xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 9257bd80b917cc7908abd27ed5a5211964563f62)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24 
25 #include "m_can.h"
26 
27 /* registers definition */
28 enum m_can_reg {
29 	M_CAN_CREL	= 0x0,
30 	M_CAN_ENDN	= 0x4,
31 	M_CAN_CUST	= 0x8,
32 	M_CAN_DBTP	= 0xc,
33 	M_CAN_TEST	= 0x10,
34 	M_CAN_RWD	= 0x14,
35 	M_CAN_CCCR	= 0x18,
36 	M_CAN_NBTP	= 0x1c,
37 	M_CAN_TSCC	= 0x20,
38 	M_CAN_TSCV	= 0x24,
39 	M_CAN_TOCC	= 0x28,
40 	M_CAN_TOCV	= 0x2c,
41 	M_CAN_ECR	= 0x40,
42 	M_CAN_PSR	= 0x44,
43 	/* TDCR Register only available for version >=3.1.x */
44 	M_CAN_TDCR	= 0x48,
45 	M_CAN_IR	= 0x50,
46 	M_CAN_IE	= 0x54,
47 	M_CAN_ILS	= 0x58,
48 	M_CAN_ILE	= 0x5c,
49 	M_CAN_GFC	= 0x80,
50 	M_CAN_SIDFC	= 0x84,
51 	M_CAN_XIDFC	= 0x88,
52 	M_CAN_XIDAM	= 0x90,
53 	M_CAN_HPMS	= 0x94,
54 	M_CAN_NDAT1	= 0x98,
55 	M_CAN_NDAT2	= 0x9c,
56 	M_CAN_RXF0C	= 0xa0,
57 	M_CAN_RXF0S	= 0xa4,
58 	M_CAN_RXF0A	= 0xa8,
59 	M_CAN_RXBC	= 0xac,
60 	M_CAN_RXF1C	= 0xb0,
61 	M_CAN_RXF1S	= 0xb4,
62 	M_CAN_RXF1A	= 0xb8,
63 	M_CAN_RXESC	= 0xbc,
64 	M_CAN_TXBC	= 0xc0,
65 	M_CAN_TXFQS	= 0xc4,
66 	M_CAN_TXESC	= 0xc8,
67 	M_CAN_TXBRP	= 0xcc,
68 	M_CAN_TXBAR	= 0xd0,
69 	M_CAN_TXBCR	= 0xd4,
70 	M_CAN_TXBTO	= 0xd8,
71 	M_CAN_TXBCF	= 0xdc,
72 	M_CAN_TXBTIE	= 0xe0,
73 	M_CAN_TXBCIE	= 0xe4,
74 	M_CAN_TXEFC	= 0xf0,
75 	M_CAN_TXEFS	= 0xf4,
76 	M_CAN_TXEFA	= 0xf8,
77 };
78 
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT	64
81 
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN	8
84 
85 /* Core Release Register (CREL) */
86 #define CREL_REL_SHIFT		28
87 #define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
88 #define CREL_STEP_SHIFT		24
89 #define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
90 #define CREL_SUBSTEP_SHIFT	20
91 #define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
92 
93 /* Data Bit Timing & Prescaler Register (DBTP) */
94 #define DBTP_TDC		BIT(23)
95 #define DBTP_DBRP_SHIFT		16
96 #define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
97 #define DBTP_DTSEG1_SHIFT	8
98 #define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
99 #define DBTP_DTSEG2_SHIFT	4
100 #define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
101 #define DBTP_DSJW_SHIFT		0
102 #define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103 
104 /* Transmitter Delay Compensation Register (TDCR) */
105 #define TDCR_TDCO_SHIFT		8
106 #define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
107 #define TDCR_TDCF_SHIFT		0
108 #define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
109 
110 /* Test Register (TEST) */
111 #define TEST_LBCK		BIT(4)
112 
113 /* CC Control Register(CCCR) */
114 #define CCCR_CMR_MASK		0x3
115 #define CCCR_CMR_SHIFT		10
116 #define CCCR_CMR_CANFD		0x1
117 #define CCCR_CMR_CANFD_BRS	0x2
118 #define CCCR_CMR_CAN		0x3
119 #define CCCR_CME_MASK		0x3
120 #define CCCR_CME_SHIFT		8
121 #define CCCR_CME_CAN		0
122 #define CCCR_CME_CANFD		0x1
123 #define CCCR_CME_CANFD_BRS	0x2
124 #define CCCR_TXP		BIT(14)
125 #define CCCR_TEST		BIT(7)
126 #define CCCR_DAR		BIT(6)
127 #define CCCR_MON		BIT(5)
128 #define CCCR_CSR		BIT(4)
129 #define CCCR_CSA		BIT(3)
130 #define CCCR_ASM		BIT(2)
131 #define CCCR_CCE		BIT(1)
132 #define CCCR_INIT		BIT(0)
133 #define CCCR_CANFD		0x10
134 /* for version >=3.1.x */
135 #define CCCR_EFBI		BIT(13)
136 #define CCCR_PXHD		BIT(12)
137 #define CCCR_BRSE		BIT(9)
138 #define CCCR_FDOE		BIT(8)
139 /* only for version >=3.2.x */
140 #define CCCR_NISO		BIT(15)
141 
142 /* Nominal Bit Timing & Prescaler Register (NBTP) */
143 #define NBTP_NSJW_SHIFT		25
144 #define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
145 #define NBTP_NBRP_SHIFT		16
146 #define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
147 #define NBTP_NTSEG1_SHIFT	8
148 #define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
149 #define NBTP_NTSEG2_SHIFT	0
150 #define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
151 
152 /* Timestamp Counter Configuration Register (TSCC) */
153 #define TSCC_TCP_MASK		GENMASK(19, 16)
154 #define TSCC_TSS_MASK		GENMASK(1, 0)
155 #define TSCC_TSS_DISABLE	0x0
156 #define TSCC_TSS_INTERNAL	0x1
157 #define TSCC_TSS_EXTERNAL	0x2
158 
159 /* Timestamp Counter Value Register (TSCV) */
160 #define TSCV_TSC_MASK		GENMASK(15, 0)
161 
162 /* Error Counter Register(ECR) */
163 #define ECR_RP			BIT(15)
164 #define ECR_REC_SHIFT		8
165 #define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
166 #define ECR_TEC_SHIFT		0
167 #define ECR_TEC_MASK		0xff
168 
169 /* Protocol Status Register(PSR) */
170 #define PSR_BO		BIT(7)
171 #define PSR_EW		BIT(6)
172 #define PSR_EP		BIT(5)
173 #define PSR_LEC_MASK	0x7
174 
175 /* Interrupt Register(IR) */
176 #define IR_ALL_INT	0xffffffff
177 
178 /* Renamed bits for versions > 3.1.x */
179 #define IR_ARA		BIT(29)
180 #define IR_PED		BIT(28)
181 #define IR_PEA		BIT(27)
182 
183 /* Bits for version 3.0.x */
184 #define IR_STE		BIT(31)
185 #define IR_FOE		BIT(30)
186 #define IR_ACKE		BIT(29)
187 #define IR_BE		BIT(28)
188 #define IR_CRCE		BIT(27)
189 #define IR_WDI		BIT(26)
190 #define IR_BO		BIT(25)
191 #define IR_EW		BIT(24)
192 #define IR_EP		BIT(23)
193 #define IR_ELO		BIT(22)
194 #define IR_BEU		BIT(21)
195 #define IR_BEC		BIT(20)
196 #define IR_DRX		BIT(19)
197 #define IR_TOO		BIT(18)
198 #define IR_MRAF		BIT(17)
199 #define IR_TSW		BIT(16)
200 #define IR_TEFL		BIT(15)
201 #define IR_TEFF		BIT(14)
202 #define IR_TEFW		BIT(13)
203 #define IR_TEFN		BIT(12)
204 #define IR_TFE		BIT(11)
205 #define IR_TCF		BIT(10)
206 #define IR_TC		BIT(9)
207 #define IR_HPM		BIT(8)
208 #define IR_RF1L		BIT(7)
209 #define IR_RF1F		BIT(6)
210 #define IR_RF1W		BIT(5)
211 #define IR_RF1N		BIT(4)
212 #define IR_RF0L		BIT(3)
213 #define IR_RF0F		BIT(2)
214 #define IR_RF0W		BIT(1)
215 #define IR_RF0N		BIT(0)
216 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
217 
218 /* Interrupts for version 3.0.x */
219 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
220 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
221 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
222 			 IR_RF1L | IR_RF0L)
223 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
224 /* Interrupts for version >= 3.1.x */
225 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
226 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
227 			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
228 			 IR_RF1L | IR_RF0L)
229 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
230 
231 /* Interrupt Line Select (ILS) */
232 #define ILS_ALL_INT0	0x0
233 #define ILS_ALL_INT1	0xFFFFFFFF
234 
235 /* Interrupt Line Enable (ILE) */
236 #define ILE_EINT1	BIT(1)
237 #define ILE_EINT0	BIT(0)
238 
239 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
240 #define RXFC_FWM_SHIFT	24
241 #define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
242 #define RXFC_FS_SHIFT	16
243 #define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
244 
245 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
246 #define RXFS_RFL	BIT(25)
247 #define RXFS_FF		BIT(24)
248 #define RXFS_FPI_SHIFT	16
249 #define RXFS_FPI_MASK	0x3f0000
250 #define RXFS_FGI_SHIFT	8
251 #define RXFS_FGI_MASK	0x3f00
252 #define RXFS_FFL_MASK	0x7f
253 
254 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
255 #define M_CAN_RXESC_8BYTES	0x0
256 #define M_CAN_RXESC_64BYTES	0x777
257 
258 /* Tx Buffer Configuration(TXBC) */
259 #define TXBC_NDTB_SHIFT		16
260 #define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
261 #define TXBC_TFQS_SHIFT		24
262 #define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
263 
264 /* Tx FIFO/Queue Status (TXFQS) */
265 #define TXFQS_TFQF		BIT(21)
266 #define TXFQS_TFQPI_SHIFT	16
267 #define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
268 #define TXFQS_TFGI_SHIFT	8
269 #define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
270 #define TXFQS_TFFL_SHIFT	0
271 #define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
272 
273 /* Tx Buffer Element Size Configuration(TXESC) */
274 #define TXESC_TBDS_8BYTES	0x0
275 #define TXESC_TBDS_64BYTES	0x7
276 
277 /* Tx Event FIFO Configuration (TXEFC) */
278 #define TXEFC_EFS_SHIFT		16
279 #define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
280 
281 /* Tx Event FIFO Status (TXEFS) */
282 #define TXEFS_TEFL		BIT(25)
283 #define TXEFS_EFF		BIT(24)
284 #define TXEFS_EFGI_SHIFT	8
285 #define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
286 #define TXEFS_EFFL_SHIFT	0
287 #define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
288 
289 /* Tx Event FIFO Acknowledge (TXEFA) */
290 #define TXEFA_EFAI_SHIFT	0
291 #define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
292 
293 /* Message RAM Configuration (in bytes) */
294 #define SIDF_ELEMENT_SIZE	4
295 #define XIDF_ELEMENT_SIZE	8
296 #define RXF0_ELEMENT_SIZE	72
297 #define RXF1_ELEMENT_SIZE	72
298 #define RXB_ELEMENT_SIZE	72
299 #define TXE_ELEMENT_SIZE	8
300 #define TXB_ELEMENT_SIZE	72
301 
302 /* Message RAM Elements */
303 #define M_CAN_FIFO_ID		0x0
304 #define M_CAN_FIFO_DLC		0x4
305 #define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
306 
307 /* Rx Buffer Element */
308 /* R0 */
309 #define RX_BUF_ESI		BIT(31)
310 #define RX_BUF_XTD		BIT(30)
311 #define RX_BUF_RTR		BIT(29)
312 /* R1 */
313 #define RX_BUF_ANMF		BIT(31)
314 #define RX_BUF_FDF		BIT(21)
315 #define RX_BUF_BRS		BIT(20)
316 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
317 
318 /* Tx Buffer Element */
319 /* T0 */
320 #define TX_BUF_ESI		BIT(31)
321 #define TX_BUF_XTD		BIT(30)
322 #define TX_BUF_RTR		BIT(29)
323 /* T1 */
324 #define TX_BUF_EFC		BIT(23)
325 #define TX_BUF_FDF		BIT(21)
326 #define TX_BUF_BRS		BIT(20)
327 #define TX_BUF_MM_SHIFT		24
328 #define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
329 
330 /* Tx event FIFO Element */
331 /* E1 */
332 #define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
333 #define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
334 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
335 
336 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
337 {
338 	return cdev->ops->read_reg(cdev, reg);
339 }
340 
341 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
342 			       u32 val)
343 {
344 	cdev->ops->write_reg(cdev, reg, val);
345 }
346 
347 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
348 			   u32 fgi, unsigned int offset)
349 {
350 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
351 		offset;
352 
353 	return cdev->ops->read_fifo(cdev, addr_offset);
354 }
355 
356 static void m_can_fifo_write(struct m_can_classdev *cdev,
357 			     u32 fpi, unsigned int offset, u32 val)
358 {
359 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
360 		offset;
361 
362 	cdev->ops->write_fifo(cdev, addr_offset, val);
363 }
364 
365 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
366 					   u32 fpi, u32 val)
367 {
368 	cdev->ops->write_fifo(cdev, fpi, val);
369 }
370 
371 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
372 {
373 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
374 		offset;
375 
376 	return cdev->ops->read_fifo(cdev, addr_offset);
377 }
378 
379 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
380 {
381 	return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
382 }
383 
384 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
385 {
386 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
387 	u32 timeout = 10;
388 	u32 val = 0;
389 
390 	/* Clear the Clock stop request if it was set */
391 	if (cccr & CCCR_CSR)
392 		cccr &= ~CCCR_CSR;
393 
394 	if (enable) {
395 		/* enable m_can configuration */
396 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
397 		udelay(5);
398 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
399 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
400 	} else {
401 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
402 	}
403 
404 	/* there's a delay for module initialization */
405 	if (enable)
406 		val = CCCR_INIT | CCCR_CCE;
407 
408 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
409 		if (timeout == 0) {
410 			netdev_warn(cdev->net, "Failed to init module\n");
411 			return;
412 		}
413 		timeout--;
414 		udelay(1);
415 	}
416 }
417 
418 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
419 {
420 	/* Only interrupt line 0 is used in this driver */
421 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
422 }
423 
424 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
425 {
426 	m_can_write(cdev, M_CAN_ILE, 0x0);
427 }
428 
429 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
430  * width.
431  */
432 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
433 {
434 	u32 tscv;
435 	u32 tsc;
436 
437 	tscv = m_can_read(cdev, M_CAN_TSCV);
438 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
439 
440 	return (tsc << 16);
441 }
442 
443 static void m_can_clean(struct net_device *net)
444 {
445 	struct m_can_classdev *cdev = netdev_priv(net);
446 
447 	if (cdev->tx_skb) {
448 		int putidx = 0;
449 
450 		net->stats.tx_errors++;
451 		if (cdev->version > 30)
452 			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
453 				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
454 
455 		can_free_echo_skb(cdev->net, putidx, NULL);
456 		cdev->tx_skb = NULL;
457 	}
458 }
459 
460 /* For peripherals, pass skb to rx-offload, which will push skb from
461  * napi. For non-peripherals, RX is done in napi already, so push
462  * directly. timestamp is used to ensure good skb ordering in
463  * rx-offload and is ignored for non-peripherals.
464 */
465 static void m_can_receive_skb(struct m_can_classdev *cdev,
466 			      struct sk_buff *skb,
467 			      u32 timestamp)
468 {
469 	if (cdev->is_peripheral) {
470 		struct net_device_stats *stats = &cdev->net->stats;
471 		int err;
472 
473 		err = can_rx_offload_queue_sorted(&cdev->offload, skb,
474 						  timestamp);
475 		if (err)
476 			stats->rx_fifo_errors++;
477 	} else {
478 		netif_receive_skb(skb);
479 	}
480 }
481 
482 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
483 {
484 	struct net_device_stats *stats = &dev->stats;
485 	struct m_can_classdev *cdev = netdev_priv(dev);
486 	struct canfd_frame *cf;
487 	struct sk_buff *skb;
488 	u32 id, fgi, dlc;
489 	u32 timestamp = 0;
490 	int i;
491 
492 	/* calculate the fifo get index for where to read data */
493 	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
494 	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
495 	if (dlc & RX_BUF_FDF)
496 		skb = alloc_canfd_skb(dev, &cf);
497 	else
498 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
499 	if (!skb) {
500 		stats->rx_dropped++;
501 		return;
502 	}
503 
504 	if (dlc & RX_BUF_FDF)
505 		cf->len = can_fd_dlc2len((dlc >> 16) & 0x0F);
506 	else
507 		cf->len = can_cc_dlc2len((dlc >> 16) & 0x0F);
508 
509 	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
510 	if (id & RX_BUF_XTD)
511 		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
512 	else
513 		cf->can_id = (id >> 18) & CAN_SFF_MASK;
514 
515 	if (id & RX_BUF_ESI) {
516 		cf->flags |= CANFD_ESI;
517 		netdev_dbg(dev, "ESI Error\n");
518 	}
519 
520 	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
521 		cf->can_id |= CAN_RTR_FLAG;
522 	} else {
523 		if (dlc & RX_BUF_BRS)
524 			cf->flags |= CANFD_BRS;
525 
526 		for (i = 0; i < cf->len; i += 4)
527 			*(u32 *)(cf->data + i) =
528 				m_can_fifo_read(cdev, fgi,
529 						M_CAN_FIFO_DATA(i / 4));
530 	}
531 
532 	/* acknowledge rx fifo 0 */
533 	m_can_write(cdev, M_CAN_RXF0A, fgi);
534 
535 	stats->rx_packets++;
536 	stats->rx_bytes += cf->len;
537 
538 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, dlc);
539 
540 	m_can_receive_skb(cdev, skb, timestamp);
541 }
542 
543 static int m_can_do_rx_poll(struct net_device *dev, int quota)
544 {
545 	struct m_can_classdev *cdev = netdev_priv(dev);
546 	u32 pkts = 0;
547 	u32 rxfs;
548 
549 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
550 	if (!(rxfs & RXFS_FFL_MASK)) {
551 		netdev_dbg(dev, "no messages in fifo0\n");
552 		return 0;
553 	}
554 
555 	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
556 		m_can_read_fifo(dev, rxfs);
557 
558 		quota--;
559 		pkts++;
560 		rxfs = m_can_read(cdev, M_CAN_RXF0S);
561 	}
562 
563 	if (pkts)
564 		can_led_event(dev, CAN_LED_EVENT_RX);
565 
566 	return pkts;
567 }
568 
569 static int m_can_handle_lost_msg(struct net_device *dev)
570 {
571 	struct m_can_classdev *cdev = netdev_priv(dev);
572 	struct net_device_stats *stats = &dev->stats;
573 	struct sk_buff *skb;
574 	struct can_frame *frame;
575 	u32 timestamp = 0;
576 
577 	netdev_err(dev, "msg lost in rxf0\n");
578 
579 	stats->rx_errors++;
580 	stats->rx_over_errors++;
581 
582 	skb = alloc_can_err_skb(dev, &frame);
583 	if (unlikely(!skb))
584 		return 0;
585 
586 	frame->can_id |= CAN_ERR_CRTL;
587 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
588 
589 	if (cdev->is_peripheral)
590 		timestamp = m_can_get_timestamp(cdev);
591 
592 	m_can_receive_skb(cdev, skb, timestamp);
593 
594 	return 1;
595 }
596 
597 static int m_can_handle_lec_err(struct net_device *dev,
598 				enum m_can_lec_type lec_type)
599 {
600 	struct m_can_classdev *cdev = netdev_priv(dev);
601 	struct net_device_stats *stats = &dev->stats;
602 	struct can_frame *cf;
603 	struct sk_buff *skb;
604 	u32 timestamp = 0;
605 
606 	cdev->can.can_stats.bus_error++;
607 	stats->rx_errors++;
608 
609 	/* propagate the error condition to the CAN stack */
610 	skb = alloc_can_err_skb(dev, &cf);
611 	if (unlikely(!skb))
612 		return 0;
613 
614 	/* check for 'last error code' which tells us the
615 	 * type of the last error to occur on the CAN bus
616 	 */
617 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
618 
619 	switch (lec_type) {
620 	case LEC_STUFF_ERROR:
621 		netdev_dbg(dev, "stuff error\n");
622 		cf->data[2] |= CAN_ERR_PROT_STUFF;
623 		break;
624 	case LEC_FORM_ERROR:
625 		netdev_dbg(dev, "form error\n");
626 		cf->data[2] |= CAN_ERR_PROT_FORM;
627 		break;
628 	case LEC_ACK_ERROR:
629 		netdev_dbg(dev, "ack error\n");
630 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
631 		break;
632 	case LEC_BIT1_ERROR:
633 		netdev_dbg(dev, "bit1 error\n");
634 		cf->data[2] |= CAN_ERR_PROT_BIT1;
635 		break;
636 	case LEC_BIT0_ERROR:
637 		netdev_dbg(dev, "bit0 error\n");
638 		cf->data[2] |= CAN_ERR_PROT_BIT0;
639 		break;
640 	case LEC_CRC_ERROR:
641 		netdev_dbg(dev, "CRC error\n");
642 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
643 		break;
644 	default:
645 		break;
646 	}
647 
648 	stats->rx_packets++;
649 	stats->rx_bytes += cf->len;
650 
651 	if (cdev->is_peripheral)
652 		timestamp = m_can_get_timestamp(cdev);
653 
654 	m_can_receive_skb(cdev, skb, timestamp);
655 
656 	return 1;
657 }
658 
659 static int __m_can_get_berr_counter(const struct net_device *dev,
660 				    struct can_berr_counter *bec)
661 {
662 	struct m_can_classdev *cdev = netdev_priv(dev);
663 	unsigned int ecr;
664 
665 	ecr = m_can_read(cdev, M_CAN_ECR);
666 	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
667 	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
668 
669 	return 0;
670 }
671 
672 static int m_can_clk_start(struct m_can_classdev *cdev)
673 {
674 	if (cdev->pm_clock_support == 0)
675 		return 0;
676 
677 	return pm_runtime_resume_and_get(cdev->dev);
678 }
679 
680 static void m_can_clk_stop(struct m_can_classdev *cdev)
681 {
682 	if (cdev->pm_clock_support)
683 		pm_runtime_put_sync(cdev->dev);
684 }
685 
686 static int m_can_get_berr_counter(const struct net_device *dev,
687 				  struct can_berr_counter *bec)
688 {
689 	struct m_can_classdev *cdev = netdev_priv(dev);
690 	int err;
691 
692 	err = m_can_clk_start(cdev);
693 	if (err)
694 		return err;
695 
696 	__m_can_get_berr_counter(dev, bec);
697 
698 	m_can_clk_stop(cdev);
699 
700 	return 0;
701 }
702 
703 static int m_can_handle_state_change(struct net_device *dev,
704 				     enum can_state new_state)
705 {
706 	struct m_can_classdev *cdev = netdev_priv(dev);
707 	struct net_device_stats *stats = &dev->stats;
708 	struct can_frame *cf;
709 	struct sk_buff *skb;
710 	struct can_berr_counter bec;
711 	unsigned int ecr;
712 	u32 timestamp = 0;
713 
714 	switch (new_state) {
715 	case CAN_STATE_ERROR_WARNING:
716 		/* error warning state */
717 		cdev->can.can_stats.error_warning++;
718 		cdev->can.state = CAN_STATE_ERROR_WARNING;
719 		break;
720 	case CAN_STATE_ERROR_PASSIVE:
721 		/* error passive state */
722 		cdev->can.can_stats.error_passive++;
723 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
724 		break;
725 	case CAN_STATE_BUS_OFF:
726 		/* bus-off state */
727 		cdev->can.state = CAN_STATE_BUS_OFF;
728 		m_can_disable_all_interrupts(cdev);
729 		cdev->can.can_stats.bus_off++;
730 		can_bus_off(dev);
731 		break;
732 	default:
733 		break;
734 	}
735 
736 	/* propagate the error condition to the CAN stack */
737 	skb = alloc_can_err_skb(dev, &cf);
738 	if (unlikely(!skb))
739 		return 0;
740 
741 	__m_can_get_berr_counter(dev, &bec);
742 
743 	switch (new_state) {
744 	case CAN_STATE_ERROR_WARNING:
745 		/* error warning state */
746 		cf->can_id |= CAN_ERR_CRTL;
747 		cf->data[1] = (bec.txerr > bec.rxerr) ?
748 			CAN_ERR_CRTL_TX_WARNING :
749 			CAN_ERR_CRTL_RX_WARNING;
750 		cf->data[6] = bec.txerr;
751 		cf->data[7] = bec.rxerr;
752 		break;
753 	case CAN_STATE_ERROR_PASSIVE:
754 		/* error passive state */
755 		cf->can_id |= CAN_ERR_CRTL;
756 		ecr = m_can_read(cdev, M_CAN_ECR);
757 		if (ecr & ECR_RP)
758 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
759 		if (bec.txerr > 127)
760 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
761 		cf->data[6] = bec.txerr;
762 		cf->data[7] = bec.rxerr;
763 		break;
764 	case CAN_STATE_BUS_OFF:
765 		/* bus-off state */
766 		cf->can_id |= CAN_ERR_BUSOFF;
767 		break;
768 	default:
769 		break;
770 	}
771 
772 	stats->rx_packets++;
773 	stats->rx_bytes += cf->len;
774 
775 	if (cdev->is_peripheral)
776 		timestamp = m_can_get_timestamp(cdev);
777 
778 	m_can_receive_skb(cdev, skb, timestamp);
779 
780 	return 1;
781 }
782 
783 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
784 {
785 	struct m_can_classdev *cdev = netdev_priv(dev);
786 	int work_done = 0;
787 
788 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
789 		netdev_dbg(dev, "entered error warning state\n");
790 		work_done += m_can_handle_state_change(dev,
791 						       CAN_STATE_ERROR_WARNING);
792 	}
793 
794 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
795 		netdev_dbg(dev, "entered error passive state\n");
796 		work_done += m_can_handle_state_change(dev,
797 						       CAN_STATE_ERROR_PASSIVE);
798 	}
799 
800 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
801 		netdev_dbg(dev, "entered error bus off state\n");
802 		work_done += m_can_handle_state_change(dev,
803 						       CAN_STATE_BUS_OFF);
804 	}
805 
806 	return work_done;
807 }
808 
809 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
810 {
811 	if (irqstatus & IR_WDI)
812 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
813 	if (irqstatus & IR_ELO)
814 		netdev_err(dev, "Error Logging Overflow\n");
815 	if (irqstatus & IR_BEU)
816 		netdev_err(dev, "Bit Error Uncorrected\n");
817 	if (irqstatus & IR_BEC)
818 		netdev_err(dev, "Bit Error Corrected\n");
819 	if (irqstatus & IR_TOO)
820 		netdev_err(dev, "Timeout reached\n");
821 	if (irqstatus & IR_MRAF)
822 		netdev_err(dev, "Message RAM access failure occurred\n");
823 }
824 
825 static inline bool is_lec_err(u32 psr)
826 {
827 	psr &= LEC_UNUSED;
828 
829 	return psr && (psr != LEC_UNUSED);
830 }
831 
832 static inline bool m_can_is_protocol_err(u32 irqstatus)
833 {
834 	return irqstatus & IR_ERR_LEC_31X;
835 }
836 
837 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
838 {
839 	struct net_device_stats *stats = &dev->stats;
840 	struct m_can_classdev *cdev = netdev_priv(dev);
841 	struct can_frame *cf;
842 	struct sk_buff *skb;
843 	u32 timestamp = 0;
844 
845 	/* propagate the error condition to the CAN stack */
846 	skb = alloc_can_err_skb(dev, &cf);
847 
848 	/* update tx error stats since there is protocol error */
849 	stats->tx_errors++;
850 
851 	/* update arbitration lost status */
852 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
853 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
854 		cdev->can.can_stats.arbitration_lost++;
855 		if (skb) {
856 			cf->can_id |= CAN_ERR_LOSTARB;
857 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
858 		}
859 	}
860 
861 	if (unlikely(!skb)) {
862 		netdev_dbg(dev, "allocation of skb failed\n");
863 		return 0;
864 	}
865 
866 	if (cdev->is_peripheral)
867 		timestamp = m_can_get_timestamp(cdev);
868 
869 	m_can_receive_skb(cdev, skb, timestamp);
870 
871 	return 1;
872 }
873 
874 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
875 				   u32 psr)
876 {
877 	struct m_can_classdev *cdev = netdev_priv(dev);
878 	int work_done = 0;
879 
880 	if (irqstatus & IR_RF0L)
881 		work_done += m_can_handle_lost_msg(dev);
882 
883 	/* handle lec errors on the bus */
884 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
885 	    is_lec_err(psr))
886 		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
887 
888 	/* handle protocol errors in arbitration phase */
889 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
890 	    m_can_is_protocol_err(irqstatus))
891 		work_done += m_can_handle_protocol_error(dev, irqstatus);
892 
893 	/* other unproccessed error interrupts */
894 	m_can_handle_other_err(dev, irqstatus);
895 
896 	return work_done;
897 }
898 
899 static int m_can_rx_handler(struct net_device *dev, int quota)
900 {
901 	struct m_can_classdev *cdev = netdev_priv(dev);
902 	int work_done = 0;
903 	u32 irqstatus, psr;
904 
905 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
906 	if (!irqstatus)
907 		goto end;
908 
909 	/* Errata workaround for issue "Needless activation of MRAF irq"
910 	 * During frame reception while the MCAN is in Error Passive state
911 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
912 	 * it may happen that MCAN_IR.MRAF is set although there was no
913 	 * Message RAM access failure.
914 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
915 	 * The Message RAM Access Failure interrupt routine needs to check
916 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
917 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
918 	 */
919 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
920 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
921 		struct can_berr_counter bec;
922 
923 		__m_can_get_berr_counter(dev, &bec);
924 		if (bec.rxerr == 127) {
925 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
926 			irqstatus &= ~IR_MRAF;
927 		}
928 	}
929 
930 	psr = m_can_read(cdev, M_CAN_PSR);
931 
932 	if (irqstatus & IR_ERR_STATE)
933 		work_done += m_can_handle_state_errors(dev, psr);
934 
935 	if (irqstatus & IR_ERR_BUS_30X)
936 		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
937 
938 	if (irqstatus & IR_RF0N)
939 		work_done += m_can_do_rx_poll(dev, (quota - work_done));
940 end:
941 	return work_done;
942 }
943 
944 static int m_can_rx_peripheral(struct net_device *dev)
945 {
946 	struct m_can_classdev *cdev = netdev_priv(dev);
947 
948 	m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT);
949 
950 	m_can_enable_all_interrupts(cdev);
951 
952 	return 0;
953 }
954 
955 static int m_can_poll(struct napi_struct *napi, int quota)
956 {
957 	struct net_device *dev = napi->dev;
958 	struct m_can_classdev *cdev = netdev_priv(dev);
959 	int work_done;
960 
961 	work_done = m_can_rx_handler(dev, quota);
962 	if (work_done < quota) {
963 		napi_complete_done(napi, work_done);
964 		m_can_enable_all_interrupts(cdev);
965 	}
966 
967 	return work_done;
968 }
969 
970 /* Echo tx skb and update net stats. Peripherals use rx-offload for
971  * echo. timestamp is used for peripherals to ensure correct ordering
972  * by rx-offload, and is ignored for non-peripherals.
973 */
974 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
975 				  unsigned int msg_mark,
976 				  u32 timestamp)
977 {
978 	struct net_device *dev = cdev->net;
979 	struct net_device_stats *stats = &dev->stats;
980 
981 	if (cdev->is_peripheral)
982 		stats->tx_bytes +=
983 			can_rx_offload_get_echo_skb(&cdev->offload,
984 						    msg_mark,
985 						    timestamp,
986 						    NULL);
987 	else
988 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
989 
990 	stats->tx_packets++;
991 }
992 
993 static void m_can_echo_tx_event(struct net_device *dev)
994 {
995 	u32 txe_count = 0;
996 	u32 m_can_txefs;
997 	u32 fgi = 0;
998 	int i = 0;
999 	unsigned int msg_mark;
1000 
1001 	struct m_can_classdev *cdev = netdev_priv(dev);
1002 
1003 	/* read tx event fifo status */
1004 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1005 
1006 	/* Get Tx Event fifo element count */
1007 	txe_count = (m_can_txefs & TXEFS_EFFL_MASK) >> TXEFS_EFFL_SHIFT;
1008 
1009 	/* Get and process all sent elements */
1010 	for (i = 0; i < txe_count; i++) {
1011 		u32 txe, timestamp = 0;
1012 
1013 		/* retrieve get index */
1014 		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) >>
1015 			TXEFS_EFGI_SHIFT;
1016 
1017 		/* get message marker, timestamp */
1018 		txe = m_can_txe_fifo_read(cdev, fgi, 4);
1019 		msg_mark = (txe & TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
1020 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe);
1021 
1022 		/* ack txe element */
1023 		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
1024 						(fgi << TXEFA_EFAI_SHIFT)));
1025 
1026 		/* update stats */
1027 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1028 	}
1029 }
1030 
1031 static irqreturn_t m_can_isr(int irq, void *dev_id)
1032 {
1033 	struct net_device *dev = (struct net_device *)dev_id;
1034 	struct m_can_classdev *cdev = netdev_priv(dev);
1035 	u32 ir;
1036 
1037 	if (pm_runtime_suspended(cdev->dev))
1038 		return IRQ_NONE;
1039 	ir = m_can_read(cdev, M_CAN_IR);
1040 	if (!ir)
1041 		return IRQ_NONE;
1042 
1043 	/* ACK all irqs */
1044 	if (ir & IR_ALL_INT)
1045 		m_can_write(cdev, M_CAN_IR, ir);
1046 
1047 	if (cdev->ops->clear_interrupts)
1048 		cdev->ops->clear_interrupts(cdev);
1049 
1050 	/* schedule NAPI in case of
1051 	 * - rx IRQ
1052 	 * - state change IRQ
1053 	 * - bus error IRQ and bus error reporting
1054 	 */
1055 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1056 		cdev->irqstatus = ir;
1057 		m_can_disable_all_interrupts(cdev);
1058 		if (!cdev->is_peripheral)
1059 			napi_schedule(&cdev->napi);
1060 		else
1061 			m_can_rx_peripheral(dev);
1062 	}
1063 
1064 	if (cdev->version == 30) {
1065 		if (ir & IR_TC) {
1066 			/* Transmission Complete Interrupt*/
1067 			u32 timestamp = 0;
1068 
1069 			if (cdev->is_peripheral)
1070 				timestamp = m_can_get_timestamp(cdev);
1071 			m_can_tx_update_stats(cdev, 0, timestamp);
1072 
1073 			can_led_event(dev, CAN_LED_EVENT_TX);
1074 			netif_wake_queue(dev);
1075 		}
1076 	} else  {
1077 		if (ir & IR_TEFN) {
1078 			/* New TX FIFO Element arrived */
1079 			m_can_echo_tx_event(dev);
1080 			can_led_event(dev, CAN_LED_EVENT_TX);
1081 			if (netif_queue_stopped(dev) &&
1082 			    !m_can_tx_fifo_full(cdev))
1083 				netif_wake_queue(dev);
1084 		}
1085 	}
1086 
1087 	return IRQ_HANDLED;
1088 }
1089 
1090 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1091 	.name = KBUILD_MODNAME,
1092 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1093 	.tseg1_max = 64,
1094 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1095 	.tseg2_max = 16,
1096 	.sjw_max = 16,
1097 	.brp_min = 1,
1098 	.brp_max = 1024,
1099 	.brp_inc = 1,
1100 };
1101 
1102 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1103 	.name = KBUILD_MODNAME,
1104 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1105 	.tseg1_max = 16,
1106 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1107 	.tseg2_max = 8,
1108 	.sjw_max = 4,
1109 	.brp_min = 1,
1110 	.brp_max = 32,
1111 	.brp_inc = 1,
1112 };
1113 
1114 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1115 	.name = KBUILD_MODNAME,
1116 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1117 	.tseg1_max = 256,
1118 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1119 	.tseg2_max = 128,
1120 	.sjw_max = 128,
1121 	.brp_min = 1,
1122 	.brp_max = 512,
1123 	.brp_inc = 1,
1124 };
1125 
1126 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1127 	.name = KBUILD_MODNAME,
1128 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1129 	.tseg1_max = 32,
1130 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1131 	.tseg2_max = 16,
1132 	.sjw_max = 16,
1133 	.brp_min = 1,
1134 	.brp_max = 32,
1135 	.brp_inc = 1,
1136 };
1137 
1138 static int m_can_set_bittiming(struct net_device *dev)
1139 {
1140 	struct m_can_classdev *cdev = netdev_priv(dev);
1141 	const struct can_bittiming *bt = &cdev->can.bittiming;
1142 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1143 	u16 brp, sjw, tseg1, tseg2;
1144 	u32 reg_btp;
1145 
1146 	brp = bt->brp - 1;
1147 	sjw = bt->sjw - 1;
1148 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1149 	tseg2 = bt->phase_seg2 - 1;
1150 	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1151 		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1152 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1153 
1154 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1155 		reg_btp = 0;
1156 		brp = dbt->brp - 1;
1157 		sjw = dbt->sjw - 1;
1158 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1159 		tseg2 = dbt->phase_seg2 - 1;
1160 
1161 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1162 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1163 		 * paper presented at the International CAN Conference 2013
1164 		 */
1165 		if (dbt->bitrate > 2500000) {
1166 			u32 tdco, ssp;
1167 
1168 			/* Use the same value of secondary sampling point
1169 			 * as the data sampling point
1170 			 */
1171 			ssp = dbt->sample_point;
1172 
1173 			/* Equation based on Bosch's M_CAN User Manual's
1174 			 * Transmitter Delay Compensation Section
1175 			 */
1176 			tdco = (cdev->can.clock.freq / 1000) *
1177 				ssp / dbt->bitrate;
1178 
1179 			/* Max valid TDCO value is 127 */
1180 			if (tdco > 127) {
1181 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1182 					    tdco);
1183 				tdco = 127;
1184 			}
1185 
1186 			reg_btp |= DBTP_TDC;
1187 			m_can_write(cdev, M_CAN_TDCR,
1188 				    tdco << TDCR_TDCO_SHIFT);
1189 		}
1190 
1191 		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1192 			(sjw << DBTP_DSJW_SHIFT) |
1193 			(tseg1 << DBTP_DTSEG1_SHIFT) |
1194 			(tseg2 << DBTP_DTSEG2_SHIFT);
1195 
1196 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /* Configure M_CAN chip:
1203  * - set rx buffer/fifo element size
1204  * - configure rx fifo
1205  * - accept non-matching frame into fifo 0
1206  * - configure tx buffer
1207  *		- >= v3.1.x: TX FIFO is used
1208  * - configure mode
1209  * - setup bittiming
1210  * - configure timestamp generation
1211  */
1212 static void m_can_chip_config(struct net_device *dev)
1213 {
1214 	struct m_can_classdev *cdev = netdev_priv(dev);
1215 	u32 cccr, test;
1216 
1217 	m_can_config_endisable(cdev, true);
1218 
1219 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1220 	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1221 
1222 	/* Accept Non-matching Frames Into FIFO 0 */
1223 	m_can_write(cdev, M_CAN_GFC, 0x0);
1224 
1225 	if (cdev->version == 30) {
1226 		/* only support one Tx Buffer currently */
1227 		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1228 			    cdev->mcfg[MRAM_TXB].off);
1229 	} else {
1230 		/* TX FIFO is used for newer IP Core versions */
1231 		m_can_write(cdev, M_CAN_TXBC,
1232 			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1233 			    (cdev->mcfg[MRAM_TXB].off));
1234 	}
1235 
1236 	/* support 64 bytes payload */
1237 	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1238 
1239 	/* TX Event FIFO */
1240 	if (cdev->version == 30) {
1241 		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1242 			    cdev->mcfg[MRAM_TXE].off);
1243 	} else {
1244 		/* Full TX Event FIFO is used */
1245 		m_can_write(cdev, M_CAN_TXEFC,
1246 			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1247 			     & TXEFC_EFS_MASK) |
1248 			    cdev->mcfg[MRAM_TXE].off);
1249 	}
1250 
1251 	/* rx fifo configuration, blocking mode, fifo size 1 */
1252 	m_can_write(cdev, M_CAN_RXF0C,
1253 		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1254 		    cdev->mcfg[MRAM_RXF0].off);
1255 
1256 	m_can_write(cdev, M_CAN_RXF1C,
1257 		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1258 		    cdev->mcfg[MRAM_RXF1].off);
1259 
1260 	cccr = m_can_read(cdev, M_CAN_CCCR);
1261 	test = m_can_read(cdev, M_CAN_TEST);
1262 	test &= ~TEST_LBCK;
1263 	if (cdev->version == 30) {
1264 		/* Version 3.0.x */
1265 
1266 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1267 			  (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1268 			  (CCCR_CME_MASK << CCCR_CME_SHIFT));
1269 
1270 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1271 			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1272 
1273 	} else {
1274 		/* Version 3.1.x or 3.2.x */
1275 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1276 			  CCCR_NISO | CCCR_DAR);
1277 
1278 		/* Only 3.2.x has NISO Bit implemented */
1279 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1280 			cccr |= CCCR_NISO;
1281 
1282 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1283 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1284 	}
1285 
1286 	/* Loopback Mode */
1287 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1288 		cccr |= CCCR_TEST | CCCR_MON;
1289 		test |= TEST_LBCK;
1290 	}
1291 
1292 	/* Enable Monitoring (all versions) */
1293 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1294 		cccr |= CCCR_MON;
1295 
1296 	/* Disable Auto Retransmission (all versions) */
1297 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1298 		cccr |= CCCR_DAR;
1299 
1300 	/* Write config */
1301 	m_can_write(cdev, M_CAN_CCCR, cccr);
1302 	m_can_write(cdev, M_CAN_TEST, test);
1303 
1304 	/* Enable interrupts */
1305 	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1306 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1307 		if (cdev->version == 30)
1308 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1309 				    ~(IR_ERR_LEC_30X));
1310 		else
1311 			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1312 				    ~(IR_ERR_LEC_31X));
1313 	else
1314 		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1315 
1316 	/* route all interrupts to INT0 */
1317 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1318 
1319 	/* set bittiming params */
1320 	m_can_set_bittiming(dev);
1321 
1322 	/* enable internal timestamp generation, with a prescalar of 16. The
1323 	 * prescalar is applied to the nominal bit timing */
1324 	m_can_write(cdev, M_CAN_TSCC, FIELD_PREP(TSCC_TCP_MASK, 0xf));
1325 
1326 	m_can_config_endisable(cdev, false);
1327 
1328 	if (cdev->ops->init)
1329 		cdev->ops->init(cdev);
1330 }
1331 
1332 static void m_can_start(struct net_device *dev)
1333 {
1334 	struct m_can_classdev *cdev = netdev_priv(dev);
1335 
1336 	/* basic m_can configuration */
1337 	m_can_chip_config(dev);
1338 
1339 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1340 
1341 	m_can_enable_all_interrupts(cdev);
1342 }
1343 
1344 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1345 {
1346 	switch (mode) {
1347 	case CAN_MODE_START:
1348 		m_can_clean(dev);
1349 		m_can_start(dev);
1350 		netif_wake_queue(dev);
1351 		break;
1352 	default:
1353 		return -EOPNOTSUPP;
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 /* Checks core release number of M_CAN
1360  * returns 0 if an unsupported device is detected
1361  * else it returns the release and step coded as:
1362  * return value = 10 * <release> + 1 * <step>
1363  */
1364 static int m_can_check_core_release(struct m_can_classdev *cdev)
1365 {
1366 	u32 crel_reg;
1367 	u8 rel;
1368 	u8 step;
1369 	int res;
1370 
1371 	/* Read Core Release Version and split into version number
1372 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1373 	 */
1374 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1375 	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1376 	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1377 
1378 	if (rel == 3) {
1379 		/* M_CAN v3.x.y: create return value */
1380 		res = 30 + step;
1381 	} else {
1382 		/* Unsupported M_CAN version */
1383 		res = 0;
1384 	}
1385 
1386 	return res;
1387 }
1388 
1389 /* Selectable Non ISO support only in version 3.2.x
1390  * This function checks if the bit is writable.
1391  */
1392 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1393 {
1394 	u32 cccr_reg, cccr_poll = 0;
1395 	int niso_timeout = -ETIMEDOUT;
1396 	int i;
1397 
1398 	m_can_config_endisable(cdev, true);
1399 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1400 	cccr_reg |= CCCR_NISO;
1401 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1402 
1403 	for (i = 0; i <= 10; i++) {
1404 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1405 		if (cccr_poll == cccr_reg) {
1406 			niso_timeout = 0;
1407 			break;
1408 		}
1409 
1410 		usleep_range(1, 5);
1411 	}
1412 
1413 	/* Clear NISO */
1414 	cccr_reg &= ~(CCCR_NISO);
1415 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1416 
1417 	m_can_config_endisable(cdev, false);
1418 
1419 	/* return false if time out (-ETIMEDOUT), else return true */
1420 	return !niso_timeout;
1421 }
1422 
1423 static int m_can_dev_setup(struct m_can_classdev *cdev)
1424 {
1425 	struct net_device *dev = cdev->net;
1426 	int m_can_version;
1427 
1428 	m_can_version = m_can_check_core_release(cdev);
1429 	/* return if unsupported version */
1430 	if (!m_can_version) {
1431 		dev_err(cdev->dev, "Unsupported version number: %2d",
1432 			m_can_version);
1433 		return -EINVAL;
1434 	}
1435 
1436 	if (!cdev->is_peripheral)
1437 		netif_napi_add(dev, &cdev->napi,
1438 			       m_can_poll, M_CAN_NAPI_WEIGHT);
1439 
1440 	/* Shared properties of all M_CAN versions */
1441 	cdev->version = m_can_version;
1442 	cdev->can.do_set_mode = m_can_set_mode;
1443 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1444 
1445 	/* Set M_CAN supported operations */
1446 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1447 		CAN_CTRLMODE_LISTENONLY |
1448 		CAN_CTRLMODE_BERR_REPORTING |
1449 		CAN_CTRLMODE_FD |
1450 		CAN_CTRLMODE_ONE_SHOT;
1451 
1452 	/* Set properties depending on M_CAN version */
1453 	switch (cdev->version) {
1454 	case 30:
1455 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1456 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1457 		cdev->can.bittiming_const = cdev->bit_timing ?
1458 			cdev->bit_timing : &m_can_bittiming_const_30X;
1459 
1460 		cdev->can.data_bittiming_const = cdev->data_timing ?
1461 			cdev->data_timing :
1462 			&m_can_data_bittiming_const_30X;
1463 		break;
1464 	case 31:
1465 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1466 		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1467 		cdev->can.bittiming_const = cdev->bit_timing ?
1468 			cdev->bit_timing : &m_can_bittiming_const_31X;
1469 
1470 		cdev->can.data_bittiming_const = cdev->data_timing ?
1471 			cdev->data_timing :
1472 			&m_can_data_bittiming_const_31X;
1473 		break;
1474 	case 32:
1475 	case 33:
1476 		/* Support both MCAN version v3.2.x and v3.3.0 */
1477 		cdev->can.bittiming_const = cdev->bit_timing ?
1478 			cdev->bit_timing : &m_can_bittiming_const_31X;
1479 
1480 		cdev->can.data_bittiming_const = cdev->data_timing ?
1481 			cdev->data_timing :
1482 			&m_can_data_bittiming_const_31X;
1483 
1484 		cdev->can.ctrlmode_supported |=
1485 			(m_can_niso_supported(cdev) ?
1486 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1487 		break;
1488 	default:
1489 		dev_err(cdev->dev, "Unsupported version number: %2d",
1490 			cdev->version);
1491 		return -EINVAL;
1492 	}
1493 
1494 	if (cdev->ops->init)
1495 		cdev->ops->init(cdev);
1496 
1497 	return 0;
1498 }
1499 
1500 static void m_can_stop(struct net_device *dev)
1501 {
1502 	struct m_can_classdev *cdev = netdev_priv(dev);
1503 
1504 	/* disable all interrupts */
1505 	m_can_disable_all_interrupts(cdev);
1506 
1507 	/* Set init mode to disengage from the network */
1508 	m_can_config_endisable(cdev, true);
1509 
1510 	/* set the state as STOPPED */
1511 	cdev->can.state = CAN_STATE_STOPPED;
1512 }
1513 
1514 static int m_can_close(struct net_device *dev)
1515 {
1516 	struct m_can_classdev *cdev = netdev_priv(dev);
1517 
1518 	netif_stop_queue(dev);
1519 
1520 	if (!cdev->is_peripheral)
1521 		napi_disable(&cdev->napi);
1522 
1523 	m_can_stop(dev);
1524 	m_can_clk_stop(cdev);
1525 	free_irq(dev->irq, dev);
1526 
1527 	if (cdev->is_peripheral) {
1528 		cdev->tx_skb = NULL;
1529 		destroy_workqueue(cdev->tx_wq);
1530 		cdev->tx_wq = NULL;
1531 	}
1532 
1533 	if (cdev->is_peripheral)
1534 		can_rx_offload_disable(&cdev->offload);
1535 
1536 	close_candev(dev);
1537 	can_led_event(dev, CAN_LED_EVENT_STOP);
1538 
1539 	return 0;
1540 }
1541 
1542 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1543 {
1544 	struct m_can_classdev *cdev = netdev_priv(dev);
1545 	/*get wrap around for loopback skb index */
1546 	unsigned int wrap = cdev->can.echo_skb_max;
1547 	int next_idx;
1548 
1549 	/* calculate next index */
1550 	next_idx = (++putidx >= wrap ? 0 : putidx);
1551 
1552 	/* check if occupied */
1553 	return !!cdev->can.echo_skb[next_idx];
1554 }
1555 
1556 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1557 {
1558 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1559 	struct net_device *dev = cdev->net;
1560 	struct sk_buff *skb = cdev->tx_skb;
1561 	u32 id, cccr, fdflags;
1562 	int i;
1563 	int putidx;
1564 
1565 	cdev->tx_skb = NULL;
1566 
1567 	/* Generate ID field for TX buffer Element */
1568 	/* Common to all supported M_CAN versions */
1569 	if (cf->can_id & CAN_EFF_FLAG) {
1570 		id = cf->can_id & CAN_EFF_MASK;
1571 		id |= TX_BUF_XTD;
1572 	} else {
1573 		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1574 	}
1575 
1576 	if (cf->can_id & CAN_RTR_FLAG)
1577 		id |= TX_BUF_RTR;
1578 
1579 	if (cdev->version == 30) {
1580 		netif_stop_queue(dev);
1581 
1582 		/* message ram configuration */
1583 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1584 		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1585 				 can_fd_len2dlc(cf->len) << 16);
1586 
1587 		for (i = 0; i < cf->len; i += 4)
1588 			m_can_fifo_write(cdev, 0,
1589 					 M_CAN_FIFO_DATA(i / 4),
1590 					 *(u32 *)(cf->data + i));
1591 
1592 		can_put_echo_skb(skb, dev, 0, 0);
1593 
1594 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1595 			cccr = m_can_read(cdev, M_CAN_CCCR);
1596 			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1597 			if (can_is_canfd_skb(skb)) {
1598 				if (cf->flags & CANFD_BRS)
1599 					cccr |= CCCR_CMR_CANFD_BRS <<
1600 						CCCR_CMR_SHIFT;
1601 				else
1602 					cccr |= CCCR_CMR_CANFD <<
1603 						CCCR_CMR_SHIFT;
1604 			} else {
1605 				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1606 			}
1607 			m_can_write(cdev, M_CAN_CCCR, cccr);
1608 		}
1609 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1610 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1611 		/* End of xmit function for version 3.0.x */
1612 	} else {
1613 		/* Transmit routine for version >= v3.1.x */
1614 
1615 		/* Check if FIFO full */
1616 		if (m_can_tx_fifo_full(cdev)) {
1617 			/* This shouldn't happen */
1618 			netif_stop_queue(dev);
1619 			netdev_warn(dev,
1620 				    "TX queue active although FIFO is full.");
1621 
1622 			if (cdev->is_peripheral) {
1623 				kfree_skb(skb);
1624 				dev->stats.tx_dropped++;
1625 				return NETDEV_TX_OK;
1626 			} else {
1627 				return NETDEV_TX_BUSY;
1628 			}
1629 		}
1630 
1631 		/* get put index for frame */
1632 		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1633 			  >> TXFQS_TFQPI_SHIFT);
1634 		/* Write ID Field to FIFO Element */
1635 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1636 
1637 		/* get CAN FD configuration of frame */
1638 		fdflags = 0;
1639 		if (can_is_canfd_skb(skb)) {
1640 			fdflags |= TX_BUF_FDF;
1641 			if (cf->flags & CANFD_BRS)
1642 				fdflags |= TX_BUF_BRS;
1643 		}
1644 
1645 		/* Construct DLC Field. Also contains CAN-FD configuration
1646 		 * use put index of fifo as message marker
1647 		 * it is used in TX interrupt for
1648 		 * sending the correct echo frame
1649 		 */
1650 		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1651 				 ((putidx << TX_BUF_MM_SHIFT) &
1652 				  TX_BUF_MM_MASK) |
1653 				 (can_fd_len2dlc(cf->len) << 16) |
1654 				 fdflags | TX_BUF_EFC);
1655 
1656 		for (i = 0; i < cf->len; i += 4)
1657 			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1658 					 *(u32 *)(cf->data + i));
1659 
1660 		/* Push loopback echo.
1661 		 * Will be looped back on TX interrupt based on message marker
1662 		 */
1663 		can_put_echo_skb(skb, dev, putidx, 0);
1664 
1665 		/* Enable TX FIFO element to start transfer  */
1666 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1667 
1668 		/* stop network queue if fifo full */
1669 		if (m_can_tx_fifo_full(cdev) ||
1670 		    m_can_next_echo_skb_occupied(dev, putidx))
1671 			netif_stop_queue(dev);
1672 	}
1673 
1674 	return NETDEV_TX_OK;
1675 }
1676 
1677 static void m_can_tx_work_queue(struct work_struct *ws)
1678 {
1679 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1680 						   tx_work);
1681 
1682 	m_can_tx_handler(cdev);
1683 }
1684 
1685 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1686 				    struct net_device *dev)
1687 {
1688 	struct m_can_classdev *cdev = netdev_priv(dev);
1689 
1690 	if (can_dropped_invalid_skb(dev, skb))
1691 		return NETDEV_TX_OK;
1692 
1693 	if (cdev->is_peripheral) {
1694 		if (cdev->tx_skb) {
1695 			netdev_err(dev, "hard_xmit called while tx busy\n");
1696 			return NETDEV_TX_BUSY;
1697 		}
1698 
1699 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1700 			m_can_clean(dev);
1701 		} else {
1702 			/* Need to stop the queue to avoid numerous requests
1703 			 * from being sent.  Suggested improvement is to create
1704 			 * a queueing mechanism that will queue the skbs and
1705 			 * process them in order.
1706 			 */
1707 			cdev->tx_skb = skb;
1708 			netif_stop_queue(cdev->net);
1709 			queue_work(cdev->tx_wq, &cdev->tx_work);
1710 		}
1711 	} else {
1712 		cdev->tx_skb = skb;
1713 		return m_can_tx_handler(cdev);
1714 	}
1715 
1716 	return NETDEV_TX_OK;
1717 }
1718 
1719 static int m_can_open(struct net_device *dev)
1720 {
1721 	struct m_can_classdev *cdev = netdev_priv(dev);
1722 	int err;
1723 
1724 	err = m_can_clk_start(cdev);
1725 	if (err)
1726 		return err;
1727 
1728 	/* open the can device */
1729 	err = open_candev(dev);
1730 	if (err) {
1731 		netdev_err(dev, "failed to open can device\n");
1732 		goto exit_disable_clks;
1733 	}
1734 
1735 	if (cdev->is_peripheral)
1736 		can_rx_offload_enable(&cdev->offload);
1737 
1738 	/* register interrupt handler */
1739 	if (cdev->is_peripheral) {
1740 		cdev->tx_skb = NULL;
1741 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1742 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1743 		if (!cdev->tx_wq) {
1744 			err = -ENOMEM;
1745 			goto out_wq_fail;
1746 		}
1747 
1748 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1749 
1750 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1751 					   IRQF_ONESHOT,
1752 					   dev->name, dev);
1753 	} else {
1754 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1755 				  dev);
1756 	}
1757 
1758 	if (err < 0) {
1759 		netdev_err(dev, "failed to request interrupt\n");
1760 		goto exit_irq_fail;
1761 	}
1762 
1763 	/* start the m_can controller */
1764 	m_can_start(dev);
1765 
1766 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1767 
1768 	if (!cdev->is_peripheral)
1769 		napi_enable(&cdev->napi);
1770 
1771 	netif_start_queue(dev);
1772 
1773 	return 0;
1774 
1775 exit_irq_fail:
1776 	if (cdev->is_peripheral)
1777 		destroy_workqueue(cdev->tx_wq);
1778 out_wq_fail:
1779 	if (cdev->is_peripheral)
1780 		can_rx_offload_disable(&cdev->offload);
1781 	close_candev(dev);
1782 exit_disable_clks:
1783 	m_can_clk_stop(cdev);
1784 	return err;
1785 }
1786 
1787 static const struct net_device_ops m_can_netdev_ops = {
1788 	.ndo_open = m_can_open,
1789 	.ndo_stop = m_can_close,
1790 	.ndo_start_xmit = m_can_start_xmit,
1791 	.ndo_change_mtu = can_change_mtu,
1792 };
1793 
1794 static int register_m_can_dev(struct net_device *dev)
1795 {
1796 	dev->flags |= IFF_ECHO;	/* we support local echo */
1797 	dev->netdev_ops = &m_can_netdev_ops;
1798 
1799 	return register_candev(dev);
1800 }
1801 
1802 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1803 				const u32 *mram_config_vals)
1804 {
1805 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1806 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1807 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1808 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1809 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1810 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1811 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1812 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1813 		(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1814 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1815 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1816 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1817 		(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1818 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1819 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1820 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1821 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1822 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1823 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1824 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1825 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1826 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1827 		(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1828 
1829 	dev_dbg(cdev->dev,
1830 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1831 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1832 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1833 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1834 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1835 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1836 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1837 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1838 }
1839 
1840 void m_can_init_ram(struct m_can_classdev *cdev)
1841 {
1842 	int end, i, start;
1843 
1844 	/* initialize the entire Message RAM in use to avoid possible
1845 	 * ECC/parity checksum errors when reading an uninitialized buffer
1846 	 */
1847 	start = cdev->mcfg[MRAM_SIDF].off;
1848 	end = cdev->mcfg[MRAM_TXB].off +
1849 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1850 
1851 	for (i = start; i < end; i += 4)
1852 		m_can_fifo_write_no_off(cdev, i, 0x0);
1853 }
1854 EXPORT_SYMBOL_GPL(m_can_init_ram);
1855 
1856 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1857 {
1858 	int ret = 0;
1859 
1860 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1861 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1862 
1863 	if (IS_ERR(cdev->cclk)) {
1864 		dev_err(cdev->dev, "no clock found\n");
1865 		ret = -ENODEV;
1866 	}
1867 
1868 	return ret;
1869 }
1870 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1871 
1872 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1873 						int sizeof_priv)
1874 {
1875 	struct m_can_classdev *class_dev = NULL;
1876 	u32 mram_config_vals[MRAM_CFG_LEN];
1877 	struct net_device *net_dev;
1878 	u32 tx_fifo_size;
1879 	int ret;
1880 
1881 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1882 					     "bosch,mram-cfg",
1883 					     mram_config_vals,
1884 					     sizeof(mram_config_vals) / 4);
1885 	if (ret) {
1886 		dev_err(dev, "Could not get Message RAM configuration.");
1887 		goto out;
1888 	}
1889 
1890 	/* Get TX FIFO size
1891 	 * Defines the total amount of echo buffers for loopback
1892 	 */
1893 	tx_fifo_size = mram_config_vals[7];
1894 
1895 	/* allocate the m_can device */
1896 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1897 	if (!net_dev) {
1898 		dev_err(dev, "Failed to allocate CAN device");
1899 		goto out;
1900 	}
1901 
1902 	class_dev = netdev_priv(net_dev);
1903 	class_dev->net = net_dev;
1904 	class_dev->dev = dev;
1905 	SET_NETDEV_DEV(net_dev, dev);
1906 
1907 	m_can_of_parse_mram(class_dev, mram_config_vals);
1908 out:
1909 	return class_dev;
1910 }
1911 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1912 
1913 void m_can_class_free_dev(struct net_device *net)
1914 {
1915 	free_candev(net);
1916 }
1917 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1918 
1919 int m_can_class_register(struct m_can_classdev *cdev)
1920 {
1921 	int ret;
1922 
1923 	if (cdev->pm_clock_support) {
1924 		ret = m_can_clk_start(cdev);
1925 		if (ret)
1926 			return ret;
1927 	}
1928 
1929 	if (cdev->is_peripheral) {
1930 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1931 						M_CAN_NAPI_WEIGHT);
1932 		if (ret)
1933 			goto clk_disable;
1934 	}
1935 
1936 	ret = m_can_dev_setup(cdev);
1937 	if (ret)
1938 		goto rx_offload_del;
1939 
1940 	ret = register_m_can_dev(cdev->net);
1941 	if (ret) {
1942 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1943 			cdev->net->name, ret);
1944 		goto rx_offload_del;
1945 	}
1946 
1947 	devm_can_led_init(cdev->net);
1948 
1949 	of_can_transceiver(cdev->net);
1950 
1951 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
1952 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
1953 
1954 	/* Probe finished
1955 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1956 	 */
1957 	m_can_clk_stop(cdev);
1958 
1959 	return 0;
1960 
1961 rx_offload_del:
1962 	if (cdev->is_peripheral)
1963 		can_rx_offload_del(&cdev->offload);
1964 clk_disable:
1965 	m_can_clk_stop(cdev);
1966 
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(m_can_class_register);
1970 
1971 void m_can_class_unregister(struct m_can_classdev *cdev)
1972 {
1973 	if (cdev->is_peripheral)
1974 		can_rx_offload_del(&cdev->offload);
1975 	unregister_candev(cdev->net);
1976 }
1977 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1978 
1979 int m_can_class_suspend(struct device *dev)
1980 {
1981 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
1982 	struct net_device *ndev = cdev->net;
1983 
1984 	if (netif_running(ndev)) {
1985 		netif_stop_queue(ndev);
1986 		netif_device_detach(ndev);
1987 		m_can_stop(ndev);
1988 		m_can_clk_stop(cdev);
1989 	}
1990 
1991 	pinctrl_pm_select_sleep_state(dev);
1992 
1993 	cdev->can.state = CAN_STATE_SLEEPING;
1994 
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1998 
1999 int m_can_class_resume(struct device *dev)
2000 {
2001 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2002 	struct net_device *ndev = cdev->net;
2003 
2004 	pinctrl_pm_select_default_state(dev);
2005 
2006 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2007 
2008 	if (netif_running(ndev)) {
2009 		int ret;
2010 
2011 		ret = m_can_clk_start(cdev);
2012 		if (ret)
2013 			return ret;
2014 
2015 		m_can_init_ram(cdev);
2016 		m_can_start(ndev);
2017 		netif_device_attach(ndev);
2018 		netif_start_queue(ndev);
2019 	}
2020 
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL_GPL(m_can_class_resume);
2024 
2025 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2026 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2027 MODULE_LICENSE("GPL v2");
2028 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2029