xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 966a9b49033b472dcfb453abdc34bca7df17adce)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/ethtool.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iopoll.h>
23 #include <linux/can/dev.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/phy/phy.h>
26 
27 #include "m_can.h"
28 
29 /* registers definition */
30 enum m_can_reg {
31 	M_CAN_CREL	= 0x0,
32 	M_CAN_ENDN	= 0x4,
33 	M_CAN_CUST	= 0x8,
34 	M_CAN_DBTP	= 0xc,
35 	M_CAN_TEST	= 0x10,
36 	M_CAN_RWD	= 0x14,
37 	M_CAN_CCCR	= 0x18,
38 	M_CAN_NBTP	= 0x1c,
39 	M_CAN_TSCC	= 0x20,
40 	M_CAN_TSCV	= 0x24,
41 	M_CAN_TOCC	= 0x28,
42 	M_CAN_TOCV	= 0x2c,
43 	M_CAN_ECR	= 0x40,
44 	M_CAN_PSR	= 0x44,
45 	/* TDCR Register only available for version >=3.1.x */
46 	M_CAN_TDCR	= 0x48,
47 	M_CAN_IR	= 0x50,
48 	M_CAN_IE	= 0x54,
49 	M_CAN_ILS	= 0x58,
50 	M_CAN_ILE	= 0x5c,
51 	M_CAN_GFC	= 0x80,
52 	M_CAN_SIDFC	= 0x84,
53 	M_CAN_XIDFC	= 0x88,
54 	M_CAN_XIDAM	= 0x90,
55 	M_CAN_HPMS	= 0x94,
56 	M_CAN_NDAT1	= 0x98,
57 	M_CAN_NDAT2	= 0x9c,
58 	M_CAN_RXF0C	= 0xa0,
59 	M_CAN_RXF0S	= 0xa4,
60 	M_CAN_RXF0A	= 0xa8,
61 	M_CAN_RXBC	= 0xac,
62 	M_CAN_RXF1C	= 0xb0,
63 	M_CAN_RXF1S	= 0xb4,
64 	M_CAN_RXF1A	= 0xb8,
65 	M_CAN_RXESC	= 0xbc,
66 	M_CAN_TXBC	= 0xc0,
67 	M_CAN_TXFQS	= 0xc4,
68 	M_CAN_TXESC	= 0xc8,
69 	M_CAN_TXBRP	= 0xcc,
70 	M_CAN_TXBAR	= 0xd0,
71 	M_CAN_TXBCR	= 0xd4,
72 	M_CAN_TXBTO	= 0xd8,
73 	M_CAN_TXBCF	= 0xdc,
74 	M_CAN_TXBTIE	= 0xe0,
75 	M_CAN_TXBCIE	= 0xe4,
76 	M_CAN_TXEFC	= 0xf0,
77 	M_CAN_TXEFS	= 0xf4,
78 	M_CAN_TXEFA	= 0xf8,
79 };
80 
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN	8
83 
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK		GENMASK(31, 28)
86 #define CREL_STEP_MASK		GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
88 
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC		BIT(23)
91 #define DBTP_DBRP_MASK		GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
94 #define DBTP_DSJW_MASK		GENMASK(3, 0)
95 
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK		GENMASK(14, 8)
98 #define TDCR_TDCF_MASK		GENMASK(6, 0)
99 
100 /* Test Register (TEST) */
101 #define TEST_LBCK		BIT(4)
102 
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP		BIT(14)
105 #define CCCR_TEST		BIT(7)
106 #define CCCR_DAR		BIT(6)
107 #define CCCR_MON		BIT(5)
108 #define CCCR_CSR		BIT(4)
109 #define CCCR_CSA		BIT(3)
110 #define CCCR_ASM		BIT(2)
111 #define CCCR_CCE		BIT(1)
112 #define CCCR_INIT		BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK		GENMASK(11, 10)
115 #define CCCR_CMR_CANFD		0x1
116 #define CCCR_CMR_CANFD_BRS	0x2
117 #define CCCR_CMR_CAN		0x3
118 #define CCCR_CME_MASK		GENMASK(9, 8)
119 #define CCCR_CME_CAN		0
120 #define CCCR_CME_CANFD		0x1
121 #define CCCR_CME_CANFD_BRS	0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI		BIT(13)
124 #define CCCR_PXHD		BIT(12)
125 #define CCCR_BRSE		BIT(9)
126 #define CCCR_FDOE		BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO		BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM		BIT(11)
131 #define CCCR_UTSU		BIT(10)
132 
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK		GENMASK(31, 25)
135 #define NBTP_NBRP_MASK		GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
138 
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK		GENMASK(19, 16)
141 #define TSCC_TSS_MASK		GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE	0x0
143 #define TSCC_TSS_INTERNAL	0x1
144 #define TSCC_TSS_EXTERNAL	0x2
145 
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK		GENMASK(15, 0)
148 
149 /* Error Counter Register (ECR) */
150 #define ECR_RP			BIT(15)
151 #define ECR_REC_MASK		GENMASK(14, 8)
152 #define ECR_TEC_MASK		GENMASK(7, 0)
153 
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO		BIT(7)
156 #define PSR_EW		BIT(6)
157 #define PSR_EP		BIT(5)
158 #define PSR_LEC_MASK	GENMASK(2, 0)
159 #define PSR_DLEC_MASK	GENMASK(10, 8)
160 
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT	0xffffffff
163 
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA		BIT(29)
166 #define IR_PED		BIT(28)
167 #define IR_PEA		BIT(27)
168 
169 /* Bits for version 3.0.x */
170 #define IR_STE		BIT(31)
171 #define IR_FOE		BIT(30)
172 #define IR_ACKE		BIT(29)
173 #define IR_BE		BIT(28)
174 #define IR_CRCE		BIT(27)
175 #define IR_WDI		BIT(26)
176 #define IR_BO		BIT(25)
177 #define IR_EW		BIT(24)
178 #define IR_EP		BIT(23)
179 #define IR_ELO		BIT(22)
180 #define IR_BEU		BIT(21)
181 #define IR_BEC		BIT(20)
182 #define IR_DRX		BIT(19)
183 #define IR_TOO		BIT(18)
184 #define IR_MRAF		BIT(17)
185 #define IR_TSW		BIT(16)
186 #define IR_TEFL		BIT(15)
187 #define IR_TEFF		BIT(14)
188 #define IR_TEFW		BIT(13)
189 #define IR_TEFN		BIT(12)
190 #define IR_TFE		BIT(11)
191 #define IR_TCF		BIT(10)
192 #define IR_TC		BIT(9)
193 #define IR_HPM		BIT(8)
194 #define IR_RF1L		BIT(7)
195 #define IR_RF1F		BIT(6)
196 #define IR_RF1W		BIT(5)
197 #define IR_RF1N		BIT(4)
198 #define IR_RF0L		BIT(3)
199 #define IR_RF0F		BIT(2)
200 #define IR_RF0W		BIT(1)
201 #define IR_RF0N		BIT(0)
202 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203 
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 			 IR_RF0L)
209 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210 
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 			 IR_RF0L)
216 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217 
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0	0x0
220 #define ILS_ALL_INT1	0xFFFFFFFF
221 
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1	BIT(1)
224 #define ILE_EINT0	BIT(0)
225 
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK	GENMASK(30, 24)
228 #define RXFC_FS_MASK	GENMASK(22, 16)
229 
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL	BIT(25)
232 #define RXFS_FF		BIT(24)
233 #define RXFS_FPI_MASK	GENMASK(21, 16)
234 #define RXFS_FGI_MASK	GENMASK(13, 8)
235 #define RXFS_FFL_MASK	GENMASK(6, 0)
236 
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK		GENMASK(10, 8)
239 #define RXESC_F1DS_MASK		GENMASK(6, 4)
240 #define RXESC_F0DS_MASK		GENMASK(2, 0)
241 #define RXESC_64B		0x7
242 
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK		GENMASK(29, 24)
245 #define TXBC_NDTB_MASK		GENMASK(21, 16)
246 
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF		BIT(21)
249 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252 
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK		GENMASK(2, 0)
255 #define TXESC_TBDS_64B		0x7
256 
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFS_MASK		GENMASK(21, 16)
259 
260 /* Tx Event FIFO Status (TXEFS) */
261 #define TXEFS_TEFL		BIT(25)
262 #define TXEFS_EFF		BIT(24)
263 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
264 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
265 
266 /* Tx Event FIFO Acknowledge (TXEFA) */
267 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
268 
269 /* Message RAM Configuration (in bytes) */
270 #define SIDF_ELEMENT_SIZE	4
271 #define XIDF_ELEMENT_SIZE	8
272 #define RXF0_ELEMENT_SIZE	72
273 #define RXF1_ELEMENT_SIZE	72
274 #define RXB_ELEMENT_SIZE	72
275 #define TXE_ELEMENT_SIZE	8
276 #define TXB_ELEMENT_SIZE	72
277 
278 /* Message RAM Elements */
279 #define M_CAN_FIFO_ID		0x0
280 #define M_CAN_FIFO_DLC		0x4
281 #define M_CAN_FIFO_DATA		0x8
282 
283 /* Rx Buffer Element */
284 /* R0 */
285 #define RX_BUF_ESI		BIT(31)
286 #define RX_BUF_XTD		BIT(30)
287 #define RX_BUF_RTR		BIT(29)
288 /* R1 */
289 #define RX_BUF_ANMF		BIT(31)
290 #define RX_BUF_FDF		BIT(21)
291 #define RX_BUF_BRS		BIT(20)
292 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
293 
294 /* Tx Buffer Element */
295 /* T0 */
296 #define TX_BUF_ESI		BIT(31)
297 #define TX_BUF_XTD		BIT(30)
298 #define TX_BUF_RTR		BIT(29)
299 /* T1 */
300 #define TX_BUF_EFC		BIT(23)
301 #define TX_BUF_FDF		BIT(21)
302 #define TX_BUF_BRS		BIT(20)
303 #define TX_BUF_MM_MASK		GENMASK(31, 24)
304 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
305 
306 /* Tx event FIFO Element */
307 /* E1 */
308 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
309 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
310 
311 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
312  * and we can save a (potentially slow) bus round trip by combining
313  * reads and writes to them.
314  */
315 struct id_and_dlc {
316 	u32 id;
317 	u32 dlc;
318 };
319 
320 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
321 {
322 	return cdev->ops->read_reg(cdev, reg);
323 }
324 
325 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
326 			       u32 val)
327 {
328 	cdev->ops->write_reg(cdev, reg, val);
329 }
330 
331 static int
332 m_can_fifo_read(struct m_can_classdev *cdev,
333 		u32 fgi, unsigned int offset, void *val, size_t val_count)
334 {
335 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
336 		offset;
337 
338 	if (val_count == 0)
339 		return 0;
340 
341 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
342 }
343 
344 static int
345 m_can_fifo_write(struct m_can_classdev *cdev,
346 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
347 {
348 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
349 		offset;
350 
351 	if (val_count == 0)
352 		return 0;
353 
354 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
355 }
356 
357 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
358 					  u32 fpi, u32 val)
359 {
360 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
361 }
362 
363 static int
364 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
365 {
366 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
367 		offset;
368 
369 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
370 }
371 
372 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
373 {
374 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
375 }
376 
377 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
378 {
379 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
380 	u32 timeout = 10;
381 	u32 val = 0;
382 
383 	/* Clear the Clock stop request if it was set */
384 	if (cccr & CCCR_CSR)
385 		cccr &= ~CCCR_CSR;
386 
387 	if (enable) {
388 		/* enable m_can configuration */
389 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
390 		udelay(5);
391 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
392 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
393 	} else {
394 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
395 	}
396 
397 	/* there's a delay for module initialization */
398 	if (enable)
399 		val = CCCR_INIT | CCCR_CCE;
400 
401 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
402 		if (timeout == 0) {
403 			netdev_warn(cdev->net, "Failed to init module\n");
404 			return;
405 		}
406 		timeout--;
407 		udelay(1);
408 	}
409 }
410 
411 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
412 {
413 	/* Only interrupt line 0 is used in this driver */
414 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
415 }
416 
417 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
418 {
419 	m_can_write(cdev, M_CAN_ILE, 0x0);
420 }
421 
422 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
423  * width.
424  */
425 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
426 {
427 	u32 tscv;
428 	u32 tsc;
429 
430 	tscv = m_can_read(cdev, M_CAN_TSCV);
431 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
432 
433 	return (tsc << 16);
434 }
435 
436 static void m_can_clean(struct net_device *net)
437 {
438 	struct m_can_classdev *cdev = netdev_priv(net);
439 
440 	if (cdev->tx_skb) {
441 		int putidx = 0;
442 
443 		net->stats.tx_errors++;
444 		if (cdev->version > 30)
445 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
446 					   m_can_read(cdev, M_CAN_TXFQS));
447 
448 		can_free_echo_skb(cdev->net, putidx, NULL);
449 		cdev->tx_skb = NULL;
450 	}
451 }
452 
453 /* For peripherals, pass skb to rx-offload, which will push skb from
454  * napi. For non-peripherals, RX is done in napi already, so push
455  * directly. timestamp is used to ensure good skb ordering in
456  * rx-offload and is ignored for non-peripherals.
457  */
458 static void m_can_receive_skb(struct m_can_classdev *cdev,
459 			      struct sk_buff *skb,
460 			      u32 timestamp)
461 {
462 	if (cdev->is_peripheral) {
463 		struct net_device_stats *stats = &cdev->net->stats;
464 		int err;
465 
466 		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
467 						  timestamp);
468 		if (err)
469 			stats->rx_fifo_errors++;
470 	} else {
471 		netif_receive_skb(skb);
472 	}
473 }
474 
475 static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
476 {
477 	struct net_device_stats *stats = &dev->stats;
478 	struct m_can_classdev *cdev = netdev_priv(dev);
479 	struct canfd_frame *cf;
480 	struct sk_buff *skb;
481 	struct id_and_dlc fifo_header;
482 	u32 fgi;
483 	u32 timestamp = 0;
484 	int err;
485 
486 	/* calculate the fifo get index for where to read data */
487 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
488 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
489 	if (err)
490 		goto out_fail;
491 
492 	if (fifo_header.dlc & RX_BUF_FDF)
493 		skb = alloc_canfd_skb(dev, &cf);
494 	else
495 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
496 	if (!skb) {
497 		stats->rx_dropped++;
498 		return 0;
499 	}
500 
501 	if (fifo_header.dlc & RX_BUF_FDF)
502 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
503 	else
504 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
505 
506 	if (fifo_header.id & RX_BUF_XTD)
507 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
508 	else
509 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
510 
511 	if (fifo_header.id & RX_BUF_ESI) {
512 		cf->flags |= CANFD_ESI;
513 		netdev_dbg(dev, "ESI Error\n");
514 	}
515 
516 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
517 		cf->can_id |= CAN_RTR_FLAG;
518 	} else {
519 		if (fifo_header.dlc & RX_BUF_BRS)
520 			cf->flags |= CANFD_BRS;
521 
522 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
523 				      cf->data, DIV_ROUND_UP(cf->len, 4));
524 		if (err)
525 			goto out_free_skb;
526 
527 		stats->rx_bytes += cf->len;
528 	}
529 	stats->rx_packets++;
530 
531 	/* acknowledge rx fifo 0 */
532 	m_can_write(cdev, M_CAN_RXF0A, fgi);
533 
534 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
535 
536 	m_can_receive_skb(cdev, skb, timestamp);
537 
538 	return 0;
539 
540 out_free_skb:
541 	kfree_skb(skb);
542 out_fail:
543 	netdev_err(dev, "FIFO read returned %d\n", err);
544 	return err;
545 }
546 
547 static int m_can_do_rx_poll(struct net_device *dev, int quota)
548 {
549 	struct m_can_classdev *cdev = netdev_priv(dev);
550 	u32 pkts = 0;
551 	u32 rxfs;
552 	int err;
553 
554 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
555 	if (!(rxfs & RXFS_FFL_MASK)) {
556 		netdev_dbg(dev, "no messages in fifo0\n");
557 		return 0;
558 	}
559 
560 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
561 		err = m_can_read_fifo(dev, rxfs);
562 		if (err)
563 			return err;
564 
565 		quota--;
566 		pkts++;
567 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
568 	}
569 
570 	return pkts;
571 }
572 
573 static int m_can_handle_lost_msg(struct net_device *dev)
574 {
575 	struct m_can_classdev *cdev = netdev_priv(dev);
576 	struct net_device_stats *stats = &dev->stats;
577 	struct sk_buff *skb;
578 	struct can_frame *frame;
579 	u32 timestamp = 0;
580 
581 	netdev_err(dev, "msg lost in rxf0\n");
582 
583 	stats->rx_errors++;
584 	stats->rx_over_errors++;
585 
586 	skb = alloc_can_err_skb(dev, &frame);
587 	if (unlikely(!skb))
588 		return 0;
589 
590 	frame->can_id |= CAN_ERR_CRTL;
591 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
592 
593 	if (cdev->is_peripheral)
594 		timestamp = m_can_get_timestamp(cdev);
595 
596 	m_can_receive_skb(cdev, skb, timestamp);
597 
598 	return 1;
599 }
600 
601 static int m_can_handle_lec_err(struct net_device *dev,
602 				enum m_can_lec_type lec_type)
603 {
604 	struct m_can_classdev *cdev = netdev_priv(dev);
605 	struct net_device_stats *stats = &dev->stats;
606 	struct can_frame *cf;
607 	struct sk_buff *skb;
608 	u32 timestamp = 0;
609 
610 	cdev->can.can_stats.bus_error++;
611 	stats->rx_errors++;
612 
613 	/* propagate the error condition to the CAN stack */
614 	skb = alloc_can_err_skb(dev, &cf);
615 	if (unlikely(!skb))
616 		return 0;
617 
618 	/* check for 'last error code' which tells us the
619 	 * type of the last error to occur on the CAN bus
620 	 */
621 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
622 
623 	switch (lec_type) {
624 	case LEC_STUFF_ERROR:
625 		netdev_dbg(dev, "stuff error\n");
626 		cf->data[2] |= CAN_ERR_PROT_STUFF;
627 		break;
628 	case LEC_FORM_ERROR:
629 		netdev_dbg(dev, "form error\n");
630 		cf->data[2] |= CAN_ERR_PROT_FORM;
631 		break;
632 	case LEC_ACK_ERROR:
633 		netdev_dbg(dev, "ack error\n");
634 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
635 		break;
636 	case LEC_BIT1_ERROR:
637 		netdev_dbg(dev, "bit1 error\n");
638 		cf->data[2] |= CAN_ERR_PROT_BIT1;
639 		break;
640 	case LEC_BIT0_ERROR:
641 		netdev_dbg(dev, "bit0 error\n");
642 		cf->data[2] |= CAN_ERR_PROT_BIT0;
643 		break;
644 	case LEC_CRC_ERROR:
645 		netdev_dbg(dev, "CRC error\n");
646 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
647 		break;
648 	default:
649 		break;
650 	}
651 
652 	if (cdev->is_peripheral)
653 		timestamp = m_can_get_timestamp(cdev);
654 
655 	m_can_receive_skb(cdev, skb, timestamp);
656 
657 	return 1;
658 }
659 
660 static int __m_can_get_berr_counter(const struct net_device *dev,
661 				    struct can_berr_counter *bec)
662 {
663 	struct m_can_classdev *cdev = netdev_priv(dev);
664 	unsigned int ecr;
665 
666 	ecr = m_can_read(cdev, M_CAN_ECR);
667 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
668 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
669 
670 	return 0;
671 }
672 
673 static int m_can_clk_start(struct m_can_classdev *cdev)
674 {
675 	if (cdev->pm_clock_support == 0)
676 		return 0;
677 
678 	return pm_runtime_resume_and_get(cdev->dev);
679 }
680 
681 static void m_can_clk_stop(struct m_can_classdev *cdev)
682 {
683 	if (cdev->pm_clock_support)
684 		pm_runtime_put_sync(cdev->dev);
685 }
686 
687 static int m_can_get_berr_counter(const struct net_device *dev,
688 				  struct can_berr_counter *bec)
689 {
690 	struct m_can_classdev *cdev = netdev_priv(dev);
691 	int err;
692 
693 	err = m_can_clk_start(cdev);
694 	if (err)
695 		return err;
696 
697 	__m_can_get_berr_counter(dev, bec);
698 
699 	m_can_clk_stop(cdev);
700 
701 	return 0;
702 }
703 
704 static int m_can_handle_state_change(struct net_device *dev,
705 				     enum can_state new_state)
706 {
707 	struct m_can_classdev *cdev = netdev_priv(dev);
708 	struct can_frame *cf;
709 	struct sk_buff *skb;
710 	struct can_berr_counter bec;
711 	unsigned int ecr;
712 	u32 timestamp = 0;
713 
714 	switch (new_state) {
715 	case CAN_STATE_ERROR_WARNING:
716 		/* error warning state */
717 		cdev->can.can_stats.error_warning++;
718 		cdev->can.state = CAN_STATE_ERROR_WARNING;
719 		break;
720 	case CAN_STATE_ERROR_PASSIVE:
721 		/* error passive state */
722 		cdev->can.can_stats.error_passive++;
723 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
724 		break;
725 	case CAN_STATE_BUS_OFF:
726 		/* bus-off state */
727 		cdev->can.state = CAN_STATE_BUS_OFF;
728 		m_can_disable_all_interrupts(cdev);
729 		cdev->can.can_stats.bus_off++;
730 		can_bus_off(dev);
731 		break;
732 	default:
733 		break;
734 	}
735 
736 	/* propagate the error condition to the CAN stack */
737 	skb = alloc_can_err_skb(dev, &cf);
738 	if (unlikely(!skb))
739 		return 0;
740 
741 	__m_can_get_berr_counter(dev, &bec);
742 
743 	switch (new_state) {
744 	case CAN_STATE_ERROR_WARNING:
745 		/* error warning state */
746 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
747 		cf->data[1] = (bec.txerr > bec.rxerr) ?
748 			CAN_ERR_CRTL_TX_WARNING :
749 			CAN_ERR_CRTL_RX_WARNING;
750 		cf->data[6] = bec.txerr;
751 		cf->data[7] = bec.rxerr;
752 		break;
753 	case CAN_STATE_ERROR_PASSIVE:
754 		/* error passive state */
755 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
756 		ecr = m_can_read(cdev, M_CAN_ECR);
757 		if (ecr & ECR_RP)
758 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
759 		if (bec.txerr > 127)
760 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
761 		cf->data[6] = bec.txerr;
762 		cf->data[7] = bec.rxerr;
763 		break;
764 	case CAN_STATE_BUS_OFF:
765 		/* bus-off state */
766 		cf->can_id |= CAN_ERR_BUSOFF;
767 		break;
768 	default:
769 		break;
770 	}
771 
772 	if (cdev->is_peripheral)
773 		timestamp = m_can_get_timestamp(cdev);
774 
775 	m_can_receive_skb(cdev, skb, timestamp);
776 
777 	return 1;
778 }
779 
780 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
781 {
782 	struct m_can_classdev *cdev = netdev_priv(dev);
783 	int work_done = 0;
784 
785 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
786 		netdev_dbg(dev, "entered error warning state\n");
787 		work_done += m_can_handle_state_change(dev,
788 						       CAN_STATE_ERROR_WARNING);
789 	}
790 
791 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
792 		netdev_dbg(dev, "entered error passive state\n");
793 		work_done += m_can_handle_state_change(dev,
794 						       CAN_STATE_ERROR_PASSIVE);
795 	}
796 
797 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
798 		netdev_dbg(dev, "entered error bus off state\n");
799 		work_done += m_can_handle_state_change(dev,
800 						       CAN_STATE_BUS_OFF);
801 	}
802 
803 	return work_done;
804 }
805 
806 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
807 {
808 	if (irqstatus & IR_WDI)
809 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
810 	if (irqstatus & IR_BEU)
811 		netdev_err(dev, "Bit Error Uncorrected\n");
812 	if (irqstatus & IR_BEC)
813 		netdev_err(dev, "Bit Error Corrected\n");
814 	if (irqstatus & IR_TOO)
815 		netdev_err(dev, "Timeout reached\n");
816 	if (irqstatus & IR_MRAF)
817 		netdev_err(dev, "Message RAM access failure occurred\n");
818 }
819 
820 static inline bool is_lec_err(u8 lec)
821 {
822 	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
823 }
824 
825 static inline bool m_can_is_protocol_err(u32 irqstatus)
826 {
827 	return irqstatus & IR_ERR_LEC_31X;
828 }
829 
830 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
831 {
832 	struct net_device_stats *stats = &dev->stats;
833 	struct m_can_classdev *cdev = netdev_priv(dev);
834 	struct can_frame *cf;
835 	struct sk_buff *skb;
836 	u32 timestamp = 0;
837 
838 	/* propagate the error condition to the CAN stack */
839 	skb = alloc_can_err_skb(dev, &cf);
840 
841 	/* update tx error stats since there is protocol error */
842 	stats->tx_errors++;
843 
844 	/* update arbitration lost status */
845 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
846 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
847 		cdev->can.can_stats.arbitration_lost++;
848 		if (skb) {
849 			cf->can_id |= CAN_ERR_LOSTARB;
850 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
851 		}
852 	}
853 
854 	if (unlikely(!skb)) {
855 		netdev_dbg(dev, "allocation of skb failed\n");
856 		return 0;
857 	}
858 
859 	if (cdev->is_peripheral)
860 		timestamp = m_can_get_timestamp(cdev);
861 
862 	m_can_receive_skb(cdev, skb, timestamp);
863 
864 	return 1;
865 }
866 
867 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
868 				   u32 psr)
869 {
870 	struct m_can_classdev *cdev = netdev_priv(dev);
871 	int work_done = 0;
872 
873 	if (irqstatus & IR_RF0L)
874 		work_done += m_can_handle_lost_msg(dev);
875 
876 	/* handle lec errors on the bus */
877 	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
878 		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
879 		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
880 
881 		if (is_lec_err(lec)) {
882 			netdev_dbg(dev, "Arbitration phase error detected\n");
883 			work_done += m_can_handle_lec_err(dev, lec);
884 		}
885 
886 		if (is_lec_err(dlec)) {
887 			netdev_dbg(dev, "Data phase error detected\n");
888 			work_done += m_can_handle_lec_err(dev, dlec);
889 		}
890 	}
891 
892 	/* handle protocol errors in arbitration phase */
893 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
894 	    m_can_is_protocol_err(irqstatus))
895 		work_done += m_can_handle_protocol_error(dev, irqstatus);
896 
897 	/* other unproccessed error interrupts */
898 	m_can_handle_other_err(dev, irqstatus);
899 
900 	return work_done;
901 }
902 
903 static int m_can_rx_handler(struct net_device *dev, int quota)
904 {
905 	struct m_can_classdev *cdev = netdev_priv(dev);
906 	int rx_work_or_err;
907 	int work_done = 0;
908 	u32 irqstatus, psr;
909 
910 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
911 	if (!irqstatus)
912 		goto end;
913 
914 	/* Errata workaround for issue "Needless activation of MRAF irq"
915 	 * During frame reception while the MCAN is in Error Passive state
916 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
917 	 * it may happen that MCAN_IR.MRAF is set although there was no
918 	 * Message RAM access failure.
919 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
920 	 * The Message RAM Access Failure interrupt routine needs to check
921 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
922 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
923 	 */
924 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
925 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
926 		struct can_berr_counter bec;
927 
928 		__m_can_get_berr_counter(dev, &bec);
929 		if (bec.rxerr == 127) {
930 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
931 			irqstatus &= ~IR_MRAF;
932 		}
933 	}
934 
935 	psr = m_can_read(cdev, M_CAN_PSR);
936 
937 	if (irqstatus & IR_ERR_STATE)
938 		work_done += m_can_handle_state_errors(dev, psr);
939 
940 	if (irqstatus & IR_ERR_BUS_30X)
941 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
942 
943 	if (irqstatus & IR_RF0N) {
944 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
945 		if (rx_work_or_err < 0)
946 			return rx_work_or_err;
947 
948 		work_done += rx_work_or_err;
949 	}
950 end:
951 	return work_done;
952 }
953 
954 static int m_can_rx_peripheral(struct net_device *dev)
955 {
956 	struct m_can_classdev *cdev = netdev_priv(dev);
957 	int work_done;
958 
959 	work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT);
960 
961 	/* Don't re-enable interrupts if the driver had a fatal error
962 	 * (e.g., FIFO read failure).
963 	 */
964 	if (work_done >= 0)
965 		m_can_enable_all_interrupts(cdev);
966 
967 	return work_done;
968 }
969 
970 static int m_can_poll(struct napi_struct *napi, int quota)
971 {
972 	struct net_device *dev = napi->dev;
973 	struct m_can_classdev *cdev = netdev_priv(dev);
974 	int work_done;
975 
976 	work_done = m_can_rx_handler(dev, quota);
977 
978 	/* Don't re-enable interrupts if the driver had a fatal error
979 	 * (e.g., FIFO read failure).
980 	 */
981 	if (work_done >= 0 && work_done < quota) {
982 		napi_complete_done(napi, work_done);
983 		m_can_enable_all_interrupts(cdev);
984 	}
985 
986 	return work_done;
987 }
988 
989 /* Echo tx skb and update net stats. Peripherals use rx-offload for
990  * echo. timestamp is used for peripherals to ensure correct ordering
991  * by rx-offload, and is ignored for non-peripherals.
992  */
993 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
994 				  unsigned int msg_mark,
995 				  u32 timestamp)
996 {
997 	struct net_device *dev = cdev->net;
998 	struct net_device_stats *stats = &dev->stats;
999 
1000 	if (cdev->is_peripheral)
1001 		stats->tx_bytes +=
1002 			can_rx_offload_get_echo_skb(&cdev->offload,
1003 						    msg_mark,
1004 						    timestamp,
1005 						    NULL);
1006 	else
1007 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1008 
1009 	stats->tx_packets++;
1010 }
1011 
1012 static int m_can_echo_tx_event(struct net_device *dev)
1013 {
1014 	u32 txe_count = 0;
1015 	u32 m_can_txefs;
1016 	u32 fgi = 0;
1017 	int i = 0;
1018 	unsigned int msg_mark;
1019 
1020 	struct m_can_classdev *cdev = netdev_priv(dev);
1021 
1022 	/* read tx event fifo status */
1023 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1024 
1025 	/* Get Tx Event fifo element count */
1026 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1027 
1028 	/* Get and process all sent elements */
1029 	for (i = 0; i < txe_count; i++) {
1030 		u32 txe, timestamp = 0;
1031 		int err;
1032 
1033 		/* retrieve get index */
1034 		fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1035 
1036 		/* get message marker, timestamp */
1037 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1038 		if (err) {
1039 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1040 			return err;
1041 		}
1042 
1043 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1044 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1045 
1046 		/* ack txe element */
1047 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1048 							  fgi));
1049 
1050 		/* update stats */
1051 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static irqreturn_t m_can_isr(int irq, void *dev_id)
1058 {
1059 	struct net_device *dev = (struct net_device *)dev_id;
1060 	struct m_can_classdev *cdev = netdev_priv(dev);
1061 	u32 ir;
1062 
1063 	if (pm_runtime_suspended(cdev->dev))
1064 		return IRQ_NONE;
1065 	ir = m_can_read(cdev, M_CAN_IR);
1066 	if (!ir)
1067 		return IRQ_NONE;
1068 
1069 	/* ACK all irqs */
1070 	if (ir & IR_ALL_INT)
1071 		m_can_write(cdev, M_CAN_IR, ir);
1072 
1073 	if (cdev->ops->clear_interrupts)
1074 		cdev->ops->clear_interrupts(cdev);
1075 
1076 	/* schedule NAPI in case of
1077 	 * - rx IRQ
1078 	 * - state change IRQ
1079 	 * - bus error IRQ and bus error reporting
1080 	 */
1081 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1082 		cdev->irqstatus = ir;
1083 		m_can_disable_all_interrupts(cdev);
1084 		if (!cdev->is_peripheral)
1085 			napi_schedule(&cdev->napi);
1086 		else if (m_can_rx_peripheral(dev) < 0)
1087 			goto out_fail;
1088 	}
1089 
1090 	if (cdev->version == 30) {
1091 		if (ir & IR_TC) {
1092 			/* Transmission Complete Interrupt*/
1093 			u32 timestamp = 0;
1094 
1095 			if (cdev->is_peripheral)
1096 				timestamp = m_can_get_timestamp(cdev);
1097 			m_can_tx_update_stats(cdev, 0, timestamp);
1098 			netif_wake_queue(dev);
1099 		}
1100 	} else  {
1101 		if (ir & IR_TEFN) {
1102 			/* New TX FIFO Element arrived */
1103 			if (m_can_echo_tx_event(dev) != 0)
1104 				goto out_fail;
1105 
1106 			if (netif_queue_stopped(dev) &&
1107 			    !m_can_tx_fifo_full(cdev))
1108 				netif_wake_queue(dev);
1109 		}
1110 	}
1111 
1112 	if (cdev->is_peripheral)
1113 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1114 
1115 	return IRQ_HANDLED;
1116 
1117 out_fail:
1118 	m_can_disable_all_interrupts(cdev);
1119 	return IRQ_HANDLED;
1120 }
1121 
1122 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1123 	.name = KBUILD_MODNAME,
1124 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1125 	.tseg1_max = 64,
1126 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1127 	.tseg2_max = 16,
1128 	.sjw_max = 16,
1129 	.brp_min = 1,
1130 	.brp_max = 1024,
1131 	.brp_inc = 1,
1132 };
1133 
1134 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1135 	.name = KBUILD_MODNAME,
1136 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1137 	.tseg1_max = 16,
1138 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1139 	.tseg2_max = 8,
1140 	.sjw_max = 4,
1141 	.brp_min = 1,
1142 	.brp_max = 32,
1143 	.brp_inc = 1,
1144 };
1145 
1146 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1147 	.name = KBUILD_MODNAME,
1148 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1149 	.tseg1_max = 256,
1150 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1151 	.tseg2_max = 128,
1152 	.sjw_max = 128,
1153 	.brp_min = 1,
1154 	.brp_max = 512,
1155 	.brp_inc = 1,
1156 };
1157 
1158 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1159 	.name = KBUILD_MODNAME,
1160 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1161 	.tseg1_max = 32,
1162 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1163 	.tseg2_max = 16,
1164 	.sjw_max = 16,
1165 	.brp_min = 1,
1166 	.brp_max = 32,
1167 	.brp_inc = 1,
1168 };
1169 
1170 static int m_can_set_bittiming(struct net_device *dev)
1171 {
1172 	struct m_can_classdev *cdev = netdev_priv(dev);
1173 	const struct can_bittiming *bt = &cdev->can.bittiming;
1174 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1175 	u16 brp, sjw, tseg1, tseg2;
1176 	u32 reg_btp;
1177 
1178 	brp = bt->brp - 1;
1179 	sjw = bt->sjw - 1;
1180 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1181 	tseg2 = bt->phase_seg2 - 1;
1182 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1183 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1184 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1185 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1186 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1187 
1188 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1189 		reg_btp = 0;
1190 		brp = dbt->brp - 1;
1191 		sjw = dbt->sjw - 1;
1192 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1193 		tseg2 = dbt->phase_seg2 - 1;
1194 
1195 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1196 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1197 		 * paper presented at the International CAN Conference 2013
1198 		 */
1199 		if (dbt->bitrate > 2500000) {
1200 			u32 tdco, ssp;
1201 
1202 			/* Use the same value of secondary sampling point
1203 			 * as the data sampling point
1204 			 */
1205 			ssp = dbt->sample_point;
1206 
1207 			/* Equation based on Bosch's M_CAN User Manual's
1208 			 * Transmitter Delay Compensation Section
1209 			 */
1210 			tdco = (cdev->can.clock.freq / 1000) *
1211 				ssp / dbt->bitrate;
1212 
1213 			/* Max valid TDCO value is 127 */
1214 			if (tdco > 127) {
1215 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1216 					    tdco);
1217 				tdco = 127;
1218 			}
1219 
1220 			reg_btp |= DBTP_TDC;
1221 			m_can_write(cdev, M_CAN_TDCR,
1222 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1223 		}
1224 
1225 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1226 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1227 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1228 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1229 
1230 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 /* Configure M_CAN chip:
1237  * - set rx buffer/fifo element size
1238  * - configure rx fifo
1239  * - accept non-matching frame into fifo 0
1240  * - configure tx buffer
1241  *		- >= v3.1.x: TX FIFO is used
1242  * - configure mode
1243  * - setup bittiming
1244  * - configure timestamp generation
1245  */
1246 static void m_can_chip_config(struct net_device *dev)
1247 {
1248 	struct m_can_classdev *cdev = netdev_priv(dev);
1249 	u32 cccr, test;
1250 
1251 	m_can_config_endisable(cdev, true);
1252 
1253 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1254 	m_can_write(cdev, M_CAN_RXESC,
1255 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1256 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1257 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1258 
1259 	/* Accept Non-matching Frames Into FIFO 0 */
1260 	m_can_write(cdev, M_CAN_GFC, 0x0);
1261 
1262 	if (cdev->version == 30) {
1263 		/* only support one Tx Buffer currently */
1264 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1265 			    cdev->mcfg[MRAM_TXB].off);
1266 	} else {
1267 		/* TX FIFO is used for newer IP Core versions */
1268 		m_can_write(cdev, M_CAN_TXBC,
1269 			    FIELD_PREP(TXBC_TFQS_MASK,
1270 				       cdev->mcfg[MRAM_TXB].num) |
1271 			    cdev->mcfg[MRAM_TXB].off);
1272 	}
1273 
1274 	/* support 64 bytes payload */
1275 	m_can_write(cdev, M_CAN_TXESC,
1276 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1277 
1278 	/* TX Event FIFO */
1279 	if (cdev->version == 30) {
1280 		m_can_write(cdev, M_CAN_TXEFC,
1281 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1282 			    cdev->mcfg[MRAM_TXE].off);
1283 	} else {
1284 		/* Full TX Event FIFO is used */
1285 		m_can_write(cdev, M_CAN_TXEFC,
1286 			    FIELD_PREP(TXEFC_EFS_MASK,
1287 				       cdev->mcfg[MRAM_TXE].num) |
1288 			    cdev->mcfg[MRAM_TXE].off);
1289 	}
1290 
1291 	/* rx fifo configuration, blocking mode, fifo size 1 */
1292 	m_can_write(cdev, M_CAN_RXF0C,
1293 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1294 		    cdev->mcfg[MRAM_RXF0].off);
1295 
1296 	m_can_write(cdev, M_CAN_RXF1C,
1297 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1298 		    cdev->mcfg[MRAM_RXF1].off);
1299 
1300 	cccr = m_can_read(cdev, M_CAN_CCCR);
1301 	test = m_can_read(cdev, M_CAN_TEST);
1302 	test &= ~TEST_LBCK;
1303 	if (cdev->version == 30) {
1304 		/* Version 3.0.x */
1305 
1306 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1307 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1308 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1309 
1310 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1311 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1312 
1313 	} else {
1314 		/* Version 3.1.x or 3.2.x */
1315 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1316 			  CCCR_NISO | CCCR_DAR);
1317 
1318 		/* Only 3.2.x has NISO Bit implemented */
1319 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1320 			cccr |= CCCR_NISO;
1321 
1322 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1323 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1324 	}
1325 
1326 	/* Loopback Mode */
1327 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1328 		cccr |= CCCR_TEST | CCCR_MON;
1329 		test |= TEST_LBCK;
1330 	}
1331 
1332 	/* Enable Monitoring (all versions) */
1333 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1334 		cccr |= CCCR_MON;
1335 
1336 	/* Disable Auto Retransmission (all versions) */
1337 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1338 		cccr |= CCCR_DAR;
1339 
1340 	/* Write config */
1341 	m_can_write(cdev, M_CAN_CCCR, cccr);
1342 	m_can_write(cdev, M_CAN_TEST, test);
1343 
1344 	/* Enable interrupts */
1345 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1346 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1347 		if (cdev->version == 30)
1348 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1349 				    ~(IR_ERR_LEC_30X));
1350 		else
1351 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1352 				    ~(IR_ERR_LEC_31X));
1353 	else
1354 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1355 
1356 	/* route all interrupts to INT0 */
1357 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1358 
1359 	/* set bittiming params */
1360 	m_can_set_bittiming(dev);
1361 
1362 	/* enable internal timestamp generation, with a prescaler of 16. The
1363 	 * prescaler is applied to the nominal bit timing
1364 	 */
1365 	m_can_write(cdev, M_CAN_TSCC,
1366 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1367 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1368 
1369 	m_can_config_endisable(cdev, false);
1370 
1371 	if (cdev->ops->init)
1372 		cdev->ops->init(cdev);
1373 }
1374 
1375 static void m_can_start(struct net_device *dev)
1376 {
1377 	struct m_can_classdev *cdev = netdev_priv(dev);
1378 
1379 	/* basic m_can configuration */
1380 	m_can_chip_config(dev);
1381 
1382 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1383 
1384 	m_can_enable_all_interrupts(cdev);
1385 }
1386 
1387 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1388 {
1389 	switch (mode) {
1390 	case CAN_MODE_START:
1391 		m_can_clean(dev);
1392 		m_can_start(dev);
1393 		netif_wake_queue(dev);
1394 		break;
1395 	default:
1396 		return -EOPNOTSUPP;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 /* Checks core release number of M_CAN
1403  * returns 0 if an unsupported device is detected
1404  * else it returns the release and step coded as:
1405  * return value = 10 * <release> + 1 * <step>
1406  */
1407 static int m_can_check_core_release(struct m_can_classdev *cdev)
1408 {
1409 	u32 crel_reg;
1410 	u8 rel;
1411 	u8 step;
1412 	int res;
1413 
1414 	/* Read Core Release Version and split into version number
1415 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1416 	 */
1417 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1418 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1419 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1420 
1421 	if (rel == 3) {
1422 		/* M_CAN v3.x.y: create return value */
1423 		res = 30 + step;
1424 	} else {
1425 		/* Unsupported M_CAN version */
1426 		res = 0;
1427 	}
1428 
1429 	return res;
1430 }
1431 
1432 /* Selectable Non ISO support only in version 3.2.x
1433  * This function checks if the bit is writable.
1434  */
1435 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1436 {
1437 	u32 cccr_reg, cccr_poll = 0;
1438 	int niso_timeout = -ETIMEDOUT;
1439 	int i;
1440 
1441 	m_can_config_endisable(cdev, true);
1442 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1443 	cccr_reg |= CCCR_NISO;
1444 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1445 
1446 	for (i = 0; i <= 10; i++) {
1447 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1448 		if (cccr_poll == cccr_reg) {
1449 			niso_timeout = 0;
1450 			break;
1451 		}
1452 
1453 		usleep_range(1, 5);
1454 	}
1455 
1456 	/* Clear NISO */
1457 	cccr_reg &= ~(CCCR_NISO);
1458 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1459 
1460 	m_can_config_endisable(cdev, false);
1461 
1462 	/* return false if time out (-ETIMEDOUT), else return true */
1463 	return !niso_timeout;
1464 }
1465 
1466 static int m_can_dev_setup(struct m_can_classdev *cdev)
1467 {
1468 	struct net_device *dev = cdev->net;
1469 	int m_can_version, err;
1470 
1471 	m_can_version = m_can_check_core_release(cdev);
1472 	/* return if unsupported version */
1473 	if (!m_can_version) {
1474 		dev_err(cdev->dev, "Unsupported version number: %2d",
1475 			m_can_version);
1476 		return -EINVAL;
1477 	}
1478 
1479 	if (!cdev->is_peripheral)
1480 		netif_napi_add(dev, &cdev->napi, m_can_poll);
1481 
1482 	/* Shared properties of all M_CAN versions */
1483 	cdev->version = m_can_version;
1484 	cdev->can.do_set_mode = m_can_set_mode;
1485 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1486 
1487 	/* Set M_CAN supported operations */
1488 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1489 		CAN_CTRLMODE_LISTENONLY |
1490 		CAN_CTRLMODE_BERR_REPORTING |
1491 		CAN_CTRLMODE_FD |
1492 		CAN_CTRLMODE_ONE_SHOT;
1493 
1494 	/* Set properties depending on M_CAN version */
1495 	switch (cdev->version) {
1496 	case 30:
1497 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1498 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1499 		if (err)
1500 			return err;
1501 		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1502 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1503 		break;
1504 	case 31:
1505 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1506 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1507 		if (err)
1508 			return err;
1509 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1510 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1511 		break;
1512 	case 32:
1513 	case 33:
1514 		/* Support both MCAN version v3.2.x and v3.3.0 */
1515 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1516 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1517 
1518 		cdev->can.ctrlmode_supported |=
1519 			(m_can_niso_supported(cdev) ?
1520 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1521 		break;
1522 	default:
1523 		dev_err(cdev->dev, "Unsupported version number: %2d",
1524 			cdev->version);
1525 		return -EINVAL;
1526 	}
1527 
1528 	if (cdev->ops->init)
1529 		cdev->ops->init(cdev);
1530 
1531 	return 0;
1532 }
1533 
1534 static void m_can_stop(struct net_device *dev)
1535 {
1536 	struct m_can_classdev *cdev = netdev_priv(dev);
1537 
1538 	/* disable all interrupts */
1539 	m_can_disable_all_interrupts(cdev);
1540 
1541 	/* Set init mode to disengage from the network */
1542 	m_can_config_endisable(cdev, true);
1543 
1544 	/* set the state as STOPPED */
1545 	cdev->can.state = CAN_STATE_STOPPED;
1546 }
1547 
1548 static int m_can_close(struct net_device *dev)
1549 {
1550 	struct m_can_classdev *cdev = netdev_priv(dev);
1551 
1552 	netif_stop_queue(dev);
1553 
1554 	if (!cdev->is_peripheral)
1555 		napi_disable(&cdev->napi);
1556 
1557 	m_can_stop(dev);
1558 	m_can_clk_stop(cdev);
1559 	free_irq(dev->irq, dev);
1560 
1561 	if (cdev->is_peripheral) {
1562 		cdev->tx_skb = NULL;
1563 		destroy_workqueue(cdev->tx_wq);
1564 		cdev->tx_wq = NULL;
1565 	}
1566 
1567 	if (cdev->is_peripheral)
1568 		can_rx_offload_disable(&cdev->offload);
1569 
1570 	close_candev(dev);
1571 
1572 	phy_power_off(cdev->transceiver);
1573 
1574 	return 0;
1575 }
1576 
1577 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1578 {
1579 	struct m_can_classdev *cdev = netdev_priv(dev);
1580 	/*get wrap around for loopback skb index */
1581 	unsigned int wrap = cdev->can.echo_skb_max;
1582 	int next_idx;
1583 
1584 	/* calculate next index */
1585 	next_idx = (++putidx >= wrap ? 0 : putidx);
1586 
1587 	/* check if occupied */
1588 	return !!cdev->can.echo_skb[next_idx];
1589 }
1590 
1591 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1592 {
1593 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1594 	struct net_device *dev = cdev->net;
1595 	struct sk_buff *skb = cdev->tx_skb;
1596 	struct id_and_dlc fifo_header;
1597 	u32 cccr, fdflags;
1598 	int err;
1599 	int putidx;
1600 
1601 	cdev->tx_skb = NULL;
1602 
1603 	/* Generate ID field for TX buffer Element */
1604 	/* Common to all supported M_CAN versions */
1605 	if (cf->can_id & CAN_EFF_FLAG) {
1606 		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1607 		fifo_header.id |= TX_BUF_XTD;
1608 	} else {
1609 		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1610 	}
1611 
1612 	if (cf->can_id & CAN_RTR_FLAG)
1613 		fifo_header.id |= TX_BUF_RTR;
1614 
1615 	if (cdev->version == 30) {
1616 		netif_stop_queue(dev);
1617 
1618 		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1619 
1620 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1621 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1622 		if (err)
1623 			goto out_fail;
1624 
1625 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1626 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1627 		if (err)
1628 			goto out_fail;
1629 
1630 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1631 			cccr = m_can_read(cdev, M_CAN_CCCR);
1632 			cccr &= ~CCCR_CMR_MASK;
1633 			if (can_is_canfd_skb(skb)) {
1634 				if (cf->flags & CANFD_BRS)
1635 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1636 							   CCCR_CMR_CANFD_BRS);
1637 				else
1638 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1639 							   CCCR_CMR_CANFD);
1640 			} else {
1641 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1642 			}
1643 			m_can_write(cdev, M_CAN_CCCR, cccr);
1644 		}
1645 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1646 
1647 		can_put_echo_skb(skb, dev, 0, 0);
1648 
1649 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1650 		/* End of xmit function for version 3.0.x */
1651 	} else {
1652 		/* Transmit routine for version >= v3.1.x */
1653 
1654 		/* Check if FIFO full */
1655 		if (m_can_tx_fifo_full(cdev)) {
1656 			/* This shouldn't happen */
1657 			netif_stop_queue(dev);
1658 			netdev_warn(dev,
1659 				    "TX queue active although FIFO is full.");
1660 
1661 			if (cdev->is_peripheral) {
1662 				kfree_skb(skb);
1663 				dev->stats.tx_dropped++;
1664 				return NETDEV_TX_OK;
1665 			} else {
1666 				return NETDEV_TX_BUSY;
1667 			}
1668 		}
1669 
1670 		/* get put index for frame */
1671 		putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1672 				   m_can_read(cdev, M_CAN_TXFQS));
1673 
1674 		/* Construct DLC Field, with CAN-FD configuration.
1675 		 * Use the put index of the fifo as the message marker,
1676 		 * used in the TX interrupt for sending the correct echo frame.
1677 		 */
1678 
1679 		/* get CAN FD configuration of frame */
1680 		fdflags = 0;
1681 		if (can_is_canfd_skb(skb)) {
1682 			fdflags |= TX_BUF_FDF;
1683 			if (cf->flags & CANFD_BRS)
1684 				fdflags |= TX_BUF_BRS;
1685 		}
1686 
1687 		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1688 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1689 			fdflags | TX_BUF_EFC;
1690 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1691 		if (err)
1692 			goto out_fail;
1693 
1694 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1695 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1696 		if (err)
1697 			goto out_fail;
1698 
1699 		/* Push loopback echo.
1700 		 * Will be looped back on TX interrupt based on message marker
1701 		 */
1702 		can_put_echo_skb(skb, dev, putidx, 0);
1703 
1704 		/* Enable TX FIFO element to start transfer  */
1705 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1706 
1707 		/* stop network queue if fifo full */
1708 		if (m_can_tx_fifo_full(cdev) ||
1709 		    m_can_next_echo_skb_occupied(dev, putidx))
1710 			netif_stop_queue(dev);
1711 	}
1712 
1713 	return NETDEV_TX_OK;
1714 
1715 out_fail:
1716 	netdev_err(dev, "FIFO write returned %d\n", err);
1717 	m_can_disable_all_interrupts(cdev);
1718 	return NETDEV_TX_BUSY;
1719 }
1720 
1721 static void m_can_tx_work_queue(struct work_struct *ws)
1722 {
1723 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1724 						   tx_work);
1725 
1726 	m_can_tx_handler(cdev);
1727 }
1728 
1729 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1730 				    struct net_device *dev)
1731 {
1732 	struct m_can_classdev *cdev = netdev_priv(dev);
1733 
1734 	if (can_dev_dropped_skb(dev, skb))
1735 		return NETDEV_TX_OK;
1736 
1737 	if (cdev->is_peripheral) {
1738 		if (cdev->tx_skb) {
1739 			netdev_err(dev, "hard_xmit called while tx busy\n");
1740 			return NETDEV_TX_BUSY;
1741 		}
1742 
1743 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1744 			m_can_clean(dev);
1745 		} else {
1746 			/* Need to stop the queue to avoid numerous requests
1747 			 * from being sent.  Suggested improvement is to create
1748 			 * a queueing mechanism that will queue the skbs and
1749 			 * process them in order.
1750 			 */
1751 			cdev->tx_skb = skb;
1752 			netif_stop_queue(cdev->net);
1753 			queue_work(cdev->tx_wq, &cdev->tx_work);
1754 		}
1755 	} else {
1756 		cdev->tx_skb = skb;
1757 		return m_can_tx_handler(cdev);
1758 	}
1759 
1760 	return NETDEV_TX_OK;
1761 }
1762 
1763 static int m_can_open(struct net_device *dev)
1764 {
1765 	struct m_can_classdev *cdev = netdev_priv(dev);
1766 	int err;
1767 
1768 	err = phy_power_on(cdev->transceiver);
1769 	if (err)
1770 		return err;
1771 
1772 	err = m_can_clk_start(cdev);
1773 	if (err)
1774 		goto out_phy_power_off;
1775 
1776 	/* open the can device */
1777 	err = open_candev(dev);
1778 	if (err) {
1779 		netdev_err(dev, "failed to open can device\n");
1780 		goto exit_disable_clks;
1781 	}
1782 
1783 	if (cdev->is_peripheral)
1784 		can_rx_offload_enable(&cdev->offload);
1785 
1786 	/* register interrupt handler */
1787 	if (cdev->is_peripheral) {
1788 		cdev->tx_skb = NULL;
1789 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1790 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1791 		if (!cdev->tx_wq) {
1792 			err = -ENOMEM;
1793 			goto out_wq_fail;
1794 		}
1795 
1796 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1797 
1798 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1799 					   IRQF_ONESHOT,
1800 					   dev->name, dev);
1801 	} else {
1802 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1803 				  dev);
1804 	}
1805 
1806 	if (err < 0) {
1807 		netdev_err(dev, "failed to request interrupt\n");
1808 		goto exit_irq_fail;
1809 	}
1810 
1811 	/* start the m_can controller */
1812 	m_can_start(dev);
1813 
1814 	if (!cdev->is_peripheral)
1815 		napi_enable(&cdev->napi);
1816 
1817 	netif_start_queue(dev);
1818 
1819 	return 0;
1820 
1821 exit_irq_fail:
1822 	if (cdev->is_peripheral)
1823 		destroy_workqueue(cdev->tx_wq);
1824 out_wq_fail:
1825 	if (cdev->is_peripheral)
1826 		can_rx_offload_disable(&cdev->offload);
1827 	close_candev(dev);
1828 exit_disable_clks:
1829 	m_can_clk_stop(cdev);
1830 out_phy_power_off:
1831 	phy_power_off(cdev->transceiver);
1832 	return err;
1833 }
1834 
1835 static const struct net_device_ops m_can_netdev_ops = {
1836 	.ndo_open = m_can_open,
1837 	.ndo_stop = m_can_close,
1838 	.ndo_start_xmit = m_can_start_xmit,
1839 	.ndo_change_mtu = can_change_mtu,
1840 };
1841 
1842 static const struct ethtool_ops m_can_ethtool_ops = {
1843 	.get_ts_info = ethtool_op_get_ts_info,
1844 };
1845 
1846 static int register_m_can_dev(struct net_device *dev)
1847 {
1848 	dev->flags |= IFF_ECHO;	/* we support local echo */
1849 	dev->netdev_ops = &m_can_netdev_ops;
1850 	dev->ethtool_ops = &m_can_ethtool_ops;
1851 
1852 	return register_candev(dev);
1853 }
1854 
1855 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1856 				const u32 *mram_config_vals)
1857 {
1858 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1859 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1860 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1861 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1862 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1863 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1864 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1865 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1866 		FIELD_MAX(RXFC_FS_MASK);
1867 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1868 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1869 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1870 		FIELD_MAX(RXFC_FS_MASK);
1871 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1872 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1873 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1874 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1875 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1876 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1877 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1878 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1879 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1880 		FIELD_MAX(TXBC_NDTB_MASK);
1881 
1882 	dev_dbg(cdev->dev,
1883 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1884 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1885 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1886 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1887 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1888 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1889 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1890 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1891 }
1892 
1893 int m_can_init_ram(struct m_can_classdev *cdev)
1894 {
1895 	int end, i, start;
1896 	int err = 0;
1897 
1898 	/* initialize the entire Message RAM in use to avoid possible
1899 	 * ECC/parity checksum errors when reading an uninitialized buffer
1900 	 */
1901 	start = cdev->mcfg[MRAM_SIDF].off;
1902 	end = cdev->mcfg[MRAM_TXB].off +
1903 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1904 
1905 	for (i = start; i < end; i += 4) {
1906 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
1907 		if (err)
1908 			break;
1909 	}
1910 
1911 	return err;
1912 }
1913 EXPORT_SYMBOL_GPL(m_can_init_ram);
1914 
1915 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1916 {
1917 	int ret = 0;
1918 
1919 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1920 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1921 
1922 	if (IS_ERR(cdev->cclk)) {
1923 		dev_err(cdev->dev, "no clock found\n");
1924 		ret = -ENODEV;
1925 	}
1926 
1927 	return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1930 
1931 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1932 						int sizeof_priv)
1933 {
1934 	struct m_can_classdev *class_dev = NULL;
1935 	u32 mram_config_vals[MRAM_CFG_LEN];
1936 	struct net_device *net_dev;
1937 	u32 tx_fifo_size;
1938 	int ret;
1939 
1940 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1941 					     "bosch,mram-cfg",
1942 					     mram_config_vals,
1943 					     sizeof(mram_config_vals) / 4);
1944 	if (ret) {
1945 		dev_err(dev, "Could not get Message RAM configuration.");
1946 		goto out;
1947 	}
1948 
1949 	/* Get TX FIFO size
1950 	 * Defines the total amount of echo buffers for loopback
1951 	 */
1952 	tx_fifo_size = mram_config_vals[7];
1953 
1954 	/* allocate the m_can device */
1955 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1956 	if (!net_dev) {
1957 		dev_err(dev, "Failed to allocate CAN device");
1958 		goto out;
1959 	}
1960 
1961 	class_dev = netdev_priv(net_dev);
1962 	class_dev->net = net_dev;
1963 	class_dev->dev = dev;
1964 	SET_NETDEV_DEV(net_dev, dev);
1965 
1966 	m_can_of_parse_mram(class_dev, mram_config_vals);
1967 out:
1968 	return class_dev;
1969 }
1970 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1971 
1972 void m_can_class_free_dev(struct net_device *net)
1973 {
1974 	free_candev(net);
1975 }
1976 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1977 
1978 int m_can_class_register(struct m_can_classdev *cdev)
1979 {
1980 	int ret;
1981 
1982 	if (cdev->pm_clock_support) {
1983 		ret = m_can_clk_start(cdev);
1984 		if (ret)
1985 			return ret;
1986 	}
1987 
1988 	if (cdev->is_peripheral) {
1989 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1990 						NAPI_POLL_WEIGHT);
1991 		if (ret)
1992 			goto clk_disable;
1993 	}
1994 
1995 	ret = m_can_dev_setup(cdev);
1996 	if (ret)
1997 		goto rx_offload_del;
1998 
1999 	ret = register_m_can_dev(cdev->net);
2000 	if (ret) {
2001 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2002 			cdev->net->name, ret);
2003 		goto rx_offload_del;
2004 	}
2005 
2006 	of_can_transceiver(cdev->net);
2007 
2008 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2009 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2010 
2011 	/* Probe finished
2012 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2013 	 */
2014 	m_can_clk_stop(cdev);
2015 
2016 	return 0;
2017 
2018 rx_offload_del:
2019 	if (cdev->is_peripheral)
2020 		can_rx_offload_del(&cdev->offload);
2021 clk_disable:
2022 	m_can_clk_stop(cdev);
2023 
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(m_can_class_register);
2027 
2028 void m_can_class_unregister(struct m_can_classdev *cdev)
2029 {
2030 	if (cdev->is_peripheral)
2031 		can_rx_offload_del(&cdev->offload);
2032 	unregister_candev(cdev->net);
2033 }
2034 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2035 
2036 int m_can_class_suspend(struct device *dev)
2037 {
2038 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2039 	struct net_device *ndev = cdev->net;
2040 
2041 	if (netif_running(ndev)) {
2042 		netif_stop_queue(ndev);
2043 		netif_device_detach(ndev);
2044 		m_can_stop(ndev);
2045 		m_can_clk_stop(cdev);
2046 	}
2047 
2048 	pinctrl_pm_select_sleep_state(dev);
2049 
2050 	cdev->can.state = CAN_STATE_SLEEPING;
2051 
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2055 
2056 int m_can_class_resume(struct device *dev)
2057 {
2058 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2059 	struct net_device *ndev = cdev->net;
2060 
2061 	pinctrl_pm_select_default_state(dev);
2062 
2063 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2064 
2065 	if (netif_running(ndev)) {
2066 		int ret;
2067 
2068 		ret = m_can_clk_start(cdev);
2069 		if (ret)
2070 			return ret;
2071 
2072 		m_can_init_ram(cdev);
2073 		m_can_start(ndev);
2074 		netif_device_attach(ndev);
2075 		netif_start_queue(ndev);
2076 	}
2077 
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(m_can_class_resume);
2081 
2082 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2083 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2084 MODULE_LICENSE("GPL v2");
2085 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2086