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
422 	} else {
423 		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
424 	}
425 
426 	/* there's a delay for module initialization */
427 	if (enable)
428 		val = CCCR_INIT | CCCR_CCE;
429 
430 	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
431 		if (timeout == 0) {
432 			netdev_warn(priv->dev, "Failed to init module\n");
433 			return;
434 		}
435 		timeout--;
436 		udelay(1);
437 	}
438 }
439 
440 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
441 {
442 	/* Only interrupt line 0 is used in this driver */
443 	m_can_write(priv, M_CAN_ILE, ILE_EINT0);
444 }
445 
446 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
447 {
448 	m_can_write(priv, M_CAN_ILE, 0x0);
449 }
450 
451 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
452 {
453 	struct net_device_stats *stats = &dev->stats;
454 	struct m_can_priv *priv = netdev_priv(dev);
455 	struct canfd_frame *cf;
456 	struct sk_buff *skb;
457 	u32 id, fgi, dlc;
458 	int i;
459 
460 	/* calculate the fifo get index for where to read data */
461 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
462 	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
463 	if (dlc & RX_BUF_FDF)
464 		skb = alloc_canfd_skb(dev, &cf);
465 	else
466 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
467 	if (!skb) {
468 		stats->rx_dropped++;
469 		return;
470 	}
471 
472 	if (dlc & RX_BUF_FDF)
473 		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
474 	else
475 		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
476 
477 	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
478 	if (id & RX_BUF_XTD)
479 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
480 	else
481 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
482 
483 	if (id & RX_BUF_ESI) {
484 		cf->flags |= CANFD_ESI;
485 		netdev_dbg(dev, "ESI Error\n");
486 	}
487 
488 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
489 		cf->can_id |= CAN_RTR_FLAG;
490 	} else {
491 		if (dlc & RX_BUF_BRS)
492 			cf->flags |= CANFD_BRS;
493 
494 		for (i = 0; i < cf->len; i += 4)
495 			*(u32 *)(cf->data + i) =
496 				m_can_fifo_read(priv, fgi,
497 						M_CAN_FIFO_DATA(i / 4));
498 	}
499 
500 	/* acknowledge rx fifo 0 */
501 	m_can_write(priv, M_CAN_RXF0A, fgi);
502 
503 	stats->rx_packets++;
504 	stats->rx_bytes += cf->len;
505 
506 	netif_receive_skb(skb);
507 }
508 
509 static int m_can_do_rx_poll(struct net_device *dev, int quota)
510 {
511 	struct m_can_priv *priv = netdev_priv(dev);
512 	u32 pkts = 0;
513 	u32 rxfs;
514 
515 	rxfs = m_can_read(priv, M_CAN_RXF0S);
516 	if (!(rxfs & RXFS_FFL_MASK)) {
517 		netdev_dbg(dev, "no messages in fifo0\n");
518 		return 0;
519 	}
520 
521 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
522 		if (rxfs & RXFS_RFL)
523 			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
524 
525 		m_can_read_fifo(dev, rxfs);
526 
527 		quota--;
528 		pkts++;
529 		rxfs = m_can_read(priv, M_CAN_RXF0S);
530 	}
531 
532 	if (pkts)
533 		can_led_event(dev, CAN_LED_EVENT_RX);
534 
535 	return pkts;
536 }
537 
538 static int m_can_handle_lost_msg(struct net_device *dev)
539 {
540 	struct net_device_stats *stats = &dev->stats;
541 	struct sk_buff *skb;
542 	struct can_frame *frame;
543 
544 	netdev_err(dev, "msg lost in rxf0\n");
545 
546 	stats->rx_errors++;
547 	stats->rx_over_errors++;
548 
549 	skb = alloc_can_err_skb(dev, &frame);
550 	if (unlikely(!skb))
551 		return 0;
552 
553 	frame->can_id |= CAN_ERR_CRTL;
554 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
555 
556 	netif_receive_skb(skb);
557 
558 	return 1;
559 }
560 
561 static int m_can_handle_lec_err(struct net_device *dev,
562 				enum m_can_lec_type lec_type)
563 {
564 	struct m_can_priv *priv = netdev_priv(dev);
565 	struct net_device_stats *stats = &dev->stats;
566 	struct can_frame *cf;
567 	struct sk_buff *skb;
568 
569 	priv->can.can_stats.bus_error++;
570 	stats->rx_errors++;
571 
572 	/* propagate the error condition to the CAN stack */
573 	skb = alloc_can_err_skb(dev, &cf);
574 	if (unlikely(!skb))
575 		return 0;
576 
577 	/* check for 'last error code' which tells us the
578 	 * type of the last error to occur on the CAN bus
579 	 */
580 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
581 
582 	switch (lec_type) {
583 	case LEC_STUFF_ERROR:
584 		netdev_dbg(dev, "stuff error\n");
585 		cf->data[2] |= CAN_ERR_PROT_STUFF;
586 		break;
587 	case LEC_FORM_ERROR:
588 		netdev_dbg(dev, "form error\n");
589 		cf->data[2] |= CAN_ERR_PROT_FORM;
590 		break;
591 	case LEC_ACK_ERROR:
592 		netdev_dbg(dev, "ack error\n");
593 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
594 		break;
595 	case LEC_BIT1_ERROR:
596 		netdev_dbg(dev, "bit1 error\n");
597 		cf->data[2] |= CAN_ERR_PROT_BIT1;
598 		break;
599 	case LEC_BIT0_ERROR:
600 		netdev_dbg(dev, "bit0 error\n");
601 		cf->data[2] |= CAN_ERR_PROT_BIT0;
602 		break;
603 	case LEC_CRC_ERROR:
604 		netdev_dbg(dev, "CRC error\n");
605 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
606 		break;
607 	default:
608 		break;
609 	}
610 
611 	stats->rx_packets++;
612 	stats->rx_bytes += cf->can_dlc;
613 	netif_receive_skb(skb);
614 
615 	return 1;
616 }
617 
618 static int __m_can_get_berr_counter(const struct net_device *dev,
619 				    struct can_berr_counter *bec)
620 {
621 	struct m_can_priv *priv = netdev_priv(dev);
622 	unsigned int ecr;
623 
624 	ecr = m_can_read(priv, M_CAN_ECR);
625 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
626 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
627 
628 	return 0;
629 }
630 
631 static int m_can_clk_start(struct m_can_priv *priv)
632 {
633 	int err;
634 
635 	err = pm_runtime_get_sync(priv->device);
636 	if (err)
637 		pm_runtime_put_noidle(priv->device);
638 
639 	return err;
640 }
641 
642 static void m_can_clk_stop(struct m_can_priv *priv)
643 {
644 	pm_runtime_put_sync(priv->device);
645 }
646 
647 static int m_can_get_berr_counter(const struct net_device *dev,
648 				  struct can_berr_counter *bec)
649 {
650 	struct m_can_priv *priv = netdev_priv(dev);
651 	int err;
652 
653 	err = m_can_clk_start(priv);
654 	if (err)
655 		return err;
656 
657 	__m_can_get_berr_counter(dev, bec);
658 
659 	m_can_clk_stop(priv);
660 
661 	return 0;
662 }
663 
664 static int m_can_handle_state_change(struct net_device *dev,
665 				     enum can_state new_state)
666 {
667 	struct m_can_priv *priv = netdev_priv(dev);
668 	struct net_device_stats *stats = &dev->stats;
669 	struct can_frame *cf;
670 	struct sk_buff *skb;
671 	struct can_berr_counter bec;
672 	unsigned int ecr;
673 
674 	switch (new_state) {
675 	case CAN_STATE_ERROR_ACTIVE:
676 		/* error warning state */
677 		priv->can.can_stats.error_warning++;
678 		priv->can.state = CAN_STATE_ERROR_WARNING;
679 		break;
680 	case CAN_STATE_ERROR_PASSIVE:
681 		/* error passive state */
682 		priv->can.can_stats.error_passive++;
683 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
684 		break;
685 	case CAN_STATE_BUS_OFF:
686 		/* bus-off state */
687 		priv->can.state = CAN_STATE_BUS_OFF;
688 		m_can_disable_all_interrupts(priv);
689 		priv->can.can_stats.bus_off++;
690 		can_bus_off(dev);
691 		break;
692 	default:
693 		break;
694 	}
695 
696 	/* propagate the error condition to the CAN stack */
697 	skb = alloc_can_err_skb(dev, &cf);
698 	if (unlikely(!skb))
699 		return 0;
700 
701 	__m_can_get_berr_counter(dev, &bec);
702 
703 	switch (new_state) {
704 	case CAN_STATE_ERROR_ACTIVE:
705 		/* error warning state */
706 		cf->can_id |= CAN_ERR_CRTL;
707 		cf->data[1] = (bec.txerr > bec.rxerr) ?
708 			CAN_ERR_CRTL_TX_WARNING :
709 			CAN_ERR_CRTL_RX_WARNING;
710 		cf->data[6] = bec.txerr;
711 		cf->data[7] = bec.rxerr;
712 		break;
713 	case CAN_STATE_ERROR_PASSIVE:
714 		/* error passive state */
715 		cf->can_id |= CAN_ERR_CRTL;
716 		ecr = m_can_read(priv, M_CAN_ECR);
717 		if (ecr & ECR_RP)
718 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
719 		if (bec.txerr > 127)
720 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
721 		cf->data[6] = bec.txerr;
722 		cf->data[7] = bec.rxerr;
723 		break;
724 	case CAN_STATE_BUS_OFF:
725 		/* bus-off state */
726 		cf->can_id |= CAN_ERR_BUSOFF;
727 		break;
728 	default:
729 		break;
730 	}
731 
732 	stats->rx_packets++;
733 	stats->rx_bytes += cf->can_dlc;
734 	netif_receive_skb(skb);
735 
736 	return 1;
737 }
738 
739 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
740 {
741 	struct m_can_priv *priv = netdev_priv(dev);
742 	int work_done = 0;
743 
744 	if ((psr & PSR_EW) &&
745 	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
746 		netdev_dbg(dev, "entered error warning state\n");
747 		work_done += m_can_handle_state_change(dev,
748 						       CAN_STATE_ERROR_WARNING);
749 	}
750 
751 	if ((psr & PSR_EP) &&
752 	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
753 		netdev_dbg(dev, "entered error passive state\n");
754 		work_done += m_can_handle_state_change(dev,
755 						       CAN_STATE_ERROR_PASSIVE);
756 	}
757 
758 	if ((psr & PSR_BO) &&
759 	    (priv->can.state != CAN_STATE_BUS_OFF)) {
760 		netdev_dbg(dev, "entered error bus off state\n");
761 		work_done += m_can_handle_state_change(dev,
762 						       CAN_STATE_BUS_OFF);
763 	}
764 
765 	return work_done;
766 }
767 
768 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
769 {
770 	if (irqstatus & IR_WDI)
771 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
772 	if (irqstatus & IR_ELO)
773 		netdev_err(dev, "Error Logging Overflow\n");
774 	if (irqstatus & IR_BEU)
775 		netdev_err(dev, "Bit Error Uncorrected\n");
776 	if (irqstatus & IR_BEC)
777 		netdev_err(dev, "Bit Error Corrected\n");
778 	if (irqstatus & IR_TOO)
779 		netdev_err(dev, "Timeout reached\n");
780 	if (irqstatus & IR_MRAF)
781 		netdev_err(dev, "Message RAM access failure occurred\n");
782 }
783 
784 static inline bool is_lec_err(u32 psr)
785 {
786 	psr &= LEC_UNUSED;
787 
788 	return psr && (psr != LEC_UNUSED);
789 }
790 
791 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
792 				   u32 psr)
793 {
794 	struct m_can_priv *priv = netdev_priv(dev);
795 	int work_done = 0;
796 
797 	if (irqstatus & IR_RF0L)
798 		work_done += m_can_handle_lost_msg(dev);
799 
800 	/* handle lec errors on the bus */
801 	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
802 	    is_lec_err(psr))
803 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
804 
805 	/* other unproccessed error interrupts */
806 	m_can_handle_other_err(dev, irqstatus);
807 
808 	return work_done;
809 }
810 
811 static int m_can_poll(struct napi_struct *napi, int quota)
812 {
813 	struct net_device *dev = napi->dev;
814 	struct m_can_priv *priv = netdev_priv(dev);
815 	int work_done = 0;
816 	u32 irqstatus, psr;
817 
818 	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
819 	if (!irqstatus)
820 		goto end;
821 
822 	psr = m_can_read(priv, M_CAN_PSR);
823 	if (irqstatus & IR_ERR_STATE)
824 		work_done += m_can_handle_state_errors(dev, psr);
825 
826 	if (irqstatus & IR_ERR_BUS_30X)
827 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
828 
829 	if (irqstatus & IR_RF0N)
830 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
831 
832 	if (work_done < quota) {
833 		napi_complete_done(napi, work_done);
834 		m_can_enable_all_interrupts(priv);
835 	}
836 
837 end:
838 	return work_done;
839 }
840 
841 static void m_can_echo_tx_event(struct net_device *dev)
842 {
843 	u32 txe_count = 0;
844 	u32 m_can_txefs;
845 	u32 fgi = 0;
846 	int i = 0;
847 	unsigned int msg_mark;
848 
849 	struct m_can_priv *priv = netdev_priv(dev);
850 	struct net_device_stats *stats = &dev->stats;
851 
852 	/* read tx event fifo status */
853 	m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
854 
855 	/* Get Tx Event fifo element count */
856 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
857 			>> TXEFS_EFFL_SHIFT;
858 
859 	/* Get and process all sent elements */
860 	for (i = 0; i < txe_count; i++) {
861 		/* retrieve get index */
862 		fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
863 			>> TXEFS_EFGI_SHIFT;
864 
865 		/* get message marker */
866 		msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
867 			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
868 
869 		/* ack txe element */
870 		m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
871 						(fgi << TXEFA_EFAI_SHIFT)));
872 
873 		/* update stats */
874 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
875 		stats->tx_packets++;
876 	}
877 }
878 
879 static irqreturn_t m_can_isr(int irq, void *dev_id)
880 {
881 	struct net_device *dev = (struct net_device *)dev_id;
882 	struct m_can_priv *priv = netdev_priv(dev);
883 	struct net_device_stats *stats = &dev->stats;
884 	u32 ir;
885 
886 	ir = m_can_read(priv, M_CAN_IR);
887 	if (!ir)
888 		return IRQ_NONE;
889 
890 	/* ACK all irqs */
891 	if (ir & IR_ALL_INT)
892 		m_can_write(priv, M_CAN_IR, ir);
893 
894 	/* schedule NAPI in case of
895 	 * - rx IRQ
896 	 * - state change IRQ
897 	 * - bus error IRQ and bus error reporting
898 	 */
899 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
900 		priv->irqstatus = ir;
901 		m_can_disable_all_interrupts(priv);
902 		napi_schedule(&priv->napi);
903 	}
904 
905 	if (priv->version == 30) {
906 		if (ir & IR_TC) {
907 			/* Transmission Complete Interrupt*/
908 			stats->tx_bytes += can_get_echo_skb(dev, 0);
909 			stats->tx_packets++;
910 			can_led_event(dev, CAN_LED_EVENT_TX);
911 			netif_wake_queue(dev);
912 		}
913 	} else  {
914 		if (ir & IR_TEFN) {
915 			/* New TX FIFO Element arrived */
916 			m_can_echo_tx_event(dev);
917 			can_led_event(dev, CAN_LED_EVENT_TX);
918 			if (netif_queue_stopped(dev) &&
919 			    !m_can_tx_fifo_full(priv))
920 				netif_wake_queue(dev);
921 		}
922 	}
923 
924 	return IRQ_HANDLED;
925 }
926 
927 static const struct can_bittiming_const m_can_bittiming_const_30X = {
928 	.name = KBUILD_MODNAME,
929 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
930 	.tseg1_max = 64,
931 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
932 	.tseg2_max = 16,
933 	.sjw_max = 16,
934 	.brp_min = 1,
935 	.brp_max = 1024,
936 	.brp_inc = 1,
937 };
938 
939 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
940 	.name = KBUILD_MODNAME,
941 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
942 	.tseg1_max = 16,
943 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
944 	.tseg2_max = 8,
945 	.sjw_max = 4,
946 	.brp_min = 1,
947 	.brp_max = 32,
948 	.brp_inc = 1,
949 };
950 
951 static const struct can_bittiming_const m_can_bittiming_const_31X = {
952 	.name = KBUILD_MODNAME,
953 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
954 	.tseg1_max = 256,
955 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
956 	.tseg2_max = 128,
957 	.sjw_max = 128,
958 	.brp_min = 1,
959 	.brp_max = 512,
960 	.brp_inc = 1,
961 };
962 
963 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
964 	.name = KBUILD_MODNAME,
965 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
966 	.tseg1_max = 32,
967 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
968 	.tseg2_max = 16,
969 	.sjw_max = 16,
970 	.brp_min = 1,
971 	.brp_max = 32,
972 	.brp_inc = 1,
973 };
974 
975 static int m_can_set_bittiming(struct net_device *dev)
976 {
977 	struct m_can_priv *priv = netdev_priv(dev);
978 	const struct can_bittiming *bt = &priv->can.bittiming;
979 	const struct can_bittiming *dbt = &priv->can.data_bittiming;
980 	u16 brp, sjw, tseg1, tseg2;
981 	u32 reg_btp;
982 
983 	brp = bt->brp - 1;
984 	sjw = bt->sjw - 1;
985 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
986 	tseg2 = bt->phase_seg2 - 1;
987 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
988 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
989 	m_can_write(priv, M_CAN_NBTP, reg_btp);
990 
991 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
992 		reg_btp = 0;
993 		brp = dbt->brp - 1;
994 		sjw = dbt->sjw - 1;
995 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
996 		tseg2 = dbt->phase_seg2 - 1;
997 
998 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
999 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1000 		 * paper presented at the International CAN Conference 2013
1001 		 */
1002 		if (dbt->bitrate > 2500000) {
1003 			u32 tdco, ssp;
1004 
1005 			/* Use the same value of secondary sampling point
1006 			 * as the data sampling point
1007 			 */
1008 			ssp = dbt->sample_point;
1009 
1010 			/* Equation based on Bosch's M_CAN User Manual's
1011 			 * Transmitter Delay Compensation Section
1012 			 */
1013 			tdco = (priv->can.clock.freq / 1000) *
1014 			       ssp / dbt->bitrate;
1015 
1016 			/* Max valid TDCO value is 127 */
1017 			if (tdco > 127) {
1018 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1019 					    tdco);
1020 				tdco = 127;
1021 			}
1022 
1023 			reg_btp |= DBTP_TDC;
1024 			m_can_write(priv, M_CAN_TDCR,
1025 				    tdco << TDCR_TDCO_SHIFT);
1026 		}
1027 
1028 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1029 			   (sjw << DBTP_DSJW_SHIFT) |
1030 			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1031 			   (tseg2 << DBTP_DTSEG2_SHIFT);
1032 
1033 		m_can_write(priv, M_CAN_DBTP, reg_btp);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /* Configure M_CAN chip:
1040  * - set rx buffer/fifo element size
1041  * - configure rx fifo
1042  * - accept non-matching frame into fifo 0
1043  * - configure tx buffer
1044  *		- >= v3.1.x: TX FIFO is used
1045  * - configure mode
1046  * - setup bittiming
1047  */
1048 static void m_can_chip_config(struct net_device *dev)
1049 {
1050 	struct m_can_priv *priv = netdev_priv(dev);
1051 	u32 cccr, test;
1052 
1053 	m_can_config_endisable(priv, true);
1054 
1055 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1056 	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1057 
1058 	/* Accept Non-matching Frames Into FIFO 0 */
1059 	m_can_write(priv, M_CAN_GFC, 0x0);
1060 
1061 	if (priv->version == 30) {
1062 		/* only support one Tx Buffer currently */
1063 		m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1064 				priv->mcfg[MRAM_TXB].off);
1065 	} else {
1066 		/* TX FIFO is used for newer IP Core versions */
1067 		m_can_write(priv, M_CAN_TXBC,
1068 			    (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1069 			    (priv->mcfg[MRAM_TXB].off));
1070 	}
1071 
1072 	/* support 64 bytes payload */
1073 	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1074 
1075 	/* TX Event FIFO */
1076 	if (priv->version == 30) {
1077 		m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1078 				priv->mcfg[MRAM_TXE].off);
1079 	} else {
1080 		/* Full TX Event FIFO is used */
1081 		m_can_write(priv, M_CAN_TXEFC,
1082 			    ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1083 			     & TXEFC_EFS_MASK) |
1084 			    priv->mcfg[MRAM_TXE].off);
1085 	}
1086 
1087 	/* rx fifo configuration, blocking mode, fifo size 1 */
1088 	m_can_write(priv, M_CAN_RXF0C,
1089 		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1090 		     priv->mcfg[MRAM_RXF0].off);
1091 
1092 	m_can_write(priv, M_CAN_RXF1C,
1093 		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1094 		     priv->mcfg[MRAM_RXF1].off);
1095 
1096 	cccr = m_can_read(priv, M_CAN_CCCR);
1097 	test = m_can_read(priv, M_CAN_TEST);
1098 	test &= ~TEST_LBCK;
1099 	if (priv->version == 30) {
1100 	/* Version 3.0.x */
1101 
1102 		cccr &= ~(CCCR_TEST | CCCR_MON |
1103 			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1104 			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1105 
1106 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1107 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1108 
1109 	} else {
1110 	/* Version 3.1.x or 3.2.x */
1111 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
1112 
1113 		/* Only 3.2.x has NISO Bit implemented */
1114 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1115 			cccr |= CCCR_NISO;
1116 
1117 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1118 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1119 	}
1120 
1121 	/* Loopback Mode */
1122 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1123 		cccr |= CCCR_TEST | CCCR_MON;
1124 		test |= TEST_LBCK;
1125 	}
1126 
1127 	/* Enable Monitoring (all versions) */
1128 	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1129 		cccr |= CCCR_MON;
1130 
1131 	/* Write config */
1132 	m_can_write(priv, M_CAN_CCCR, cccr);
1133 	m_can_write(priv, M_CAN_TEST, test);
1134 
1135 	/* Enable interrupts */
1136 	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1137 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1138 		if (priv->version == 30)
1139 			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1140 				    ~(IR_ERR_LEC_30X));
1141 		else
1142 			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1143 				    ~(IR_ERR_LEC_31X));
1144 	else
1145 		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1146 
1147 	/* route all interrupts to INT0 */
1148 	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1149 
1150 	/* set bittiming params */
1151 	m_can_set_bittiming(dev);
1152 
1153 	m_can_config_endisable(priv, false);
1154 }
1155 
1156 static void m_can_start(struct net_device *dev)
1157 {
1158 	struct m_can_priv *priv = netdev_priv(dev);
1159 
1160 	/* basic m_can configuration */
1161 	m_can_chip_config(dev);
1162 
1163 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1164 
1165 	m_can_enable_all_interrupts(priv);
1166 }
1167 
1168 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1169 {
1170 	switch (mode) {
1171 	case CAN_MODE_START:
1172 		m_can_start(dev);
1173 		netif_wake_queue(dev);
1174 		break;
1175 	default:
1176 		return -EOPNOTSUPP;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 /* Checks core release number of M_CAN
1183  * returns 0 if an unsupported device is detected
1184  * else it returns the release and step coded as:
1185  * return value = 10 * <release> + 1 * <step>
1186  */
1187 static int m_can_check_core_release(void __iomem *m_can_base)
1188 {
1189 	u32 crel_reg;
1190 	u8 rel;
1191 	u8 step;
1192 	int res;
1193 	struct m_can_priv temp_priv = {
1194 		.base = m_can_base
1195 	};
1196 
1197 	/* Read Core Release Version and split into version number
1198 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1199 	 */
1200 	crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1201 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1202 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1203 
1204 	if (rel == 3) {
1205 		/* M_CAN v3.x.y: create return value */
1206 		res = 30 + step;
1207 	} else {
1208 		/* Unsupported M_CAN version */
1209 		res = 0;
1210 	}
1211 
1212 	return res;
1213 }
1214 
1215 /* Selectable Non ISO support only in version 3.2.x
1216  * This function checks if the bit is writable.
1217  */
1218 static bool m_can_niso_supported(const struct m_can_priv *priv)
1219 {
1220 	u32 cccr_reg, cccr_poll;
1221 	int niso_timeout;
1222 
1223 	m_can_config_endisable(priv, true);
1224 	cccr_reg = m_can_read(priv, M_CAN_CCCR);
1225 	cccr_reg |= CCCR_NISO;
1226 	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1227 
1228 	niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1229 					  (cccr_poll == cccr_reg), 0, 10);
1230 
1231 	/* Clear NISO */
1232 	cccr_reg &= ~(CCCR_NISO);
1233 	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1234 
1235 	m_can_config_endisable(priv, false);
1236 
1237 	/* return false if time out (-ETIMEDOUT), else return true */
1238 	return !niso_timeout;
1239 }
1240 
1241 static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1242 			   void __iomem *addr)
1243 {
1244 	struct m_can_priv *priv;
1245 	int m_can_version;
1246 
1247 	m_can_version = m_can_check_core_release(addr);
1248 	/* return if unsupported version */
1249 	if (!m_can_version) {
1250 		dev_err(&pdev->dev, "Unsupported version number: %2d",
1251 			m_can_version);
1252 		return -EINVAL;
1253 	}
1254 
1255 	priv = netdev_priv(dev);
1256 	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1257 
1258 	/* Shared properties of all M_CAN versions */
1259 	priv->version = m_can_version;
1260 	priv->dev = dev;
1261 	priv->base = addr;
1262 	priv->can.do_set_mode = m_can_set_mode;
1263 	priv->can.do_get_berr_counter = m_can_get_berr_counter;
1264 
1265 	/* Set M_CAN supported operations */
1266 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1267 					CAN_CTRLMODE_LISTENONLY |
1268 					CAN_CTRLMODE_BERR_REPORTING |
1269 					CAN_CTRLMODE_FD;
1270 
1271 	/* Set properties depending on M_CAN version */
1272 	switch (priv->version) {
1273 	case 30:
1274 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1275 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1276 		priv->can.bittiming_const = &m_can_bittiming_const_30X;
1277 		priv->can.data_bittiming_const =
1278 				&m_can_data_bittiming_const_30X;
1279 		break;
1280 	case 31:
1281 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1282 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1283 		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1284 		priv->can.data_bittiming_const =
1285 				&m_can_data_bittiming_const_31X;
1286 		break;
1287 	case 32:
1288 		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1289 		priv->can.data_bittiming_const =
1290 				&m_can_data_bittiming_const_31X;
1291 		priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1292 						? CAN_CTRLMODE_FD_NON_ISO
1293 						: 0);
1294 		break;
1295 	default:
1296 		dev_err(&pdev->dev, "Unsupported version number: %2d",
1297 			priv->version);
1298 		return -EINVAL;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 static int m_can_open(struct net_device *dev)
1305 {
1306 	struct m_can_priv *priv = netdev_priv(dev);
1307 	int err;
1308 
1309 	err = m_can_clk_start(priv);
1310 	if (err)
1311 		return err;
1312 
1313 	/* open the can device */
1314 	err = open_candev(dev);
1315 	if (err) {
1316 		netdev_err(dev, "failed to open can device\n");
1317 		goto exit_disable_clks;
1318 	}
1319 
1320 	/* register interrupt handler */
1321 	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1322 			  dev);
1323 	if (err < 0) {
1324 		netdev_err(dev, "failed to request interrupt\n");
1325 		goto exit_irq_fail;
1326 	}
1327 
1328 	/* start the m_can controller */
1329 	m_can_start(dev);
1330 
1331 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1332 	napi_enable(&priv->napi);
1333 	netif_start_queue(dev);
1334 
1335 	return 0;
1336 
1337 exit_irq_fail:
1338 	close_candev(dev);
1339 exit_disable_clks:
1340 	m_can_clk_stop(priv);
1341 	return err;
1342 }
1343 
1344 static void m_can_stop(struct net_device *dev)
1345 {
1346 	struct m_can_priv *priv = netdev_priv(dev);
1347 
1348 	/* disable all interrupts */
1349 	m_can_disable_all_interrupts(priv);
1350 
1351 	/* set the state as STOPPED */
1352 	priv->can.state = CAN_STATE_STOPPED;
1353 }
1354 
1355 static int m_can_close(struct net_device *dev)
1356 {
1357 	struct m_can_priv *priv = netdev_priv(dev);
1358 
1359 	netif_stop_queue(dev);
1360 	napi_disable(&priv->napi);
1361 	m_can_stop(dev);
1362 	m_can_clk_stop(priv);
1363 	free_irq(dev->irq, dev);
1364 	close_candev(dev);
1365 	can_led_event(dev, CAN_LED_EVENT_STOP);
1366 
1367 	return 0;
1368 }
1369 
1370 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1371 {
1372 	struct m_can_priv *priv = netdev_priv(dev);
1373 	/*get wrap around for loopback skb index */
1374 	unsigned int wrap = priv->can.echo_skb_max;
1375 	int next_idx;
1376 
1377 	/* calculate next index */
1378 	next_idx = (++putidx >= wrap ? 0 : putidx);
1379 
1380 	/* check if occupied */
1381 	return !!priv->can.echo_skb[next_idx];
1382 }
1383 
1384 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1385 				    struct net_device *dev)
1386 {
1387 	struct m_can_priv *priv = netdev_priv(dev);
1388 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1389 	u32 id, cccr, fdflags;
1390 	int i;
1391 	int putidx;
1392 
1393 	if (can_dropped_invalid_skb(dev, skb))
1394 		return NETDEV_TX_OK;
1395 
1396 	/* Generate ID field for TX buffer Element */
1397 	/* Common to all supported M_CAN versions */
1398 	if (cf->can_id & CAN_EFF_FLAG) {
1399 		id = cf->can_id & CAN_EFF_MASK;
1400 		id |= TX_BUF_XTD;
1401 	} else {
1402 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1403 	}
1404 
1405 	if (cf->can_id & CAN_RTR_FLAG)
1406 		id |= TX_BUF_RTR;
1407 
1408 	if (priv->version == 30) {
1409 		netif_stop_queue(dev);
1410 
1411 		/* message ram configuration */
1412 		m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1413 		m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1414 				 can_len2dlc(cf->len) << 16);
1415 
1416 		for (i = 0; i < cf->len; i += 4)
1417 			m_can_fifo_write(priv, 0,
1418 					 M_CAN_FIFO_DATA(i / 4),
1419 					 *(u32 *)(cf->data + i));
1420 
1421 		can_put_echo_skb(skb, dev, 0);
1422 
1423 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1424 			cccr = m_can_read(priv, M_CAN_CCCR);
1425 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1426 			if (can_is_canfd_skb(skb)) {
1427 				if (cf->flags & CANFD_BRS)
1428 					cccr |= CCCR_CMR_CANFD_BRS <<
1429 						CCCR_CMR_SHIFT;
1430 				else
1431 					cccr |= CCCR_CMR_CANFD <<
1432 						CCCR_CMR_SHIFT;
1433 			} else {
1434 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1435 			}
1436 			m_can_write(priv, M_CAN_CCCR, cccr);
1437 		}
1438 		m_can_write(priv, M_CAN_TXBTIE, 0x1);
1439 		m_can_write(priv, M_CAN_TXBAR, 0x1);
1440 		/* End of xmit function for version 3.0.x */
1441 	} else {
1442 		/* Transmit routine for version >= v3.1.x */
1443 
1444 		/* Check if FIFO full */
1445 		if (m_can_tx_fifo_full(priv)) {
1446 			/* This shouldn't happen */
1447 			netif_stop_queue(dev);
1448 			netdev_warn(dev,
1449 				    "TX queue active although FIFO is full.");
1450 			return NETDEV_TX_BUSY;
1451 		}
1452 
1453 		/* get put index for frame */
1454 		putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1455 				  >> TXFQS_TFQPI_SHIFT);
1456 		/* Write ID Field to FIFO Element */
1457 		m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1458 
1459 		/* get CAN FD configuration of frame */
1460 		fdflags = 0;
1461 		if (can_is_canfd_skb(skb)) {
1462 			fdflags |= TX_BUF_FDF;
1463 			if (cf->flags & CANFD_BRS)
1464 				fdflags |= TX_BUF_BRS;
1465 		}
1466 
1467 		/* Construct DLC Field. Also contains CAN-FD configuration
1468 		 * use put index of fifo as message marker
1469 		 * it is used in TX interrupt for
1470 		 * sending the correct echo frame
1471 		 */
1472 		m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1473 				 ((putidx << TX_BUF_MM_SHIFT) &
1474 				  TX_BUF_MM_MASK) |
1475 				 (can_len2dlc(cf->len) << 16) |
1476 				 fdflags | TX_BUF_EFC);
1477 
1478 		for (i = 0; i < cf->len; i += 4)
1479 			m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1480 					 *(u32 *)(cf->data + i));
1481 
1482 		/* Push loopback echo.
1483 		 * Will be looped back on TX interrupt based on message marker
1484 		 */
1485 		can_put_echo_skb(skb, dev, putidx);
1486 
1487 		/* Enable TX FIFO element to start transfer  */
1488 		m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1489 
1490 		/* stop network queue if fifo full */
1491 			if (m_can_tx_fifo_full(priv) ||
1492 			    m_can_next_echo_skb_occupied(dev, putidx))
1493 				netif_stop_queue(dev);
1494 	}
1495 
1496 	return NETDEV_TX_OK;
1497 }
1498 
1499 static const struct net_device_ops m_can_netdev_ops = {
1500 	.ndo_open = m_can_open,
1501 	.ndo_stop = m_can_close,
1502 	.ndo_start_xmit = m_can_start_xmit,
1503 	.ndo_change_mtu = can_change_mtu,
1504 };
1505 
1506 static int register_m_can_dev(struct net_device *dev)
1507 {
1508 	dev->flags |= IFF_ECHO;	/* we support local echo */
1509 	dev->netdev_ops = &m_can_netdev_ops;
1510 
1511 	return register_candev(dev);
1512 }
1513 
1514 static void m_can_init_ram(struct m_can_priv *priv)
1515 {
1516 	int end, i, start;
1517 
1518 	/* initialize the entire Message RAM in use to avoid possible
1519 	 * ECC/parity checksum errors when reading an uninitialized buffer
1520 	 */
1521 	start = priv->mcfg[MRAM_SIDF].off;
1522 	end = priv->mcfg[MRAM_TXB].off +
1523 		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1524 	for (i = start; i < end; i += 4)
1525 		writel(0x0, priv->mram_base + i);
1526 }
1527 
1528 static void m_can_of_parse_mram(struct m_can_priv *priv,
1529 				const u32 *mram_config_vals)
1530 {
1531 	priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1532 	priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1533 	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1534 			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1535 	priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1536 	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1537 			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1538 	priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1539 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1540 	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1541 			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1542 	priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1543 			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1544 	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1545 			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1546 	priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1547 	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1548 			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1549 	priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1550 	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1551 			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1552 	priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1553 			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1554 
1555 	dev_dbg(priv->device,
1556 		"mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1557 		priv->mram_base,
1558 		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1559 		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1560 		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1561 		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1562 		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1563 		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1564 		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1565 
1566 	m_can_init_ram(priv);
1567 }
1568 
1569 static int m_can_plat_probe(struct platform_device *pdev)
1570 {
1571 	struct net_device *dev;
1572 	struct m_can_priv *priv;
1573 	struct resource *res;
1574 	void __iomem *addr;
1575 	void __iomem *mram_addr;
1576 	struct clk *hclk, *cclk;
1577 	int irq, ret;
1578 	struct device_node *np;
1579 	u32 mram_config_vals[MRAM_CFG_LEN];
1580 	u32 tx_fifo_size;
1581 
1582 	np = pdev->dev.of_node;
1583 
1584 	hclk = devm_clk_get(&pdev->dev, "hclk");
1585 	cclk = devm_clk_get(&pdev->dev, "cclk");
1586 
1587 	if (IS_ERR(hclk) || IS_ERR(cclk)) {
1588 		dev_err(&pdev->dev, "no clock found\n");
1589 		ret = -ENODEV;
1590 		goto failed_ret;
1591 	}
1592 
1593 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1594 	addr = devm_ioremap_resource(&pdev->dev, res);
1595 	irq = platform_get_irq_byname(pdev, "int0");
1596 
1597 	if (IS_ERR(addr) || irq < 0) {
1598 		ret = -EINVAL;
1599 		goto failed_ret;
1600 	}
1601 
1602 	/* message ram could be shared */
1603 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1604 	if (!res) {
1605 		ret = -ENODEV;
1606 		goto failed_ret;
1607 	}
1608 
1609 	mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1610 	if (!mram_addr) {
1611 		ret = -ENOMEM;
1612 		goto failed_ret;
1613 	}
1614 
1615 	/* get message ram configuration */
1616 	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1617 					 mram_config_vals,
1618 					 sizeof(mram_config_vals) / 4);
1619 	if (ret) {
1620 		dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1621 		goto failed_ret;
1622 	}
1623 
1624 	/* Get TX FIFO size
1625 	 * Defines the total amount of echo buffers for loopback
1626 	 */
1627 	tx_fifo_size = mram_config_vals[7];
1628 
1629 	/* allocate the m_can device */
1630 	dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1631 	if (!dev) {
1632 		ret = -ENOMEM;
1633 		goto failed_ret;
1634 	}
1635 
1636 	priv = netdev_priv(dev);
1637 	dev->irq = irq;
1638 	priv->device = &pdev->dev;
1639 	priv->hclk = hclk;
1640 	priv->cclk = cclk;
1641 	priv->can.clock.freq = clk_get_rate(cclk);
1642 	priv->mram_base = mram_addr;
1643 
1644 	m_can_of_parse_mram(priv, mram_config_vals);
1645 
1646 	platform_set_drvdata(pdev, dev);
1647 	SET_NETDEV_DEV(dev, &pdev->dev);
1648 
1649 	/* Enable clocks. Necessary to read Core Release in order to determine
1650 	 * M_CAN version
1651 	 */
1652 	pm_runtime_enable(&pdev->dev);
1653 	ret = m_can_clk_start(priv);
1654 	if (ret)
1655 		goto pm_runtime_fail;
1656 
1657 	ret = m_can_dev_setup(pdev, dev, addr);
1658 	if (ret)
1659 		goto clk_disable;
1660 
1661 	ret = register_m_can_dev(dev);
1662 	if (ret) {
1663 		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1664 			KBUILD_MODNAME, ret);
1665 		goto clk_disable;
1666 	}
1667 
1668 	devm_can_led_init(dev);
1669 
1670 	of_can_transceiver(dev);
1671 
1672 	dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1673 		 KBUILD_MODNAME, dev->irq, priv->version);
1674 
1675 	/* Probe finished
1676 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1677 	 */
1678 clk_disable:
1679 	m_can_clk_stop(priv);
1680 pm_runtime_fail:
1681 	if (ret) {
1682 		pm_runtime_disable(&pdev->dev);
1683 		free_candev(dev);
1684 	}
1685 failed_ret:
1686 	return ret;
1687 }
1688 
1689 /* TODO: runtime PM with power down or sleep mode  */
1690 
1691 static __maybe_unused int m_can_suspend(struct device *dev)
1692 {
1693 	struct net_device *ndev = dev_get_drvdata(dev);
1694 	struct m_can_priv *priv = netdev_priv(ndev);
1695 
1696 	if (netif_running(ndev)) {
1697 		netif_stop_queue(ndev);
1698 		netif_device_detach(ndev);
1699 		m_can_stop(ndev);
1700 		m_can_clk_stop(priv);
1701 	}
1702 
1703 	priv->can.state = CAN_STATE_SLEEPING;
1704 
1705 	return 0;
1706 }
1707 
1708 static __maybe_unused int m_can_resume(struct device *dev)
1709 {
1710 	struct net_device *ndev = dev_get_drvdata(dev);
1711 	struct m_can_priv *priv = netdev_priv(ndev);
1712 
1713 	m_can_init_ram(priv);
1714 
1715 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1716 
1717 	if (netif_running(ndev)) {
1718 		int ret;
1719 
1720 		ret = m_can_clk_start(priv);
1721 		if (ret)
1722 			return ret;
1723 
1724 		m_can_start(ndev);
1725 		netif_device_attach(ndev);
1726 		netif_start_queue(ndev);
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static void unregister_m_can_dev(struct net_device *dev)
1733 {
1734 	unregister_candev(dev);
1735 }
1736 
1737 static int m_can_plat_remove(struct platform_device *pdev)
1738 {
1739 	struct net_device *dev = platform_get_drvdata(pdev);
1740 
1741 	unregister_m_can_dev(dev);
1742 
1743 	pm_runtime_disable(&pdev->dev);
1744 
1745 	platform_set_drvdata(pdev, NULL);
1746 
1747 	free_candev(dev);
1748 
1749 	return 0;
1750 }
1751 
1752 static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1753 {
1754 	struct net_device *ndev = dev_get_drvdata(dev);
1755 	struct m_can_priv *priv = netdev_priv(ndev);
1756 
1757 	clk_disable_unprepare(priv->cclk);
1758 	clk_disable_unprepare(priv->hclk);
1759 
1760 	return 0;
1761 }
1762 
1763 static int __maybe_unused m_can_runtime_resume(struct device *dev)
1764 {
1765 	struct net_device *ndev = dev_get_drvdata(dev);
1766 	struct m_can_priv *priv = netdev_priv(ndev);
1767 	int err;
1768 
1769 	err = clk_prepare_enable(priv->hclk);
1770 	if (err)
1771 		return err;
1772 
1773 	err = clk_prepare_enable(priv->cclk);
1774 	if (err)
1775 		clk_disable_unprepare(priv->hclk);
1776 
1777 	return err;
1778 }
1779 
1780 static const struct dev_pm_ops m_can_pmops = {
1781 	SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1782 			   m_can_runtime_resume, NULL)
1783 	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1784 };
1785 
1786 static const struct of_device_id m_can_of_table[] = {
1787 	{ .compatible = "bosch,m_can", .data = NULL },
1788 	{ /* sentinel */ },
1789 };
1790 MODULE_DEVICE_TABLE(of, m_can_of_table);
1791 
1792 static struct platform_driver m_can_plat_driver = {
1793 	.driver = {
1794 		.name = KBUILD_MODNAME,
1795 		.of_match_table = m_can_of_table,
1796 		.pm     = &m_can_pmops,
1797 	},
1798 	.probe = m_can_plat_probe,
1799 	.remove = m_can_plat_remove,
1800 };
1801 
1802 module_platform_driver(m_can_plat_driver);
1803 
1804 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1805 MODULE_LICENSE("GPL v2");
1806 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1807